
DYNAMIC CURVE NUMBERS: CONCEPT
AND APPLICATION

Edna Z. Ezzell1 & Richard H. McCuen2

1Dept. of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA
2Dept. of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742,

E-maiL: rhmccuen@eng.umd.edu

ABSTRACT: A runoff curve number (CN) is generally applied as a constant that reflects the expected
depth of runoff that results from the storm event depth of rainfall. When it is applied to the temporal
variation of rainfall, it contributes to several problems: (1) an unconventional initial abstraction coefficient,
(2) an infiltration function that inaccurately models as a decay function at the end of the storm, and (3) an
insensitivity to the temporal variation of the physical processes over the duration of a storm. The use of a
dynamic curve number, which is a curve number that changes over the duration of a storm, overcomes
these issues and provides better regeneration accuracy of observed runoff hydrographs. For the eight
storm events analyzed, the use of dynamic curve numbers resulted in less bias and an improved standard
error compared with the result of the traditional constant storm event CN. The initial abstraction coefficient
varied from 0.02 to 0.17, with an average value of 0.09. The dynamic CN method provides a more flexible
infiltration function than the one inherent to the NRCS rainfall-runoff equation with a static CN.

1. INTRODUCTION

The Soil Conservation Service developed the curve number (CN) technique to estimate the
depth of rainfall excess from the storm rainfall depth for varying land uses and soil types. The
method was developed through the analyses of storm events on small agricultural watersheds
(Rallison and Miller, 1982; Rallison and Cronshey, 1979). The equation was then extended for
use to separate losses from rainfall excess for temporally varying storm event data. The design
method is most frequently applied to ungauged watersheds for the purposes of peak discharge
estimation, not just runoff depth estimation. A peak discharge and hydrograph is the usual
output. Its use, which has been applied well beyond the original intent, has created considerable
critical assessment and recommendations for improvements.

A curve number is obtained from a table using the following factors: soil type, land use/
cover, and land treatment, and hydrologic condition. However, others have recognized that the
storm size (Hawkins, 1993), duration (Woodward, 1973), and intensity (Simanton et al., 1973,
Hawkins, 1982); the season of the event (Capece et al., 1986, Price, 1998); the portion of the
drainage area subjected to intense rainfall (Simanton et al., 1973, Hawkins, 1979); and the
drainage area (Simanton et al., 1996) may influence a computed curve number. Proposals have
been made to incorporate these factors into modified curve numbers. With respect to drainage
area, White (1988) recommended that the use of curve numbers be limited to watersheds of
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2.6 km2 (1 mi2) or less where land use was uniform and unchanging. In standard hydrograph
calculations, a constant CN is used to separate rainfall excess and losses. However, the conditions
of a watershed vary over the duration of a storm event, and the time variation of the processes
affects runoff characteristics of actual events.

A proposal is made herein to relax the requirement of the CN being temporally constant.
Then the temporal nature of watershed processes will be better reflected in the value of a curve
number at any point in time. The temporally varying CN will be referred to as a dynamic curve
number. The hypothesis is that, since watershed processes vary over the duration of a storm,
then the CN should be allowed to vary with time when separating losses and rainfall excess. If
this hypothesis is correct, then prediction accuracy using a dynamic CN should be better than
when a static, non-time varying CN is used. A constant curve number for temporally varying
runoff processes is not flexible and can limit prediction accuracy.

The goal of the study was to develop and test the concept of a dynamic curve number. The
objectives were to: (1) demonstrate that a dynamic CN could be used to more accurately separate
rainfall excess from the total rainfall, (2) assess the accuracy of the dynamic CN technique
using actual rainfall-runoff data, (3) compare the accuracy of the dynamic CN with that of the
static CN method, and (4) use the dynamic curve number to improve understanding of the
initial abstraction and infiltration conceptual problems. The accuracy of both the static CN and
the dynamic CN are assessed based on how well the observed hydrographs are reproduced.

