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Exact soliton solutions for (2+1)−dimensional dispersive long wave equa-
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ABSTRACT

In this paper, the first integral method is used to construct exact traveling wave solutions of (2 + 1)− dimensional dispersive long wave
equation. The first integral method is an efficient method for obtaining exact solutions some of nonlinear partial differential equations. This
method can be applied to nonintegrable equations as well as to integrable ones.
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1. Introduction

Nonlinear evolution equations (NLEEs) have been the subject of study in various branches of mathematical-
physical sciences such as physics, biology, chemistry. The analytical solutions of such equations are of funda-
mental importance since a lot of mathematical physical models are described by NLEEs. Among the possible
solutions to NLEEs, certain special form solutions may depend only on a single combination of variables such as
traveling wave variables. In the literature, there is a wide variety of approaches to nonlinear problems for con-
structing traveling wave solutions, such as tanh-sech method [1, 2, 3], extended tanh method [4, 5, 6], hyperbolic
function method [7], sine-cosine method [8, 9, 10], Jacobi elliptic function expansion method [11], and the first
integral method [12, 13].

The first integral method was first proposed by Feng [12] in solving Burgers-KdV equation which is based on
the ring theory of commutative algebra. Recently, this useful method is widely used by many such as in [14, 15]
and by the reference therein. The present paper investigates for the first time the applicability and effectiveness of
the first integral method on high-dimensional partial differential system.

2. The first integral method(FIM)

Consider the nonlinear partial differential equation:

F (u, ux, uy, ut, uxx, uxy, uxt, ...) = 0, (2.1)

where u = u(x, y, t) is the solution of (1). We use the traveling wave transformations,

u(x, y, t) = f(ξ), (2.2)
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where ξ = kx+ ly − λt. Based on this we obtain

∂

∂t
(.) = −λ ∂

∂ξ
(.),

∂

∂x
(.) = k

∂

∂ξ
(.),

∂

∂y
(.) = l

∂

∂ξ
(.),

∂2

∂x2
(.) = k2

∂2

∂ξ2
(.), .... (2.3)

We use (3) to change the nonlinear partial differential equation (1) to nonlinear ordinary differential equation

G(f(ξ),
∂f(ξ)

∂ξ
,
∂2f(ξ)

∂ξ2
, ...) = 0. (2.4)

Next,we introduce a new independent variable

X(ξ) = f(ξ), Y (ξ) =
∂f(ξ)

∂ξ
(2.5)

which leads a system of nonlinear ordinary differential equations

∂X(ξ)

∂ξ
= Y (ξ), (2.6)

∂Y (ξ)

∂ξ
= F1(X(ξ), Y (ξ)).

By the qualitative theory of ordinary differential equations [13] , if we can find the integrals to (6) under the same
conditions, then the general solutions to (6) can be solved directly. However, in general, it is really difficult for
us to realize this even for one first integral, because for a given plane autonomous system, there is no systematic
theory that can tell us how to find its first integrals, nor is there a logical way for telling us what these first integrals
are. We will apply the Hilbert-Nullstellensatz theorem to obtain one first integral to (6), which reduces (4) to a
first-order integrable ordinary differential equation. An exact solution to (1) is then obtained by solving this
equation. Now, let us recall the Division Theorem:

Theorem 2.1 (Division Theorem). Suppose that P (w, z) and Q(w, z) are polynomials in C[w, z]; and P (w, z)
is irreducible in C[w, z]; If Q(w, z) vanishes at all zero points of P (w, z) , then there exists a polynomial G(w, z)
in C[w, z] such that

Q(w, z) = P (w, z)G(w, z)

The Division theorem follows immediately from the Hilbert-Nullstellensatz theorem [16]:

Theorem 2.2 (Hilbert-Nullstellensatz Theorem). Let k be a field and L an algebraic closure of k.
(i) Every ideal γ of k[X1, ..., Xn] not containing 1 admits at least one zero in Ln.
(ii) Let x = (x1, ..., xn), y = (y1, ..., yn) be two elements of Ln; for the set of polynomials of k[X1, ..., Xn] zero
at x to be identical with the set of polynomials of k[X1, ..., Xn] zero at y, it in necessary and sufficient that there
exists a k-automorphism s of L such that yi = s(xi) for 1 ≤ i ≤ n.
(iii) For an ideal α of k[X1, ..., Xn] to be maximal, it is necessary and sufficient that there exists and x in Ln such
that α is the set of polynomials of k[X1, ..., Xn] zero at x.
(iv) For a polynomial Q of k[X1, ..., Xn] to be zero on the set of zeros in Ln of an ideal γ of k[X1, ..., Xn], it is
necessary and sufficient that there exist and integer m > 0 such that Qm ∈ γ.

