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Abstract: Clinical uses of magnetic resonance imaging (MRI) have contributed to an
increase in the difficulty of image reconstruction. However, a speedy computational method
is required in order to diagnose and treat the condition. The advent of modern, competitive
designs for graphics processing units (GPUs) has made high-performance parallel processing
accessible and appealing to regular consumers. This has made it possible to compute
massively parallel reconstruction problems at commodity costs. The reconstruction of an
MRI using artificial intelligence (AI) places a larger load on graphics processing units(GPUs)
due to the computations that must be performed in order to complete the task. This study was
conducted with the intention of producing a comprehensive resource on the image
reconstruction methods that may be used by the MRI research community. The resource will
focus on GPU (Graphical Processing Unit) computation
Keywords: Graphics processing unit (GPU); magnetic resonance imaging (MRI);
reconstruction

Introduction
When working in an MRI environment, medical staff would be subjected to high levels of
magnetic field variations (up to 100 T/s in the range of frequencies 50-5000 Hz are
generated) as well as powerful quasi-static magnetic fields. This could expose them to levels
of magnetic field variation that could be harmful. Moving through magnetic fields may
increase a person's exposure to extremely low frequency electromagnetic fields (ELF). This is
because moving through magnetic fields can create rates of change in the magnetic field that
can reach up to 20T/s in the frequency range of 0.1-50 Hz. Numerous studies [1-3] have been
prompted by people's concerns about the biological implications of these interactions. When
individuals in employment make continuous motions with their body, strong magnetic fields
have the potential to cause huge induced currents [1]. A maximum permitted induced current
density (J) of electric field in the body is often specified by both international and national
rules governing exposure to ELF radiation. In order to accurately explain the boundaries of
any discovered biological repercussions, it is essential to have the capability to monitor the
induced electricity inside the body at a high spatial resolution. Because it is not possible to
test these generated currents or electrical forces directly, the only method that can be used to
determine exposure levels and ensure compliance with standards is computerised modelling
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of the induced currents for specific applied fields. This is the only method that can be used.
Examining these biological consequences via the use of numerical simulation is a strategy
that is both time and money efficient. When attempting to estimate the size of the generated
electric fields for simple or regular geometries or for conductivity distributions that are
homogenous, an easy analytical procedure might be of great assistance. Even though there
are many different numerical simulation packages available, such as Finite Difference Time
Domain (FDTD) and Transmission Line Method (TLM), neither of these approaches is ideal
for solving extremely low frequency problems, such as those associated with human motion
and rotation near magnets [2]. Even though there are many different numerical simulation
packages available, neither of these approaches is ideal for solving extremely low frequency
problems. You might utilise a form of pseudo-static Finite-Difference (FD) approximation
rather than FDTD. This approximation is based on the assessment of nodal potentials and
connected admittances [3]. For the purpose of organising the data in preparation for
calculation, this FD approximation makes use of a very large number of cubic cells. Because
of the length of the calculation durations, putting such a computational instrument into
practise might be challenging. It is important to calculate induced electric fields at various
sites of movement at different periods in order to conduct an analysis of the movements of
the body throughout the course of a certain amount of time. On a computer with two cores of
processing power, a single motion calculation for a human head model with a precision of
