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ABSTRACT

In this paper, we investigate the first integral method for solving the solutions of nonlinear Generalized Zakharov Equations. This idea can
obtain some exact solutions of this equations based on the theory of Commutative algebra.

Keywords: First integral method; Generalized Zakharov Equations; Exact solutions.

c© 2014, Darbose. All rights reserved.

1. Introduction

In recent years, the investigation of exact solutions to nonlinear partial differential equations has played an impor-
tant role in nonlinear phenomena. Nonlinear phenomena appear in a wide variety of scientific applications such as
plasma physics, solid state physics, nonlinear optics, quantum field theory and fluid dynamics. In order to better
understand these nonlinear phenomena, many mathematicians and physical scientists make efforts to seek more
exact solutions to them. Several powerful methods have been proposed to obtain exact solutions of nonlinear par-
tial differential equations, such as the Bäcklund transformation method [1–3], Hirotas direct method [4], tanh-sech
method [5], extended tanh method [6], the exp- function method [7, 8], sine-cosine method [9, 10], Jacobi elliptic
function expansion method [11], F-expansion method [12] and so on .

The first integral method was first proposed in [13] in solving Burgers- KdV equation which is based on the
ring theory of commutative algebra. This method was further developed by the same author and some other math-
ematicians. In this work, we use the first integral method to find the exact solutions of the Generalized Zakharov
Equations.
This paper is organized as follows: Section 2 is a brief introduction to the first integral method. In section 3, we
apply the first integral method to find exact solutions of nonlinear Generalized Zakharov Equations .

2. The First Integral Method.

Consider a general nonlinear partial differential equation (PDF) in the form

P (u, ut, ux, uxx, , uxt, utt, ...) = 0, (2.1)

where u(x, t) is the solution of nonlinear partial differential equation (2.1). By means of the transformation

u(x, t) = u(ξ), ξ = k(x− λt), (2.2)
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where k, λ and p are arbitrary constants, we reduce eq (2.1)to an ordinary differential equation (ODE) of the form

P (u, u
′
, u
′′
, u
′′′
, ...) = 0, (2.3)

where u = u(ξ) and the primes denote ordinary derivatives with respect to ξ. Next, we introduce a new indepen-
dent variable

z(ξ) = u(ξ), ω(ξ) = u
′
(ξ), (2.4)

which leads to a system of ODEs of the form{
z
′
(ξ) = ω(ξ),

ω′(ξ) = H(z(ξ), ω(ξ)).
(2.5)

According to the qualitative theory of differential equations [14], if we can find two first integrabls to system
(2.5) under the same conditions, then analytic solutions to (2.5) can be solved directly. However, in genral, it is
difficult to realize this even for a single first integral, because for a given plane autonomous system, there is no
general theory telling us how ti find it’s first integrals in a systematic way. A key idea of our approach here to find
first integral is to utilize the division theorem . For convenience, first let us recall the Division theorem for two
variables in the complex domain C [13].

Theorem 1 (Division theorem). Suppose that P (ω, z) and Q(ω, z) are polynomials in C[ω, z], and that P (ω, z) is
irreductible C[ω, z]. If Q(ω, z) vanishes at any zero point of P (ω, z), then there exists a polynomial G(ω, z) in
C[ω, z] such that

Q(ω, z) = P (ω, z).G(ω, z). (2.6)

It follows immediately from the following theorem in commutative algebra [15]:

Theorem 2 (Hilbert-Nullstellensatz Theorem). Let k be a field and L an algebraic closure of k. Then
i) Every ideal γ of k[X1, ...Xn] not containing 1 admits at least one zero in Ln

ii) Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) be two elements of Ln . For the set of polynomials of
k[X1, ...Xn] zero at x to be identical with the set of polynomials of k[X1, ...Xn] zero at y, it is necessary and
sufficient that there exists a k-automorphisms s of L such that yi = si for 1 ≤ i ≤ n. iii) For an ideal α
of k[X1, ...Xn] to be maximal, it is necessary and sufficient that there exists x in L such that α is the set of
polynomials of k[X1, ...Xn] zero at x.
iv) For a polynomial Q of k[X1, ...Xn] to be zero on the set of zeros in Ln of an ideal γ of k[X1, ...Xn] , it is
necessary and sufficient that there exists an integer m > 0 such that Qm ∈ γ.