2. STATIC CN TECHNIQUE

The static curve number technique separates rainfall into an initial abstraction, losses, and
precipitation excess (see Fig. 1). The curve number is used to determine the retention S

 
(in.):

S = 1000/CN-10 (1)

where the initial abstraction (Ia, in.) is:

Ia = 0.2
 
S (2)

Figure 1: Separation of a Rainfall Hyetograph and Runoff Hydrograph into Component Parts

 

  
  

 
 
 
 
  

  

  

 
  

Losses 

Rainfall 
excess 

R
ai

nf
al

l I
nt

en
si

ty
 

D
is

ch
ar

ge
 

Direct runoff 

Baseflow 

t 

t 

t 0 

0 

40



DYNAMIC CURVE NUMBERS: CONCEPT AND APPLICATION / 113

All rainfall that occurs to a depth of Ia is removed before any rainfall excess occurs. The
remainder of the rainfall is separated into rainfall excess and other losses. The cumulative
rainfall excess, �Q

 
(t), depends on the cumulative rainfall, �P, to any point in time t, and the

total retention, S, to any point in time:

� �
� �

2
( ) 0.2

( )
( ) 0.8

�
�

�
�� �

P t S
Q t

P t S
(3)

where �P
 
(t) is the cumulative rainfall from the start of the storm to any time t during the

storm. The rainfall excess Q
 
(t) for any time interval during the storm is a function of time and

is computed from the cumulative excess �Q. In essence, Eq. 3 acts as an infiltration or loss
function model, which has been widely documented (Aron et al., 1977; Hawkins, 1978; Chen,
1982; Hjelmfelt, 1980). Hawkins (1978) points out that as time goes to infinity, the infiltration
rate based on the basic model with a static CN goes to zero, rather than a finite value as
indicated by standard infiltration formulas, such as the Horton (1937) equation. While this is
not generally of concern, analyses of long-duration storm events could result in higher than
expected loss rates at the start of the storm and lower than expected loss rates at the end of an
event. This temporal bias would lead to lower prediction accuracy.

The recent concern about the initial abstraction coefficient of 0.2 in Eq. 2 (Jain et al.,
2006) and the asymptotic behavior of the imbedded loss function are not independent of each
other. When applied to the analysis of a rainfall hyetograph, the relatively high initial abstraction
coefficient of 0.2 suppresses immediate rainfall excess, and therefore, the computed depth of
direct runoff. The embedded loss function inherent to Eq. 3 then allows more rainfall excess at
the end of the storm, which essentially allows the losses to approach zero. Holding the CN
constant for the duration of the storm allows these two limiting conditions of the NRCS method
to decrease the accuracy of hyetograph separation.

3. DYNAMIC CN ANALYSIS

The dynamic CN procedure accomplishes separation of losses and rainfall excess in much the
same way as the static CN except that the magnitude of the CN varies over the duration of the
storm. At the start of the storm, the curve number has an initial value CN

0
 that changes with

time by amount d
 
CN /dt. In this exploratory analysis, a linear relation was used to relate CN

and time
 
(t):

CN
t
 = CN

0
 – bt (4)

in which CN
t
 is the CN at storm time t and b is the slope of the relation (with units of per

minute), which represents d
 
CN /dt. Equations 1, 2, and 3 are applied just as with the static CN

except the value of CN is varied over the duration of the storm, which causes S, Ia, and �Q to
vary with time. The CN coefficients, CN

o
 and b, are optimized by minimizing the standard

error of the differences between the ordinates of the computed and observed runoff hydrographs.
Thus, the value of Ia is also optimized rather than computed from the standard Ia = 0.2

 
S. The
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static CN requires the constraint that �P > Ia. This constraint would also apply to the dynamic
CN. The initial value of the dynamic CN is higher than that of the static CN that was calculated
using the depth of precipitation and runoff.

A dynamic curve number circumvents the individual problems of the initial abstraction
coefficient � and the non-Hortonian infiltration function while allowing the depth of direct
runoff to equal the depth of rainfall excess. Specifically, the higher initial CN causes the initial
abstraction to decrease, which essentially reduces the Ia parameter �. Then as the storm
progresses, the lower curve number produces a progressively higher loss rate than produced by
the traditional static CN. Thus, the dynamic CN yields loss rates that reflect a more Hortonian
infiltration form that levels off to a constant rate.

The dynamic curve number analysis procedure follows the standard rainfall-runoff analysis
steps. First, the base flow is separated from the direct runoff using the constant slope method in
which the low point on the rising limb is connected with a straight line to the inflection point
on the hydrograph recession (McCuen 2005). After removing the base flow, the volume of
direct runoff is determined from the direct runoff hydrograph.. The initial abstraction is removed
from the total rainfall hyetograph. The rainfall excess and other losses can be separated by the
same technique as for the static CN method, specifically Eq. 3 is used.

