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Effect of imposed time periodic boundary temperature on the onset of
Rayleigh-Bénard convection in a dielectric couple stress fluid
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ABSTRACT

The effect of imposed time-periodic boundary temperature of small amplitude on electroconvection under AC electric field in dielectric couple
stress liquids is investigated by making a linear stability analysis. A regular perturbation method is used to arrive at an expression for the
correction Rayleigh number that throws light on the possibility of sub-critical motions. The Venezian approach is adopted for obtaining eigen
value of the problem. Three cases of oscillating temperature field are examined: (a) symmetric, so that the wall temperatures are modulated
in-phase, (b) asymmetric, corresponding to out-of-phase modulation and (c) only the lower wall is modulated. It is shown that the system is
most stable when the boundary temperatures are modulated out-of-phase.
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1. Introduction

The investigation of convective heat transfer with electrical forces in non-Newtonian fluids is of practical impor-
tance. A systematic study through a proper theory is essential to understand the physics of the complex flow
behavior of these fluids and also to obtain invaluable scaled up information for industrial applications. The study
of non-Newtonian fluids has attracted much attention, because of their practical applications in engineering and
industry particularly in extraction of crude oil from petroleum products.

The application of a strong electric field in a poorly conducting fluid can induce bulk motions. This phenomenon
known as electro-convection or electro-hydrodynamics is gaining importance due to the technological stimulus of
designing more efficient heat exchangers as required for jet engines. Electro-hydrodynamics convection is very
attractive in applications to new field (see [1]). Since magnetic field and switching circuits are not required the
dielectric fluid motor enhances size reduction and hence is an attractive source of mechanical energy in a micro
machine. The convective heat transfers through polarized dielectric liquids were studied by [2-10]. In all the
above studies uniform temperature gradient has been considered.

However, we find that in many practically important situations the temperature gradient is a function of both
space and time. There are many works available in the literature, concerning how a time-periodic boundary
temperature affects the onset of Rayleigh-Bénard convection. [11] was the first to study the effect of temperature
modulation on the onset of thermal instability in a Newtonian fluid layer for small amplitude. He derived the
onset criteria using a perturbation expansion in powers of the amplitude of oscillations. He has established that
the onset of convection can be delayed or advanced by out-of-phase or in phase modulation of the boundary
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Figure 1: Physical Configuration 

 

Figure 1: Physical Configuration

temperatures respectively, as compared to the unmodulated system. Later [12-21] have studied the effect of
temperature modulation on the onset of thermal convection in a horizontal fluid layer. [22] have discussed the
thermal instability in a layer of dielectric fluid when the boundaries of the layer are subjected to synchronous /
asynchronous time – periodic temperatures.

An important class of fluid differs from that of Newtonian fluids, in that the relationship between the shear
stress and flow field is more complicated. Such fluids are non-Newtonian. In the category of non-Newtonian
fluids, couple stress fluid has distinct features, such as polar effects in addition to possessing large viscosity. The
consideration of couple stress in addition to classical Cauchy stress, has led to the recent development of several
theories of fluid micro-continua. One such couple stress theory of fluids was developed by [23] and represents
the simplest generalization of the classical theory which allows for polar effects such as the presence of couple
stresses and body couples. Couple stress is the consequence of assuming that mechanical action of one part of a
body on another across a surface is equivalent to a force and moment distribution. In the classical non-polar theory,
moment distribution is not considered and mechanical action is assumed to be equivalent to the force distribution
only. The first work in couple stress fluid for Rayliegh – Bénard situation was reported by Siddheshwar and
Pranesh [24].

Therefore, main object of the present investigation is to study the effect of imposed temperature modulation on
the stability of convective flow in a couple stress dielectric liquid by considering free-free boundaries.

2. Mathematical Formulation

Consider a layer of Boussinesquian, dielectric couple stress fluid confined between two infinite horizontal surfaces
separated by a distance d apart. The uniform AC electric field is directed along the z-axis. A Cartesian system is
taken with origin in the lower boundary and z-axis vertically upward (figure 1).