3. (2 + 1)−dimensional dispersive long wave equation

Let us apply the first integral method to find out exact solutions of the (2 + 1)−dimensional dispersive long wave
equation [17] with source

uyt + vxx + uxuy + uuxy = 0, (3.1)
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vt + ux + (uv)x + uxxy = 0,

where u = u(x, y, t), v = v(x, y, t) are unknown functions.
We use the traveling wave transformations

u(x, y, t) = u(ξ), v(x, y, t) = v(ξ), ξ = kx+ ly − λt. (3.2)

Using (8) system (7) becomes

−λlu′′ + k2v′′ + kl(u′)2 + kluu′′ = 0, (3.3)
−λv′ + ku′ + k(uv)′ + k2lu′′′ = 0. (3.4)

Integrating (9) twice with respect to ξ, then we have

−λlu+ k2v +
kl

2
u2 = R1, (3.5)

where R1 is second integration constant and the first one is taken to zero. Rewrite this equation as follows

v(ξ) =
R1

k2
+
lλ

k2
u(ξ)− l

2k
u2(ξ). (3.6)

Inserting Eq. (12) into Eq. (10) yields

(k +
R1

k
− lλ2

k2
)u′ +

(λl + 2kl)

k
uu′ − 3l

2
u2u′ + k2lu′′′ = 0. (3.7)

Integrating Eq. (13) once leads to

(k +
R1

k
− lλ2

k2
)u+

(λl + 2kl)

2k
u2 − l

2
u3 + k2lu′′ = R2. (3.8)

where R2 is an integration constant. Rewrite this second-order ordinary differential equation as follows

u′′(ξ) +
(k3 +R1k − lλ2)

k4l
u(ξ) +

(λ+ 2k)

2k3
u2(ξ)− 1

2k2
u3(ξ)− R2

k2l
= 0. (3.9)

Using (5) and (6), we can get

Ẋ(ξ) = Y (ξ), (3.10)

Ẏ (ξ) =
1

2k2
X3(ξ)− (λ+ 2k)

2k3
X2(ξ)− (k3 +R1k − lλ2)

k4l
X(ξ) +

R2

k2l
. (3.11)

According to the first integral method, we suppose the X(ξ) and Y (ξ) are nontrivial solutions of (16)-(17), and
Q(X,Y ) =

∑m
i=0 ai(X)Y i = 0 is an irreducible polynomial in the complex domain C[X,Y ] such that

Q(X(ξ), Y (ξ)) =

m∑
i=0

ai(X(ξ))Y i(ξ) = 0, (3.12)

where ai(X)(i = 0, 1, ...,m), are polynomials of X and am(X) 6= 0. Equation (18) is called the first integral
to (16)-(17). Due to the Division Theorem, there exists a polynomial g(X) + h(X)Y, in the complex domain
C[X,Y ] such that

dQ

dξ
=
dQ

dX

dX

dξ
+
dQ

dY

dY

dξ
= (g(X) + h(X)Y )

m∑
i=0

ai(X)Y i. (3.13)
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In this example, we take two different cases, assuming that m = 1 and m = 2 in (18).
Case A:
Suppose that m = 1, by comparing with the coefficients of Y i(i = 2, 1, 0) on both sides of (19), we have

ȧ1(X) = h(X)a1(X), (3.14)
ȧ0(X) = g(X)a1(X) + h(X)a0(X), (3.15)

a1(X)[
1

2k2
X3 − (λ+ 2k)

2k3
X2 − (k3 +R1k − lλ2)

k4l
X +

R2

k2l
] = g(X)a0(X). (3.16)

Since ai(X) (i = 0, 1) are polynomials, then from (20) we deduce that a1(X) is constant and h(X) = 0. For
simplicity, take a1(X) = 1. Balancing the degrees of g(X) and a0(X), we conclude that deg(g(X)) = 1 only.
Suppose that g(X) = A1X +A0, then we find a0(X),

a0(X) = c1 +A0X +
1

2
A1X

2, (3.17)

where c1 is arbitrary integration constant.
Substituting a0(X) and g(X) into (22) and setting all the coefficients of powers X to be zero, then we obtain a
system of nonlinear algebraic equations and by solving it, we obtain