three millimetres and sixty-five hundred thousand voxels takes approximately five hours, and
achieving convergence requires one thousand iterations. To investigate a typical body
motion, such as the rotation of the head at an average angular velocity of /2 rad/s for one
second, however, around 45 simulation frames are required. Because of the amount of
processing time needed to reproduce many of the normal body movements associated with
occupational workers, doing research on the consequences of modifying MRI scanner
hardware is not a practical option. The General Purpose Graphics Processing Units (GPGPU)
hardware acceleration, on the other hand, is a solution that fits in well with the quasi-static
FD approach. In this study, we demonstrate how a single graphics processing unit (GPU)
from NVIDIA may be used to replicate the effect that a powerful magnetic field has on the
behaviours of workers in a variety of different types of businesses. The first example takes
around eight minutes to duplicate head rotation motions at four different magnetic field
strengths, but the corresponding CPU version would take more than three hundred thirty-six
minutes to complete the task. The end result is a decrease in processing time that is more than
40 times faster. In the second illustration, a person is seen being dragged towards a 7T
magnet. In this particular project, the torso model consists of close to 8 million individual
cells and must be completed using 10,000 iterations. It is possible to get a speedup of increase
to 27 times in comparison to the CPU.
Rapid or Sparse MRI
Researchers have been looking for feasible alternatives to increase the speed of MRI by
sampling the k-space at a rate lower than the Nyquist rate, while maintaining the same level
of picture quality despite the inherent limitations of the technique. However, in order to
violate the Nyquist requirement for signal/image sampling, undersampling in k-space that is
caused by periodic interleaving is necessary. Aliasing artefacts will be produced in the
reconstructed signal or picture as a consequence of this. According to the Shannon-Nyquist
theorem, which is generally followed by all signal or picture collecting systems, the sampling
frequency must be at least twice as high as the highest frequency contained in the signal (the
Nyquist rate). This is the minimum requirement for the sample frequency to meet. This
approach, which converts analogue signals to digital ones and is used in every piece of
consumer gear, every piece of medical equipment, and every radio receiver on the market
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today, results in an enormous amount of data being dumped. As long as the natural signals or
pictures are represented on an appropriate basis, compression may be applied to nearly any
sort of natural signal or image. This indicates that just a few number of non-zero big
magnitude coefficients need to be employed in order to accurately characterise the energy of
the whole signal or picture. After applying the appropriate transformation to the signal or
picture, the vast majority of the coefficients may be ignored. Lossy compression methods,
such as JPEG-2000, are based on this basic idea as their foundation. In other circumstances,
the difficulty is in simply obtaining access to the relevant information. The above raises an
obvious follow-up question: is it not possible for us to reconstruct a signal or picture from
just a few encoded measurements if we gather all of the samples and then toss away the
majority of them during reconstruction??
i) It is suggested to correctly recover a single-slice MR image from significantly
undersampled observations using a Hidden Markov Model-based wavelet support detector..
ii) For the purpose of estimating multi-slice MRI missing data in k-space, a unique 3D
interpolation approach is presented..
iii) To take advantage of the information redundancy in multi-slice MRI data at the wavelet
levels, we designed a forest sparsity based joint CS reconstruction model.
iv) We developed a completely calibration-free joint CS reconstruction model that can take
use of the wavelet and spatial sparsity of multi-slice pMRI data, and we validated and tested
it on real-world multi-slice pMRI datasets. For the purpose of establishing the suggested CS
reconstruction model's clinical viability, it is also implemented in a CPU-GPU setting.