The governing equations are:
Continuity Equation:
∇ · ~q = 0, (1)

Conservation of Linear Momentum:

ρ0

(
∂~q

∂t
+ (~q · ∇)~q

)
= −∇p+ µ∇2~q − µ′∇4~q + ρ~g + (~P · ∇) ~E, (2.1)

Conservation of Energy:

∂T

∂t
+ (~q.∇)T = χ∇2T, (2.2)
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Equation of State:

ρ = ρo (1− α (T − T0)), (2.3)

Electrical Equation:

∇× ~E = 0, (2.4)

∇ · (ε0
~E + ~P ) = 0 , ~P = ε0(εr − 1) ~E, (2.5)

Equation of state for dielectric constant:

εr = (1 + χe)− e (T − T0) , (2.6)

The wall temperatures are time dependent, externally imposed and are taken as

T (0, t) = T0 +
1

2
∆T [1 + ε cos γt], (2.7)

T (d, t) = T0 −
1

2
∆T [1− ε cos(γt+ ϕ)]. (2.8)

We consider three types of thermal modulation namely:
Case (a): Symmetric(in-phase, ϕ = 0) ,
Case (b): Asymmetric (out-of-phase,ϕ = π) and
Case (c):Only lower wall temperature is modulated while the upper wall is held at constant temperature (ϕ =

−i∞).

2.1 Basic State:

The basic state of the fluid is quiescent and is described by

~qb = ~0 , ρ = ρb (z, t) , T = Tb (z, t) , p = pb (z, t) , ~E = ~Eb(z), ~P = ~Pb(z). (2.9)

Substituting equation (10) into basic governing equations(1)-(7), we obtain the quiescent state solutions as:

∂pb
∂z

= ρbg + Pb
∂Eb
∂z

, (2.10)

∂Tb
∂t

= χ
∂2Tb
∂z2

, (2.11)

ρb = ρ0 (1− α (Tb − T0))
εr = (1 + χe)− e (Tb − T0)

~Eb =
[

(1+χe)E0

(1+χe)+
e∆T
d z

]
k̂

~Pb = ε0E0(1 + χe)
[
1− 1

(1+χe)+
e∆T
d z

]
k̂

 . (2.12)
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The solution of equation (12) that satisfies the thermal boundary conditions (8) and (9) is

Tb = T0 +
∆T

2

(
1− 2z

d

)
+ εRe

{[
a(λ) e

λz
d + a(−λ) e

−λz
d

]
e−iγt

}
, (2.13)

where λ = (1− i)
(
γd2

2χ

) 1
2

, (15)

a(λ) =
∆T

2

[
e−iϕ − e−λ

eλ − e−λ

]
and Re stands for the real part.

We now superpose infinitesimal perturbations on this basic state and study the stability of the system.

2.2 Linear Stability Analysis:

Let the basic state be perturbed by an infinitesimal thermal perturbation so that

~q = ~qb + ~q′ , ρ = ρb + ρ′ , p = pb + p′ , T = Tb + T ′ , ~P = ~Pb + ~P ′ , ~E = ~Eb + ~E′, (2.14)

where the prime indicates that the quantities are infinitesimal perturbations. Let the components of perturbed
polarization and electric field be (P ′1, P

′
2, Pb(z) + P ′3)and (E′1, E

′
2, Eb(z) + E′3).

The second equation of (6), on linearization yields

P ′i = ε0χeE
′
i for i = 1, 2

P ′3 = ε0χeE
′
3 − eε0E0T

′ (2.15)

where it has been assumed that e∆T << (1 + χe).
Equation (5) implies one can write ~E′ = ∇φ′.
Substituting equation (16) into equations (1)-(7) and using the basic state equations, we get linearized equations

governing the infinitesimal perturbations in the form:

∇ · ~q′ = 0, (2.16)

ρ0

[
∂~q′

∂t

]
= −∇p′ + µ∇2~q′ − µ′∇4~q′ − ρ′gk̂ + ~Pb · ∇ ~E′ + ~P ′ · ∇ ~Eb, (2.17)

∂T ′

∂t
+ w′

∂Tb
∂z

= χ∇2T ′, (2.18)

ρ′ = −αρ0T
′, (2.19)

ε′ = −εoeT ′, (2.20)

∇ ·
(
ε0
~E′ + ~P ′

)
= 0. (2.21)
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Introducing the electric potential φ′, eliminating the pressure p in equation (19) and incorporating the quiescent
state solution, we obtain the perturbed state vorticity transport equation in the form:

ρ0

[
∂

∂t

(
∇2w′

)]
+ αρ0gT

′ − ε0e
2E2

0

1 + χe

(
∂Tb
∂z

)
∇2

1T
′

+ε0eE0

(
∂Tb
∂z

)
∇2

1 (Dφ′) = µ∇4w′ − µ′∇6w′. (2.22)

Using equation (17) on equation (23), we obtain :