To test the feasibility of using a dynamic CN, eight storm events from Pennsylvania to
Oklahoma watersheds were analyzed. The drainage areas ranged from 0.6 ha to 717 ha. The
total rainfall depths ranged from 23 mm to 89 mm. The static curve numbers calculated from
rainfall and runoff depths varied from 53 to 96. The validity of the dynamic CN method was
assessed by the extent to which measured runoff hydrographs were reproduced. The accuracy
was assessed using the relative bias (Rb) and the relative standard error (Re), which are measures
of the systematic and nonsystematic error variations, respectively:
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in which n is the number of ordinates on the runoff hydrograph, q̂
i
 is the predicted discharge,

and q— is the mean measured discharge. The resulting goodness-of-fit statistics are included in
Table 1. The two statistics will also be used to assess the ability of the static CN to reproduce
the observed runoff hydrograph, which can provide a means of comparison and the extent to
which the dynamic CN concept is an improvement over the static CN. A positive bias indicates
over prediction while a negative value indicates under prediction of the predicted direct runoff
hydrograph ordinates when compared with the measured hydrograph ordinates. The standard
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error ratio indicates nonsystematic scatter, or error variation, between the predicted and measured
direct runoff hydrographs.

The coefficients of the dynamic CN model (Eq. 4) were fitted with measured rainfall
hyetograph and runoff hydrograph data. The procedure commonly used to separate losses
(see McCuen, 2005) using a constant CN was applied, but the coefficients of Eq. 4 were
calibrated using least-squares fitting of the hydrograph ordinates. The sum of the squares of
the differences between the measured (Q

i
) and computed (Q̂

i
) runoff hydrograph ordinates

Table 1
Storm Characteristics, Drainage Area, Total Rainfall (P), Rainfall Wxcess (PE), Static and Dynamic

Curve Numbers, and Goodness-to-fit Statistics (Rb = Relative Bbias, Re = Relative Standard
Error) for Each Storm Event; for Each Watershed, The Upper and Lower Rows are

for the Static and Dynamic CNs, Respectively

Watershed Date Area (ha) P (mm) PE (mm) CN Rb (%) Re

Chickasha, OK 4/12/67 102.3 77.0 19.8 71.1 2.708 0.925
5145 80.2 0.965 0.783

Chickasha, OK 4/12/67 196.6 52.8 6.2 69.1 0.450 0.645
5143 79.0 0.517 0.411

Oxford, MS 7/9/67 0.6 46.7 30.0 93.2 0.463 0.388
WC-2    97.7 0.289 0.364

Chickasha, OK 9/21/69 227.8 89.1 7.4 53.3 0.062 0.389
612    57.1 0.000 0.399

Waco, TX 4/16/77 70.4 22.6 14.1 96.3 5.383 0.286
W-1    93.3 0.357 0.244

Monticello, IL 8/7/77 33.2 49.3 27.7 90.7 0.518 0.772
1A    96.2 0.518 0.600

Monticello, IL 8/7/77 18.4 49.3 24.5 88.8 0.383 0.763
1B    98.5 0.152 0.454

]Klingerstown, PA 2/24/77 717.5 19.3 11.1 96.3 0.296 0.421
WE-38    99.0 –

 
12.250 0.365

Table 2
Comparison of Initial Abstraction Depths (mm) for Analysis with Static and Dynamic Curve Numbers

Static analysis Dynamic analysis

Watershed CN S Ia � CN
0

So Ia � b

Chickasha 5145 71.09 103 12 0.12 80.2 63 4 0.06 –
 
0.0476

Chickasha 5143 69.07 114 17 0.15 79.0 68 5 0.07 –
 
0.0666

Oxford WC-2 93.15 19 4 0.21 97.7 6 1 0.17 –
 
0.0467

Chickasha 612 53.26 223 53 0.24 57.7 186 28 0.15 –
 
0.0116

Waco 96.30 10 2 0.18 93.3 18 2 0.13 –
 
0.0248

Monticello 1A 90.68 26 5 0.19 96.2 10 1 0.10 –
 
0.0288

Monticello 1B 88.79 32 6 0.19 98.5 4 <1 0.00 –
 
0.0513

Klingerstown 96.31 10 2 0.20 99.0 3 <1 0.00 –
 
0.0172
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was minimized. The initial curve number CN
0
 and the slope coefficient are given in Table 2 for

each of the eight storm events analyzed.