Literature Review
Chong Ma ET.AL.,(2021) Because of the high risk associated with brain tumours, receiving
a timely diagnosis and treatment is of the highest significance. When it comes to segmenting
the cancer sub-regions of the multi-modal brain tumour MRI, the performance of the 3D
convolutional neural network is superior to that of the conventional 2D convolutional neural
network. The method, taken as a whole, makes it easier to extract more contextual
information, which, in turn, helps with the accurate segmentation of the brain tumour into its
component pieces. The author of this study suggests employing group convolution rather than
traditional convolution as a means of significantly cutting down on the amount of memory
that is required in order to optimise the flow of information between the many components
that are connected by the multi-fiber unit. The experiment uses the cross-GPU
synchronisation normalisation strategy in order to remedy the subpar segmentation effect
generated by the 3D convolutional neural network as a consequence of the low batch value
and the inability to forecast the gradient direction. This is done in order to remedy the subpar
segmentation impact produced by the 3D convolutional neural network. This is done in order
to fully grasp the advantages that may be gained from the computer hardware that is now
accessible. In the end, we changed the activation function that had been used before to one
that was superior in terms of its ability to segment. The experiment described in this paper is
verified by utilising the publicly available dataset of brain tumours known as Brats2018. The
average Dice value of the revised model is 89.79% for the overall brain tumour region; this
value is 85.59% for the area that contains the tumour core; and this value is 79.83% for the
region that contains the cerebral tumour augmentation. When compared to earlier iterations
of segmentation models, the training period for this experiment, which lasted 321.89 minutes,
is relatively short.
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Chi Zhang et.al.,(2020) Reconstruction accomplished via the use of physics-guided deep
learning (PG-DL) has developed into a powerful method for rapid MRI. However,
widespread use of PG-DL on 3D non-Cartesian MRI is still in its infant stages. This is
primarily because of limitations in GPU hardware. Within the scope of this investigation, we
use PG-DL to a large-scale 3D kooshball coronary MRI and make use of a wide range of
memory-efficient techniques. To begin, we implement a recently proposed strategy for
keeping GPUs on a single unrolled stride at all times. After that, a Toeplitz approach is used
in order to properly depict the multi-coil encoding operator. Then, we get rid of the
requirement for coil compression by distributing the data consistency operations that require
the most memory across several GPUs, which enables iterations of the conjugate gradient. In
conclusion, mixed-precision training is used in order to further reduce the need of using one's
memory.Our research has shown that this combination of techniques produces the best results
when it comes to training high-quality PG-DL reconstruction for 3D kooshball trajectories.
This discovery suggests that this combination of methodologies is the best option for teaching
high-quality reconstruction.
Dushyant Sahoo et.al (2018) In recent years, there has been a rise in curiosity about resting-
state functional magnetic resonance imaging (MRI), a technique that enables researchers to
evaluate the functional connectivity throughout the whole of the brain. In order to examine
the dynamics of functional connectivity, this approach is being used more and more,
particularly for the goal of identifying individual biomarkers. On the other hand, there are
major barriers to overcome as a result of the high amounts of background noise that are
present in each every fMRI scan. In this article, we propose using Granger causality patterns
in order to examine the dynamics of fMRI among people. This approach is able to
simultaneously derive population causality patterns that are more resistant to noise while also
capturing the organisation of the brain at the individual level. We construct an efficient
method for finding shared causation patterns by evaluating the rs-fMRI data of one hundred
people who are not linked to each other who took part in the Human Connectome Project. We
then demonstrate the method's effectiveness..