3. Generalized Zakharov Equations

Let us consider the Generalized Zakharov Equations [16]

Htt −Hxx = (|u|2m)xx,
iut + uxx = Hu+ α|u|2mu+ β|u|4mu. (3.1)

where m > 0, α, β are constants.
We first introduce the transformations[17]

u(x, t) = U(ξ) exp(iη), H(x, t) = V (ξ),
η = kx+ γt, ξ = (x− λt). (3.2)

where γ, k, and λ are constants to be determined later. Substituting (3.2) into (3.1) we obtain the λ = 2k and
U(ξ) satisfy into ODE:

(4k2 − 1)V
′′
= (U2m)

′′
, (3.3)
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U
′′
− (γ + k2)U − UV − αU2m+1 − βU4m+1 = 0. (3.4)

In order to simplify ODEs (3.3) and (3.4), integrating Eq. (3.3) once and taking integration constant to zero, and
integrating yields

V =
1

(4k2 − 1)
U2 + C1, 4k2 − 1 6= 0 (3.5)

where C1 is constant. Substituting (3.5) into (3.4) results in:

U
′′
− (γ + k2 + C1)U − (

1

(4k2 − 1)
+ α)U2m+1 − βU4m+1 = 0. (3.6)

where k2(1 − p2) 6= 0, λ = 2k and the prime denotes derivative with respect to ξ. Making the following
transformation:

v = U2m, (3.7)

then (3.6) becomes

v
′′
− av + b

(v
′
)2

v
+ dv2 + fv3 = 0, (3.8)

where

a = 2m(γ + k2 + C1), b =
1− 2m

2m
,

d = −2m(
1

(4k2 − 1)
+ α), f = −2mβ.

(3.9)

and v
′

and v
′′

denote
dv

dξ
and

d2v

dξ2
, respectively. We introduce new independent variables v = z,

dv

dξ
= ω. Then

equation (3.8) can be rewritten as the two-dimensional autonomous system
dz

dξ
= ω,

dω

dξ
= az − bω

2

z
− dz2 − fz3.

(3.10)

Assume that
dξ

z
= dτ (3.11)

thus system becomes
dz

dτ
= zω,

dω

dτ
= az2 − bω2 − dz3 − fz4.

(3.12)

Now, we apply the Division Theorem to seek the first integral to (3.12). Suppose that z = z(τ) and ω = ω(τ) are

the nontrivial solutions to (3.12), and p(ω, z) =
r∑

i = 0

ai(z)ω
i, is irreducible polynomial in C[ω, z] such that

p(ω(τ), z(ξ)) =

r∑
i = 0

ai(z(τ))ω
i(τ) = 0, (3.13)
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where ai(z) (i = 0, 1, ..., r) are polynomials of z and all relatively prime in C[ω, z], ar(z) 6= 0. Equation (3.13) is

also called the first integral to (3.12). We start our study by assuming r = 1 in (3.13). Note that
dp

dτ
is polynomial

in z and ω, and p(ω(τ), z(τ)) = 0 implies
dp

dτ
|(3.12)= 0. By the Division Theorem, the exists a polynomial

H(z, ω) = h(z) + g(z)ω in C[ω, z] such that

dp

dτ
|(3.12)= (

∂p

∂z

∂z

∂τ
+
∂p

∂ω

∂ω

∂τ
|(3.12)

=

1∑
i=0

a
′

i(z)ω
i+1z +

1∑
i=0

iai(z)ω
i−1(az2 − bω2 − dz3 − fz4)

= (h(z) + g(z)ω)(

1∑
i=0

ai(z)ω
i)