(1 + χe)∇2φ′ − eE0DT
′ = 0. (2.23)

The perturbation equations (20),(24) and (25) are non-dimensionalized using the following definitions:

(x∗, y∗, z∗) =

(
x′

d
,
y′

d
,
z′

d

)
, t∗ =

t′

d2/χ
, w∗ =

w′

χ/d
, T ∗ =

T ′

∆T
, φ∗ =

φ
′

eE0d∆T
1+χe

. (2.24)

to obtain (after dropping the asterisk)

1

Pr

∂

∂t

(
∇2w

)
− L∇2

1T + L
∂(∇2

1φ)

∂z
= R∇2

1T +∇4w − C∇6w, (2.25)

∂T

∂t
+ w

∂T0

∂z
= ∇2T, (2.26)

∇2φ− ∂T

∂z
= 0 . (2.27)

The non-dimensional parameters Pr,L,Rand C are given as
Pr =

µ

ρ0χ
(Prandtl number),

L =
ε0 (eE0∆Td)

2

(1 + χe)µχ
(Electric Rayleigh number),

R =
ρ0αgd

3∆T

µχ
(Rayleigh number),

C =
µ′

d2µ
(Couple stress parameter).

In equation (28),
(
∂T0

∂z

)
is the non-dimensional form of

(
∂Tb
∂z

)
, where

∂T0

∂z
= −1 + εf(z), (2.28)

f(z) = Re
{[
A(λ) eλz +A(−λ) e−λz

]
e−iγt

}
, (2.29)

and A(λ) =
λ

2

[
e−iϕ − e−λ

eλ − e−λ

]
. (32)

Equations (27) to (29) are solved subject to the conditions:
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w =
∂2w

∂z2
= T =

∂φ

∂z
= 0atz = 0 , 1 (33)

Eliminating T and φ from equations (27)-(29), we get a differential equation of order 10 for w in the form:{(
∂

∂t
−∇2

)[
1

Pr

∂

∂t
−∇2 + C∇4

]
∇4 + L

∂T0

∂z
∇4

1 +R∇2 ∂T0

∂z
∇2

1

}
w = 0. (2.30)

In dimensionless form, the velocity boundary conditions for solving equation (34)are obtained from equations
(27) to (29) and (33) in the form:

w =
∂2w

∂z2
=
∂4w

∂z4
=
∂6w

∂z6
=
∂8w

∂z8
= 0. atz = 0, 1 (35)

3. Method of Solution

We now seek the eigen-function w and eigen-values R of the equation (34) for the basic temperature distribution

(30) that departs from the linear profile
∂T0

∂z
= −1 by quantities of order ε. Thus, the eigen-values of the present

problem differ from those of the ordinary Bénard convection by quantities of orderε. We seek the solution of
equation (34) in the form:

(R,w) = (R0, w0) + ε (R1, w1) + ε2 (R2, w2) + ............... . (3.1)

The expansion (36) is substituted into equation (34) and the coefficients of various powers of ε are equated on
either side of the equation. The resulting system of equation is

L1w0 = 0, (3.2)

L1w1 =
[
−Lf∇2

1 + (R1 −R0f)∇2
]
∇2

1w0, (3.3)

L1w2 = −Lf ∇ 4
1w1 − f R0∇ 2∇ 2

1 w1 + R1∇ 2∇ 2
1 w1 − f R1∇ 2∇ 2

1w0 +R2∇2∇ 2
1 w0, (3.4)

where

L1 =

(
∂

∂t
−∇2

)[
1

Pr

∂

∂t
−∇ 2 + c∇ 4

]
∇ 4 − L∇ 4

1 −R0∇2∇2
1. (3.5)

3.1 Solution To The Zeroth Order Problem

The zeroth order problem is equivalent to the Rayleigh-Bénard problem of couple stress fluid with electric field
in the absence of temperature modulation. The linear analysis of Rayleigh-Bénard convection in couple stress
fluid without electric field has been thoroughly investigated by [26]. The stability of the system in the absence of
thermal modulation is investigated by introducing vertical velocity perturbation w0corresponding to lowest mode
of convection as:

w0 = Sin (πz) exp [i(lx+my)] . (3.6)

Substituting equation (41) into equation (37) we obtain the expression for Rayleigh number in the form

R0 =
(K2

1 )3(1 + C K2
1 )

a2
− La2

K2
1

. (3.7)
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3.2 Solution To The First Order Problem