4. ANALYSES OF RAINFALL-RUNOFF EVENTS

For all eight events, the dynamic curve number analysis resulted in an overall better fit to the
observed runoff hydrograph than that provided by the static curve number analysis. In some
cases, the relative standard errors were essentially the same, but the dynamic CN analysis was
less biased and often provided better agreement of the rising limbs of the runoff hydrographs.
For example, the event on watershed 612, Chickasha, OK, produced an insignificantly larger
standard error ratio (0.399 vs 0.389 for the static CN), but the dynamic curve number model
was much less biased (0.000 vs 0.062), where a relative bias of 6.2% is considered significant
over prediction. In six of the eight analyses, the accuracy of the dynamic CN was substantially
better than that of the static CN as evident from the lower Re. For example, the Re for the event
on watershed 1B in Monticello, IL, was more than 30% lower than for the static CN (0.76 vs.
0.45) and also had a smaller bias (38.3% for the static CN vs. 15.2% for the dynamic CN).

From a conceptual standpoint, a dynamic CN seems more realistic than a static CN as
watershed processes vary with time and space. A high initial CN will produce less initial
abstraction (Ia) at the start of the storm, but the abstraction decreases proportionally just as it
would in an actual storm event. The static CN technique with the traditional Ia coefficient of
0.2 has been criticized in the past for producing more initial abstraction than is realistically
needed (e.g., Hawkins et al., 2009). The high initial CN for the dynamic CN approach allows
the initial runoff to be more responsive to rainfall intensity. With the dynamic CN method, the
initial infiltration would not be overwhelmed by intense rainfall, with infiltration losses at the
start of the storm being lower than with the static CN. This essentially reduces the initial
abstraction parameter �. The relatively low CN at the end of the storm yields greater losses at
that time, which better reflects the response of other infiltration formulas.

For watershed IB at Monticello, IL, the relative bias for both models was less than 1%, and
the relative standard error improved from 76% for the static CN to 45% for the dynamic CN,
which is a significant change of 31% (see Fig. 2). However, the times to peak of both the static
and dynamic hydrographs are later than that of the observed runoff. The observed peak runoff
rate of 0.665 cms occurred at a storm time of 92 minutes. The static CN underpredicted with a
computed peak discharge of 0.560 cms at a storm time of 131 minutes. The dynamic CN
analysis overpredicted the peak discharge with a computed value of 0.785 cms at 112 minutes.
The dynamic CN method provided an estimate of the time of the peak discharge that is better
than the static CN estimate, but both times to peak are significantly late. This was due to the
characteristics of the rainfall, which had its peak intensity near the start of the storm. The
important observation to make from Fig. 2 is the much better fit produced by the dynamic CN
on both the rising and falling limbs of the computed hydrograph. By having a higher CN at the
start of the event, the smaller initial abstraction allowed the computed runoff to more nearly
match the observed runoff rates on the rising limb. The lower dynamic CN at the end of the
storm provided for greater losses, which again resulted in a better fit of the hydrograph recession.
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In watershed WC-2 in Oxford, MS, the dynamic CN method did not show significant
improvement in the two goodness-of-fit statistics when compared to the results of the static
CN analysis, but did show a much improved fit of the observed hydrograph (see Fig. 3). The
relative bias improved by only 0.17% and the relative standard error improved by 2.35%. The
peak discharge of the observed runoff was 0.154 cms and occurred at a storm time of 59
minutes. The static CN overpredicted the peak discharge with a computed value of 0.166 cms
at 60 minutes. The dynamic CN also overpredicted the peak discharge with a computed value
of 0.174 cms also at 60 minutes. Both methods accurately predicted the time to peak. The
important difference between the two CN approaches that is not evident from the goodness-of-fit
statistics is the better fit of the rising limb provided by the dynamic CN. This indicates that
single-valued indices such as the relative bias and the relative standard error can not always
summarize the goodness-of-fit of computed hydrographs.