A0 = −λ+ 2k

3k2
, A1 =

1

k
, R1 = −9c1k

3l − 8lλ2 + 4lkλ+ 4k2l + 9k3

9k
, R2 = − lc1(λ+ 2k)

3
,

(3.18)

A0 =
λ+ 2k

3k2
, A1 = −1

k
, R1 =

9c1k
3l + 8lλ2 − 4lkλ− 4k2l − 9k3

9k
, R2 =

lc1(λ+ 2k)

3
,

(3.19)

where k, l, λ and c1 are arbitrary constants.
Using the conditions (24) in (18), we obtain

Y1(ξ) = −c1 +
(λ+ 2k)

3k2
X(ξ)− 1

2k
X2(ξ). (3.20)

Combining (26) with (16), we obtain the exact solution to equations (16)-(17):

f1(ξ) =
(λ+ 2k)

3k
−
√
18c1k3 − λ2 − 4kλ− 4k2

3k
tan(

√
18c1k3 − λ2 − 4kλ− 4k2

6k2
(ξ + ξ0)),(3.21)

and the exact solution to (2 + 1)−dimensional dispersive long wave equation can be written as:

u1(x, y, t) =
(λ+ 2k)

3k
−
√
18c1k3 − λ2 − 4kλ− 4k2

3k

× tan(

√
18c1k3 − λ2 − 4kλ− 4k2

6k2
(kx+ ly − λt+ ξ0)), (3.22)

v1(x, y, t) = − (9c1k
3l − 8lλ2 + 4lλk + 4k2l + 9k3)

9k3
+
λl(λ+ 2k)

3k3
− l(λ+ 2k)2

18k3
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+
2l(k − λ)

√
18c1k3 − λ2 − 4kλ− 4k2

9k3

× tan(

√
18c1k3 − λ2 − 4kλ− 4k2

6k2
(kx+ ly − λt+ ξ0))

− l(18c1k
3 − λ2 − 4kλ− 4k2)

18k3

× tan2(

√
18c1k3 − λ2 − 4kλ− 4k2

6k2
(kx+ ly − λt+ ξ0)),

where ξ0 is an arbitrary constant.
Similarly, in the case of (25), from (18), we obtain

Y2(ξ) = −c1 −
(λ+ 2k)

3k2
X(ξ) +

1

2k
X2(ξ). (3.23)

and then the exact solution of (2 + 1)−dimensional dispersive long wave equation can be written as:

u2(x, y, t) =
(λ+ 2k)

3k
−
√
18c1k3 + λ2 + 4kλ+ 4k2

3k

× tanh(

√
18c1k3 + λ2 + 4kλ+ 4k2

6k2
(kx+ ly − λt+ ξ0)), (3.24)

v2(x, y, t) =
(9c1k

3l + 8lλ2 − 4lλk − 4k2l − 9k3)

9k3
+
λl(λ+ 2k)

3k3
− l(λ+ 2k)2

18k3

+
2l(k − λ)

√
18c1k3 + λ2 + 4kλ+ 4k2

9k3

× tanh(

√
18c1k3 + λ2 + 4kλ+ 4k2

6k2
(kx+ ly − λt+ ξ0))

− l(18c1k
3 + λ2 + 4kλ+ 4k2)

18k3

× tanh2(

√
18c1k3 + λ2 + 4kλ+ 4k2

6k2
(kx+ ly − λt+ ξ0)),

where ξ0 is an arbitrary constant.
Case B:
Suppose that m = 2, by equating the coefficients of Y i(i = 3, 2, 1, 0) on both sides of (19), we have

ȧ2(X) = h(X)a2(X), (3.25)
ȧ1(X) = g(X)a2(X) + h(X)a1(X), (3.26)

ȧ0(X) = −2a2(X)[
1

2k2
X3 − (λ+ 2k)

2k3
X2 − (k3 +R1k − lλ2)

k4l
X +

R2

k2l
]

+ g(X)a1(X) + h(X)a0(X), (3.27)

a1(X)[
1

2k2
X3 − (λ+ 2k)