Equation (38) for w1now takes the form

L1w1 =
[
R1a

2K2
1 − fR0a

2K2
1 − Lfa4

]
w0. (3.8)

If the above equation is to have a solution, the right hand side must be orthogonal to the null-space of the operator
L1. This implies that the time independent part of the RHS of the equation (43) must be orthogonal tosin (πz).
Since f varies sinusoidal with time, the only steady term on the RHS of equation (43) isR1a

2K2
1 sin(πz), so

thatR1 = 0. It follows that all the odd coefficients i.e. R1 = R3 = ...... = 0 in equation (36).
To solve equation (43), we expand the right-hand side using Fourier series expansion and obtain w1 by inverting

the operator L1 term by term as:

w1 =
{
−R0a

2K2
1 − La4

}
Re

{∑ Bn (λ)

L1 (γ, n)
e−i γ t sin (nπz)

}
, (3.9)

where Bn (λ) = A (λ) gn1 (λ) +A (−λ) gn1 (−λ)

=
2nπ2λ2[e−λ − eλ + (−1)n(e−λ−i ϕ − eλ−i ϕ)]

[eλ − e−λ][λ2 + (n+ 1)2π2][λ2 + (n− 1)2π2]
, (3.10)

L1 (γ, n) =

(
−γ

2

Pr
+K2

nX1

)
X2 − La4 −R0a

2K2
n − i γ

[
X1 +

K2
n

Pr

]
X2,

X1 = (K2
n) + c(K2

n)2,

X2 = (K2
n)2,

andK2
n = n2π2 + a2 (see [18,19]).

The equation forw2,then becomes

L1w2 = R2a
2K2

1w0 − a2f
{
La2 +R0K

2
n

}
w1, (3.11)

We shall not solve equation (46), but will use this to determineR2. The solvability condition requires that the
time-independent part of the right hand side of equation (46) must be orthogonal to sin (nπz), and this results in
the following equation,

R2 =

(
−R0K

2
1 − La2

2K2
1

)∑[(
La4 +R0a

2K2
n

) |Bn (λ) |2

|L1 (γ, n) |2

[
L1 (γ, n) + L∗1 (γ, n)

2

]]
,

(3.12)

whereL∗1(γ, n) is the conjugate ofL1 (γ, n) respectively.

4. MINIMUM RAYLEIGH NUMBER FOR CONVECTION:

The value of Rayleigh number R obtained by this procedure is the eigenvalue corresponding to the eigen function
w,which, though oscillating, remains bounded in time. Since R is a function of the horizontal wave number a and
the amplitude of modulation ε, we have

R(a, ε) = R0(a) + ε2R2(a) + ............. (4.1)

It was shown by [11]that the critical value of thermal Rayleigh number is computed up to O(ε2), by evaluating
R0 and R2 at a = a0.It is only when one wishes to evaluate R4 that a2must be taken into account where a = a2
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minimizes R2. To evaluate the critical value of R2 (denoted byR2c) one has to substitute a = a0 in R2, where a0

is the value at which R0 given by equation (42) is minimum.
We now evaluate R2c for three cases:
Case (a): When the oscillating field is symmetric so that the wall temperatures are modulated in-phase withϕ =

0. In this case, Bn (λ) = bn or 0, accordingly as n is even or odd.
Case (b): When the wall temperature field is antisymmetric corresponding to out-of-phase modulation with

ϕ = π. In this case, Bn (λ) = 0 or bn,accordingly as n is even or odd.
Case (c): When only the temperature of the bottom wall is modulated, the upper plate being held at constant

temperature, withϕ = −i∞. In this case,Bn (λ) =
bn
2

, for integer values of n.
where

bn =
−4nπ2λ2

[λ2 + (1 + n)2π2][λ2 + (1− n)2π2]
.

The variable λ defined in equation (15), in terms of the dimensionless frequency, reduces to

λ = (1− i)
(γ

2

) 1
2

and thus

|bn|2 =
16n2π4γ2

[γ2 + (1 + n)4π4][γ2 + (1− n)4π4]
.

Hence from equation (47) and using the above expression ofBn (λ), we can obtain the following expression for
R2c in the form:

R2c =

(
−R0K

2
1 − La2

2K2
1

)∑[(
La4 +R0a

2K2
n

) |bn|2

|L1 (γ, n) |2

[
L1 (γ, n) + L∗1 (γ, n)

2

]]
. (4.2)

In equation (49) the summation extends over even values of n for case (a), odd values of n for case (b) and for
all values of n for case (c). The infinite series (49) converges rapidly in all cases. The variation of R2cwith γ for
different values of C and L are depicted in figures 2-7.