For watershed WE-38 in Klingerstown, PA, the dynamic CN method provided mixed results
as assessed using the goodness-of-fit statistics. The dynamic CN method resulted in a significant
under prediction of 12% but the relative standard error for the dynamic CN was 5.6% better
than that of the static CN. Figure 4 shows the observed runoff hydrograph for both the static
CN method and the dynamic CN method. A comparison reveals that the dynamic CN provided
improvement in the overall fit. The shape of the runoff hydrograph of the dynamic CN method
more closely resembles that of the observed runoff hydrograph especially on the rising limb
and the early part of the recession.

Figure 2: Measured Hydrograph for Monticello Watershed 1B and the Computed
Hydrographs for Static and Dynamic Curve Numbers
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Figure 3: Measured Hydrograph for Oxford Watershed WC-2 and the Computed
Hydrographs for Static and Dynamic Curve Numbers

Figure 4: Measured Hydrograph for Klingerstown Watershed WE-38 and the Computed
Hydrographs for Static and Dynamic Curve Numbers

The other five events showed similar findings. In general, the dynamic curve number
approach provided better goodness-of-fit, especially on the rising limbs of the hydrographs.
This is the result of the flexibility provided by a time-varying CN. In some cases, the two
single-valued goodness-of-fit indices were not able to reveal the better reproduction of the
observed hydrograph provided by the dynamic CN approach.
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5. IMPLICATIONS TO INITIAL ABSTRACTION

The higher initial curve number CN
0
 using the dynamic CN approach yields a lower initial

abstraction, which would reflect a smaller abstraction coefficient �. A lower � has both an empirical
and conceptual basis (Mishra and Singh 1999). A lower initial abstraction would allow the
computed runoff to be characterized by a higher rising limb. This is evident in Figs. 2, 3, and 4.
Table 2 shows the static and initial dynamic CNs and the initial abstractions for each of the eight
events. In most cases, the optimum dynamic CN

0 
was higher than the static CN, thus the lower

initial abstractions. The use of a time varying CN allows for greater flexibility in the initial
abstraction, and from the results shown herein better estimation of the runoff hydrograph. The
lower depths of initial abstraction enabled the rising limbs of the observed hydrographs to be
fitted more accurately. Based on the initial abstractions computed from the rainfall hydrographs
and the computed start times of direct runoff, the Ia coefficients � were computed (see Table 2).
The dynamic CN approach produced smaller values of � such that they more closely agreed with
the values reported in the literature. It is important to note that the value of the initial abstraction
coefficient should not be changed without adjusting the CN. Otherwise, the use of Eq. 3 would
result in higher values of the rainfall excess and, therefore, the direct runoff volumes.

6. CONCLUSIONS

Given the wide use of the curve number method in planning and design, methods that can increase
the accuracy of design estimates need to be considered. For example, the proposals to change the
initial abstraction coefficient of 0.20 to 0.10 or 0.05 show some improvement in accuracy. These
are exploratory studies that show promise. The dynamic CN is another alternative that has a basis
in the physical processes and appears to improve prediction accuracy. In some cases, it provided
a similar level of goodness of fit as the static CN but still showed a better reproduction of the
rising limb of the hydrograph. The dynamic CN cannot have prediction accuracy that is less than
the static CN as the slope coefficient of Eq. 4 could be zero. The improvement in accuracy can be
slight or substantial, as was shown in the eight case studies presented herein.

It may seem irrational that the CN would decrease over the duration of a storm event. After
all, high CNs are supposed to reflect impervious or saturated conditions, which should suggest a
high CN at the end of the storm. While this is true, this concept relates to the total storm depth,
not the time dependency of a temporally distributed rainfall. However, this issue is the product of
one of the basic conflicts identified by Hawkins et al., (2009). Specifically, they point out that
Eq. 3 was not designed to be used in a time dependent manner, as it is when used to separate
losses and rainfall excess; however, anytime that a time dependent analysis is made with Eqs. 1,
2, and 3, the losses are computed with the static CN method. It is important to recognize the effect
that Eq. 3 has on computed losses, namely an over estimation of initial abstractions and an under
estimation of losses late in the storm event. When Eq. 3 is used in the static CN mode, it fails to
provide a rational depiction of both the initial abstraction and the infiltration functions. Use of
the dynamic curve number approach enables Eq. 3 to provide a reasonable reflection of the
physical processes. Specifically, including the dynamic curve number model of Eq. 4 provides
corrections for the failure of Eq. 3 to properly model the initial abstraction and infiltration losses.
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