2k3
X2 − (k3 +R1k − lλ2)

k4l
X +

R2

k2l
] = g(X)a0(X). (3.28)

Since ai(X) (i = 0, 1, 2) are polynomials, then from (31) we deduce that a2(X) is constant and h(X) = 0. For
simplicity, take a2(X) = 1. Balancing the degrees of g(X), a1(X) and a2(X), we conclude that deg(g(X)) = 1
only. Suppose that g(X) = A1X +B0, then we find a1(X) and a0(X) as follows

a1(X) = A0 +B0X +
1

2
A1X

2, (3.29)
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a0(X) = d+
1

4
(− 1

k2
+
A2

1

2
)X4 +

1

3
(
3

2
B0A1 +

(λ+ 2k)

k3
)X3

+
1

2
(B2

0 +A0A1 +
2(k3 +R1k − lλ2)

k4l
)X2 + (B0A0 −

2R2

k2l
)X (3.30)

Substituting a0(X), a1(X) and g(X) in the last equation in (34) and setting all the coefficients of powers X to be
zero, then we obtain a system of nonlinear algebraic equations and by solving it with aid Maple, we obtain

d =
A2

0

4
, k =

2

A1
, λ = −2(3B0 + 2A1)

A2
1

, R2 =
B0lA0

A2
1

, (3.31)

R1 = −2(−8B2
0 l − 12B0lA1 − 4lA2

1 +A0A1l + 2A1)

A3
1

,

d =
A2

0

4
, k = − 2

A1
, λ =

2(3B0 + 2A1)

A2
1

, R2 =
B0lA0

A2
1

, (3.32)

R1 =
2(−8B2

0 l − 12B0lA1 − 4lA2
1 +A0A1l − 2A1)

A3
1

,

with B0, A0, A1 and l are arbitrary constants.
Using the conditions (37) into (18), we get

Y3(ξ) = −
A0

2
− B0

2
X(ξ)− A1

4
X2(ξ). (3.33)

Combining (39) with (16), we obtain the exact solution to equations (16) − (17) and the exact solution to (2 +
1)−dimensional dispersive long wave equation can be written as:

u3(x, y, t) = −B0

A1
−

√
2A0A1 −B2

0

A1
tan(

√
2A0A1 −B2

0

4
(ξ + ξ0)), (3.34)

v3(x, y, t) = −−8lB
2
0 − 12lB0A1 − 4lA2

1 + lA0A1 + 2A1

A1
+
lB0(3B0 + 2A1)

2A1
− lB2

0

4A1

+
l(B0 +A1)

√
2A0A1 −B2

0

A1
tan(

√
2A0A1 −B2

0

4
(ξ + ξ0))

− l(2A0A1 −B2
0)

4A1
tan2(

√
2A0A1 −B2

0

4
(ξ + ξ0)),

where ξ = 2
A1
x+ ly + 2(3B0+2A1)

A2
1

t and ξ0 is an arbitrary constant.
Similarly, in the case of (38), from (18), we obtain

Y3(ξ) = −
A0

2
− B0

2
X(ξ)− A1

4
X2(ξ). (3.35)

and then the exact solution to (2 + 1)−dimensional dispersive long wave equation can be written as:

u4(x, y, t) = −B0

A1
−

√
2A0A1 −B2

0

A1
tan(

√
2A0A1 −B2

0

4
(ξ + ξ0)), (3.36)

v4(x, y, t) =
−8lB2

0 − 12lB0A1 − 4lA2
1 + lA0A1 − 2A1

A1
+
lB0(3B0 + 2A1)

2A1
− lB2

0

4A1

Darbose

24



40 Int. J. of Applied Mathematics and Computation, 5(2), 2013

− l(B0 +A1)
√
2A0A1 −B2

0

A1
tan(

√
2A0A1 −B2

0

4
(ξ + ξ0))

+
l(2A0A1 −B2

0)

4A1
tan2(

√
2A0A1 −B2

0

4
(ξ + ξ0)),

where ξ = − 2
A1
x+ ly − 2(3B0+2A1)

A2
1

t and ξ0 is an arbitrary constant.

4. Conclusion

In this work the first integral method was applied successfully for solving the (2 + 1)−dimensional dispersive
long wave equation, Thus, we conclude that the proposed method can be extended to solve the nonlinear problems
which arise in the theory of solitons and other areas.
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