5. Subcritical Instability

The critical value of Rayleigh number Rc is determine to be of order ε2, by evaluating Roc and R2c, and is of the
form

Rc = Roc + ε2R2c (5.1)

where Roc and R2c can be obtained from equations (42) and (49) respectively.
If R2c is positive, super critical instability exists and Rc has a minimum at ε = 0. When R2c is negative, sub

critical instabilities are possible. In this case from equation (48) we have

ε2 <
Roc
R2c

. (5.2)

Now, we can calculate the maximum range of ε, by assigning values to the physical parameters involved in the
above condition. Thus, the range of the amplitude of modulation, which causes sub critical instabilities in different
physical situations, can be explained.

Darbose



Int. J. of Applied Mathematics and Computation, 5(4), 2014 9

0 -2 -4 -6 -8 -10
0

20

40

60

80

100

C=0.3

C=0.1

C=0.05

   Pr=5, L=500

 

  



2cR

Figure 2: The plot of R2c versus frequency of modulation  for in-phase 
      temperature modulation for different values of couple stress 
      parameter C. 

 

Figure 2: The plot ofR2c versus frequency of modulation γ for in-phase
temperature modulation for different values of couple stress parameter
C.
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Figure 3: The plot of R2c versus frequency of modulation  for in-phase 
      temperature modulation for different values of Electric    
      Rayleigh number L. 

 

Figure 3: The plot ofR2c versus frequency of modulation γ for in-phase
temperature modulation for different values of Electric Rayleigh number
L.
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Figure 4: The plot of R2c versus frequency of modulation  for out-of-phase 
      modulation for different values of couple stress parameter C  

 

Figure 4: The plot of R2c versus frequency of modulation γ for out-of-
phase modulation for different values of couple stress parameter C.
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Figure 5: The plot of R2c versus frequency of modulation  for out-of- phase 
      modulation for different values of Electric Rayleigh number L 

 

Figure 5: The plot of R2c versus frequency of modulation γ for out-of-
phase temperature modulation for different values of Electric Rayleigh
number L.
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Figure 6: The plot of R2c versus frequency of modulation  for bottom wall 
     modulation for different values of couple stress parameter C. 

 

Figure 6: The plot of R2c versus frequency of modulation γ for bottom
wall modulation for different values of couple stress parameter C.
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Figure 7: The plot of R2c versus frequency of modulation  for bottom      
    wall modulation for different values of Electric Rayleigh number  L. 

 

Figure 7: The plot of R2c versus frequency of modulation γ for bot-
tom wall temperature modulation for different values of Electric Rayleigh
number L.

6. Results and Discussion

The effect of thermal modulation on the onset of convection in a horizontal dielectric couple stress fluid is exam-
ined using linear stability analysis. The expression for the critical correction Rayleigh number R2cis computed as
function of the frequency of the modulation for different parameters. The value ofR2chas been calculated in the
following three cases; (a) when the walls’ temperature is modulated in- phase i.e., ϕ = 0, (b) when the modulation
is out-of-phase, i.e., ϕ = πand (c) when only the lower wall temperature is modulated, the upper wall is held at
constant temperature, i.e.,ϕ = −i∞.

The analysis presented is based on the assumption that the amplitude of the modulating temperature is small
compared with the imposed steady temperature difference. The validity of the results obtained here depends on the
value of the modulating frequency γ. When γ<< 1, the period of modulation is large and hence the disturbance
grows to such an extent as to make finite amplitude effects important. Whenγ→ ∞, R2c → 0, thus the effect of
modulation becomes small. In view of this, we choose only moderate values of γ in our present study.

The results have been presented in figures 2-7. From the figures we observe that the value of R2c may be
positive or negative. The sign of the correction Rayleigh number characterizes the stabilizing or destabilizing
effect of modulation on R2c. A positiveR2cmeans the modulation effect is stabilizing while a negativeR2cmeans
the modulation effect is destabilizing compared to the system in which the modulation is absent.