Figure 1: Multi-slice pMRI data. (a) Real and imaginary parts of complex Knee MRI data. (b)
Magnitude of complex multi-slice Knee pMRI data (Source: www.mridata.org)

http://www.mridata.org/
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Proposed Method
By capitalising on similarities that occur simultaneously in slice and coil direction of
multislice pMRI data, the fundamental objective of our research is to improve the quality of
parallel MRI reconstruction from severely undersampled observations. This will be
accomplished by using multislice pMRI data. The method that has been developed involves
two stages: (a) k-space interpolation, and (b) calibrationless joint sparsity. These stages are
used to reconstruct CS pMRI without the need of calibration. When it comes to interpolation,
we make advantage of k-space redundant data along the slice-select axis. In addition, there
are overlaps inside only one coil, across coils, and between slices of the 2D data. These
overlaps may be found in all three locations. It is feasible to analyse tree sparsity by
transforming coil data into an image and representing it using the wavelet domain. This may
be done in one of two ways. A forest may be represented as a collection of wavelet trees that
are connected to one another and consist of different coils and slices.

Figure 2: Graphical representation of the propose non-uniform undersampling scheme for
multi-slice pMRI data

These data sets are comprised of MR images that are of a complex character. In Dataset I,
there are eight channels of genuine knee data that were sampled on a 320320172 Cartesian
grid. In Dataset II, there are fifteen channels of real knee data that were sampled on a
76877031 grid. Both of the datasets, which contain authentic k-space information, are

subjected straight away to undersampling. We handle the real and imaginary portions of the
data individually during the iterative reconstruction. This results in a large collection of

reconstructed pictures that can be used to assess the correctness of the approach and compare
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it to other methods. Real MR images are complicated data, thus we process them separately
during the iterative reconstruction. At each of the four levels of decomposition, we put into
action a sparsifying transformation that makes use of the Daubechies wavelet (db2). Because
the majority of MR images are piece-wise smooth, the 'db2' wavelet could be a good choice.
Higher order wavelets require more computation, but they do not significantly improve the
quality of the reconstructed image. On the basis of study and testing [18, 52], the parameters
for regularisation have been fixed in stone. These parameters include 1 = 0.001 and 2 =

0.035. The SNR, MSSIM, and FSIM of Dataset I reconstructions are shown in Figures 5.6 for
a range of undersampling percentages. According to our findings, the performance of

ESPIRiT is superior than that of SPIRiT and CS-SENSE, which are two additional auto-
calibration approaches. The recommended method offers an advantage over the ESPIRiT in
terms of performance since it is superior by a margin of 1.5 dB on average,the proposed

technique could also end in an increase of 0.5–1 dB in SNR. Alterations of a positive nature
may also be seen in the FSIM. Despite this, both the PLORAKS and the proposed offer

superior performance in terms of how similar their structures are to one another.

Figure 3: Reconstruction performance in terms of SNR for different datasets under different
undersampling ratios

Parallel Implementation in CPU-GPU Environment
To solve the overall reconstruction problem, we break it up into smaller, more manageable
pieces that can be run in parallel on multi-core machines. For example, in order to perform
the 58 CS reconstruction problems in parallel, Dataset I (320 320 8 172) was split into two
halves. First and last parallel subproblems take into account data of size (320 320 8 2), while
the remaining 56 parallel CS reconstruction subproblems take into account data of size (320
320 8 3). These 4D subproblems are simultaneously tackled by multi-core machines. Using
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distributed shared memory, each concurrent task performs computationally expensive
operations locally, such as forward/backward Fourier and wavelets modifications, matrix-
matrix/vector multiplications, and so on.
Table 1: Comparison of the computational cost in terms of the amount of time spent by the
central processing unit (in minutes) for sequentially and parallel versions of the proposed
approach with an under sampling ratio of 20%

Graphics processing units with a high number of cores. This approach considerably cuts
down the amount of time necessary to calculate the answer by virtue of the fact that many
operations included inside each subproblem may make use of GP-GPU hardware in parallel.
Programming on multi-core central processing units (CPUs) as well as graphics processing
units (GPUs) have both made use of the MATLAB Parallel Computing Toolbox. The results
of the computational analysis are shown in Table 1 for both datasets. We have found that the
reconstruction process may be finished in a matter of minutes when a parallel incorporate-
core and GP-GPU are used in conjunction with the strategy that has been presented. We only
evaluated the recommended way to evaluate the practical practicality of GPU creation in
terms of processing time. This is because the suggested approach is both one of the fastest
algorithms in serial construction and the most exact of all of those that were researched for
comparison. Consequently, it was the only one that we investigated. We come to the
conclusion that the proposed method, if it has the appropriate parallel computing features, has
the potential to provide clinically-viable reconstruction outcomes within a period that is
clinically sensible..

Conclusion
Within the scope of this investigation, we propose a novel approach to the calibration-free
CS-based reconstruction of pMRI. Because we have tested the proposed method using actual
MRI datasets from the real world and compared it to the most advanced computer science–
based pMRI algorithms, we are confident that it is successful. Experiments have proven that
it is superior to other approaches in terms of both the quantity and quality of the results it
produces. We have developed the approach using parallel computing on multi-core central
processing units (CPUs) and general purpose graphics processing units (GP-GPUs) in order
to further study the computational time and clinical feasibility of the method. In as little as
two to three minutes, it's possible to successfully recreate clinical information by employing
graphics processing units (GPUs). It has been shown that the calibration-less CS pMRI
reconstruction approach that was developed is not only effective but also feasible.
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