(3.14)

where prime denotes differentiating with respect to the variable z. On equating the coefficients of ωi (i = 0, 1, 2)
on both sides of (3.14), we have

za
′

1(z)− ba1(z) = g(z)a1(z), (3.15)

za
′

0(z) = g(z)a0(z) + h(z)a1(z), (3.16)

h(z)a0(z) = a1(z)[az
2 − dz3 − fz4], (3.17)

Since, a1(z) and g(z) are polynomials, from (3.15) we conclude that a1(z) is a constant and g(z) = −b. for
simplicity, we take a1(z) = 1, and balancing the degrees of a0(z), and h(z), we conclude that deg h(z) = 2 and
deg a0(z) = 2 , only. Now suppose that

h(z) = Az2 +Bz + C, a0(z) = Dz2 + Ez + F (A 6= 0, D 6= 0), (3.18)

where A, B, C, D, E and F are all constants to be determined. Using (3.18) into (3.16) we obtain

h(z) = ((2 + b)D)z2 + ((1 + b)E)z + bF, (3.19)

Substituting a0(z), a1(z) and h(z) in (3.17) and setting all the coefficients of powers z to be zero, we obtain a
system of nonlinear algebraic equations, and by solving it, we obtain the following solutions:

F = 0, D =
1

2 + b

√
(− (2 + b) f),

E =
1

2 + b

√
(− (2 + b) f), d =

f

(2 + b)
(3 + 2b)

(3.20)

F = 0, D = − 1

2 + b

√
(− (2 + b) f),

E = − 1

2 + b

√
(− (2 + b) f), d =

f

(2 + b)
(3 + 2b)

(3.21)

Using the conditions (3.20) in (3.13), we obtain

ω = − 1

2 + b

√
(− (2 + b) f)(z2 + z) (3.22)

Combining this first integral with (3.13), the second-order differential equation (3.8) can be reduced to

dv

dξ
= − 1

2 + b

√
(− (2 + b) f)(v2 + v). (3.23)
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Solving (3.23) directly and changing to the original variables, we obtain the complex exponential function solution
to equation (3.1):

u(x, t) = (
1

−1 + exp
(

2m
2m+1

√
β (2m+ 1)(x− 2kt)

)
C2

)
1

2m

× exp(i(kx+ γt)).

(3.24)

H(x, t) =
1

(4k2 − 1)
(

1

−1 + exp
(

2m
2m+1

√
β (2m+ 1)(x− 2kt)

)
C2

)
1
m

× exp(2i(kx+ γt)) + C1.

(3.25)

where C1 and C2 are arbitrary constants. Similarly, for the cases of (3.21), we have anther complex exponential
function solutions:

u(x, t) = (
1

−1 + exp
(
− 2m

2m+1

√
β (2m+ 1)(x− 2kt)

)
C2

)
1

2m

× exp(i(kx+ γt)).

(3.26)

H(x, t) =
1

(4k2 − 1)
(

1

−1 + exp
(
− 2m

2m+1

√
β (2m+ 1)(x− 2kt)

)
C2

)
1
m

× exp(2i(kx+ γt)) + C1.

(3.27)

where C1 and C2 are arbitrary constants. These solutions are all new exact solutions.
Now we assume that r = 2 in (3.13). by the Division Theorem, there exists a polynomial

dp

dτ
|(3.12)= (

∂p

∂z

∂z

∂τ
+
∂p

∂ω

∂ω

∂τ
|(3.12)

=

2∑
i=0

a
′

i(z)ω
i+1z +

2∑
i=0

iai(z)ω
i−1(az2 − bω2 − dz3 − fz4)

= (h(z) + g(z)ω)(

2∑
i=0

ai(z)ω
i)

(3.28)

On equating the coefficients of ωi (i = 0, 1, 2, 3) on both sides of (3.12), we have

za
′

2(z)− 2ba2(z) = g(z)a2(z), (3.29)

za
′

1(z)− ba1(z) = g(z)a1(z) + h(z)a2(z), (3.30)

g(z)a0(z) + h(z)a1(z) = 2a2(z)[az
2 − dz3 − fz4] + za

′

0(z), (3.31)

h(z)a0(z)) = a1(z)[az
2 − dz3 − fz4], (3.32)