The effect of in-phase modulation of wall temperature on the onset of convection in a horizontal layer of couple
stress fluid is shown in figures 2 – 3. We find that for low frequency γ, R2c becomes more and more negative
indicating that the in-phase modulation for low frequency is destabilizing and for moderate values of γ, R2c

becomes less and less negative indicating that the in phase modulation for moderate frequency is stabilizing. Let
γc be the frequency at which the R2cchanges from destabilizing to stabilizing, then the modulated system may
be classified as destabilized or stabilized according asγ < γc or γ > γc when compared with unmodulated
system. For some particular value of γ, R2c becomes zero. This is due to the fact that when the frequency of
modulation is low, the effect of modulation on the temperature field is felt throughout the fluid layer. If the plates
are modulated in-phase, the temperature profile consists of the steady straight line section plus a parabolic profile
which oscillates in time. As the amplitude of modulation increases, the parabolic part of the profile becomes
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more and more significant. It is known that a parabolic profile is subject to finite amplitude instabilities so that
convection occurs at lower Rayleigh number than those predicted by the linear theory.

Figure (2) is the plot of R2c versus γ for different values of couple stress parameter C, in the case of in-phase
modulation. In the figure we observe that as C increases R2cbecomes more and more negative. C is indicative
of the concentration of the suspended particles. The physical reason for the nature of effect of C on R2c can be
given by invoking the Einstein law on viscosity of suspensions which states that the viscosity of the carrier liquid
is enhanced by a factor of 2.5φ(φis the concentration of particles in the liquid) by adding suspended particles.

Figure (3) is the plot of R2cversus γ for different values of electric Rayleigh number L with respect to in-phase
modulation. The electric Rayleigh numberLis the ratio of electric to gravitational forces. We see from the figure
that when L is greater than 17215super critical motion occurs and R2c increases with an increase in L at a given
frequencyγ.Hence L has a stabilizing effect on the flow. When L is less than 17215 subcritical motion occurs. It is
also interesting to see from the figure that for a given L(L <17215),R2cfirst decreases with increase in γ,reaches
a minimum and then increases with increase in γ and for a given L (L >17215) R2cincreases with increase in
γ reaches the maximum and then decreases with increase in γ. This shows that for a weakly dielectric fluid, the
flow is destabilized for small values of γ and stabilized for large values of γ. This is due to the fact that when the
frequency of modulation is low, the effect of modulation is felt throughout the fluid.

The effect of out-of-phase modulation on the wall temperature on the onset of convection is shown in figures
(4) – (5). We find that in general the effect is to stabilize the system. Thus C and L have opposing influences in
in-phase and out-of-phase modulations. The above results are due to the fact that in the case of out-of-phase mod-
ulation the temperature field has essentially a linear gradient varying in time, so that the instantaneous Rayleigh
number is super-critical for half a cycle and sub-critical during the other half cycle. Therefore, in general, sub-
critical motions are ruled out in the case of out-of-phase modulation. The above results on the effect of various
parameters on R2c for out-of-phase modulation do not qualitatively change in the case of temperature modulation
of just the lower boundary. This is illustrated with the help of figures (6) and (7).

7. CONCLUSION

From the study we conclude that:

Nomenclature
d depth of the fluid T time
~g acceleration due to grav-

ity
~q velocity

l,m wave numbers in xy
plane with
a2 = l2 +m2

ρ0 density of the fluid at tempera-
ture T=T0

p Pressure µ coefficient of viscosity
µ′ couple stress viscosity ρ Density
~E AC electric field ~P dielectric polarization field
T Temperature χ Thermal diffusivity(
~P · ∇

)
~E represents a polarization

force called the dielec-
trophoretic force

ε0 electric permittivity of free
space

εr dielectric constant χe electric susceptibility

e = −
(
∂εr
∂T

)
T=T0

E Amplitude

α Coefficient of thermal
expansion

Other symbols
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∆T difference in tempera-
ture of the fluid between
lower and upper plates

∇2 = ∇2
1 +D2 , ∇2

1 =

(
∂2

∂x2

)
+

(
∂2

∂y2

)
,

D =
∂

∂z
, K2

1 = π2 + a2

γ Frequency Subscripts
ϕ phase angle B basic state
φ′ perturbed electric scalar

potential
C Critical

E0 root mean square value
of the electric field at the
lower surface

1. For in phase modulation, it is found that, when γ is small, the modulation effect is destabilizing and when
γ is moderate modulating effect is stabilizing.

2. When boundary temperature is modulated out-of-phase or only lower wall is modulated, the system is more
stable than that for in-phase modulation.

3. In-phase temperature modulation leads to sub-critical motions.

4. The effect of temperature modulation is found to stabilize or destabilize the system depending on the values
of the parameters.

5. The effect of modulation disappears for large values of γ.

6. The problem throws light on an external means of controlling convection in dielectric couple stress fluid
which is quite important from the application point of view.
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