Since, a2(z) and g(z) are polynomials, from (3.29) we conclude that a2(z) is a constant and g(z) = −2b. for
simplicity, we take a2(z) = 1, and balancing the degrees of a0(z), a1(z) and h(z), we conclude that deg h(z) = 2
and deg a1(z) = 2 , only. Now suppose that

h(z) = Az2 +Bz + C, a1(z) = Dz2 + Ez + F (A 6= 0, D 6= 0), (3.33)
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where A, B, C, D, E and F are all constants to be determined. Using (3.33) into (3.30) and (3.31) we obtain

h(z) = ((2 + b)D)z2 + ((1 + b)E)z + bF,

a0(z) = (
1

2

2f + 2D2 +D2b

2 + b
)z4 + (

2d+ 3ED + 2EDb

3 + 2b
)z3

+(
1

2

E2 − 2a+ 2DF + 2DFb+ E2b

1 + b
)z2 + bE

F

1 + 2b
z +

1

2
F
E + bE + bF

b
.

(3.34)

Substituting a0(z), a1(z) and h(z) in (3.32) and setting all the coefficients of powers z to be zero, we obtain a
system of nonlinear algebraic equations, and by solving it, we obtain the following solutions:

D =
−2f√

(−f (2 + b))
,

E =
2d
√

(−f (2 + b))

f(3 + 2a)
, F = 0, a = −((1 + b) d2

2 + b

f (9 + 12b+ 4b2)
).

(3.35)

D =
2f√

(−f (2 + b))
,

E = −
2d
√
(−f (2 + b))

f(3 + 2a)
, F = 0, a = −((1 + b) d2

2 + b

f (9 + 12b+ 4b2)
).

(3.36)

Setting (3.35) in (3.13), we obtain that system (3.12) has two first integral

ω =
2
√
f( 2
√
2− i)

2
√
2 + b

z2 − i( 2
√
2 + b)d

2
√
f(3 + 2b)

z, (i2 = −1), (3.37)

ω = −
2
√
f( 2
√
2 + i)

2
√
2 + b

z2 − i( 2
√
2 + b)d

2
√
f(3 + 2b)

z, (i2 = −1). (3.38)

Combining this first integral with (3.12), the second-order differential equation (3.8) can be reduced to

dv

dξ
=

2
√
f( 2
√
2− i)

2
√
2 + b

v2 − i( 2
√
2 + b)d

2
√
f(3 + 2b)

v, (3.39)

dv

dξ
= −

2
√
f( 2
√
2 + i)

2
√
2 + b

v2 − i( 2
√
2 + b)d

2
√
f(3 + 2b)

v. (3.40)

Solving (3.39) and (3.40) directly and changing to the original variables, we obtain the exact solution to equation
(3.1):

u(x, t) =

 − (2m+1)(α(4k2−1)+1)

2(1+i 2√2)β(m+1)(4k2−1)

1−
(

(2m+1)(α(4k2−1)+1)

2(1+i 2√2)β(m+1)(4k2−1)F1

)
exp
−m( 2√2m+1)(α(4k2−1)+1)

2√β(m+1)(4k2−1)
(x−4kt)


1

2m

× exp (i(kx+ γt)) ,

H(x, t) =

 − (2m+1)(α(4k2−1)+1)

2(1+i 2√2)β(m+1)(4k2−1)

1−
(

(2m+1)(α(4k2−1)+1)

2(1+i 2√2)β(m+1)(4k2−1)F1

)
exp
−m( 2√2m+1)(α(4k2−1)+1)

2√β(m+1)(4k2−1)
(x−4kt)


1
m

× 1

4k2 − 1
exp (2i(kx+ γt)) + C1.

(3.41)
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u(x, t) =

 − (2m+1)(α(4k2−1)+1)

2(1−i 2√2)β(m+1)(4k2−1)

1−
(

(2m+1)(α(4k2−1)+1)

2(1−i 2√2)β(m+1)(4k2−1)F2

)
exp
−m( 2√2m+1)(α(4k2−1)+1)

2√β(m+1)(4k2−1)
(x−4kt)


1

2m

× exp (i(kx+ γt)) ,

H(x, t) =

 − (2m+1)(α(4k2−1)+1)

2(1−i 2√2)β(m+1)(4k2−1)

1−
(

(2m+1)(α(4k2−1)+1)

2(1−i 2√2)β(m+1)(4k2−1)F2

)
exp
−m( 2√2m+1)(α(4k2−1)+1)

2√β(m+1)(4k2−1)
(x−4kt)


1
m

× 1

4k2 − 1
exp (2i(kx+ γt)) + C1.

(3.42)

where C1, C2, F1 and F2 are arbitrary constants. Similarly, for the cases of (3.36), we have another complex
exponential function solutions:

u(x, t) =

 − (2m+1)(α(4k2−1)+1)

2(−1+i 2√2)β(m+1)(4k2−1)

−1−
(

(2m+1)(α(4k2−1)+1)

2(−1+i 2√2)β(m+1)(4k2−1)F3

)
exp

m( 2√2m+1)(α(4k2−1)+1)
2√β(m+1)(4k2−1)

(x−4kt)


1

2m

× exp (i(kx+ γt)) ,

H(x, t) =

 − (2m+1)(α(4k2−1)+1)

2(−1+i 2√2)β(m+1)(4k2−1)

−1−
(

(2m+1)(α(4k2−1)+1)

2(−1+i 2√2)β(m+1)(4k2−1)F3

)
exp

m( 2√2m+1)(α(4k2−1)+1)
2√β(m+1)(4k2−1)

(x−4kt)


1
m

× 1

4k2 − 1
exp (2i(kx+ γt)) + C1.

(3.43)

u(x, t) =

 − (2m+1)(α(4k2−1)+1)

2(−1−i 2√2)β(m+1)(4k2−1)

−1−
(

(2m+1)(α(4k2−1)+1)

2(−1−i 2√2)β(m+1)(4k2−1)F4

)
exp

m( 2√2m+1)(α(4k2−1)+1)
2√β(m+1)(4k2−1)

(x−4kt)


1

2m

× exp (i(kx+ γt)) ,

H(x, t) =

 − (2m+1)(α(4k2−1)+1)

2(−1−i 2√2)β(m+1)(4k2−1)

−1−
(

(2m+1)(α(4k2−1)+1)

2(−1−i 2√2)β(m+1)(4k2−1)F4

)
exp

m( 2√2m+1)(α(4k2−1)+1)
2√β(m+1)(4k2−1)

(x−4kt)


1
m

× 1

4k2 − 1
exp (2i(kx+ γt)) + C1.

(3.44)

where C1, C2, F3 and F4 are arbitrary constants. These solutions are all new exact solutions.
Notice that the results in this paper are based on the assumption of r = 1, 2 for the Generalized Zakharov

Equations . For the cases of r = 3, 4 for these equations, the discussions become more complicated and involves
the irregular singular point theory and the elliptic integrals of the second kind and the hyperelliptic integrals. Some
solutions in the functional form cannot be expressed explicitly. One does not need to consider the cases r ≥ 5
because it is well known that an algebraic equation with the degree greater than or equal to 5 is generally not
solvable.

4. Conlusion

In this work, we are concerned with the Generalized Zakharov Equations for seeking their traveling wave solu-
tions. We first transform each equation into an equivalent two-dimensional planar autonomous system then use the
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first integral method to find one first integral which enables us to reduce the Generalized Zakharov Equations to a
first-order integrable ordinary differential equations. Finally, a class of traveling wave solutions for the considered
equations are obtained . These solutions include complex exponential function solutions. We believe that this
method can be applied widely to many other nonlinear evolution equations, and this will be done in a future work.
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