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Numerical solution of fuzzy differential equations under generalized dif-
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ABSTRACT

In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized
Characterization Theorem, we investigate the problem of finding a numerical approximation of solutions. The Improved Euler approximation
method is implemented and its error analysis, which guarantees pointwise convergence, is given. The method applicability is illustrated by
solving a linear first-order fuzzy differential equation.
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1. Introduction

The study of fuzzy differential equations (FDEs) forms a suitable setting for mathematical modeling of real-
world problems in which uncertainties or vagueness pervade. There are several approaches to the study of fuzzy
differential equations [7,14,17]. The first and the most popular approach is using the Hukuhara differentiability for
fuzzy number value functions. Under this setting, mainly the existence and uniqueness of the solution of FDEs are
studied. This approach has a drawback: the solution becomes fuzzier as time goes by. Hence, the fuzzy solution
behaves quite differently from the crisp solution. To alleviate the situation, Hullermeier interpreted FDEs as a
family of differential inclusions. The main shortcoming of using differential inclusions is that we do not have a
derivative of a fuzzy-number-valued function.

The strongly generalized differentiability was introduced in [4] and studied in [5,6,8]. This concept allows us
to resolve the above-mentioned shortcoming. Indeed the strongly generalized derivative is defined for a larger
class of fuzzy-number-valued functions than the Hukuhara derivative. Hence, we use this differentiability concept
in the present paper. Under appropriate conditions, the fuzzy initial value problem (FIVP) considered under this
interpretation has locally two solutions [5].

Numerical solution of an FDE is obtained now in a natural way, by extending the existing classical methods to
the fuzzy case. Some numerical methods for FDEs under the Hukuhara differentiability concept such as the fuzzy
Euler method, predictor- corrector method, Taylor method and Nystrom method are presented in [1,3,10,15].
The local existence of two solutions of an FDE under generalized differentiability implies that we present new
numerical methods. In this paper, using strongly generalized differentiability, the original initial value problem
is replaced by two parametric ordinary differential systems which are then solved numerically using classical
algorithms.

After a preliminary section, we study fuzzy differential equations using the concept of generalized differen-
tiability and present the generalized characterization theorem. In section 4, we propose a numerical method for
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solving FDEs. A scheme based on the classical Improved Euler method is discussed and this is followed by a
complete error analysis. Also, we present a numerical example to illustrate our method.

2. Preliminaries

In this section, we give some definitions and introduce the necessary notation which will be used throughout the
paper. See for example [9]

Definition 2.1. Let X be a nonempty set. A fuzzy set u in X is characterized by its membership function u : X →
[0, 1]. Then u(x) is interpreted as the degree of membership of a element x in the fuzzy set u for each x ∈ X .

Let us denote by <F the class of fuzzy subsets of the real axis (i.e.u : < → [0, 1]) satisfying the following
properties:

(i) u is normal, i.e., there exists s0 ∈ < such that u(s0) = 1,

(ii) u is a convex fuzzy set (i.e. u(ts+ (1− t)r) ≥ min {u(s), u(r)}, ∀t ∈ [0, 1], s, r ∈ <),

(iii)u is upper semicontinuous on <,

(iv) cl(s ∈ <|u(s) > 0} is compact, where cl denotes the closure of a subset.

Then <F is called the space of fuzzy numbers. Obviously < ⊂ <F . For 0 < α ≤ 1 denote [u]α = {s ∈
<|u(s) ≥ α} and [u]0 = cl{s ∈ <|u(s) > 0}. Then from (i)-(iv) it follows that if u belongs to <F then the
α-level set[u]α is a non-empty compact interval for all 0 ≤ α ≤ 1.

The notation [u]α = [uα, uα] denotes explicitly the α-level set of u. We refer to u and u as the lower and upper
branches on u, respectively.

For u, v ∈ <F and λ ∈ <, the sum u + v and the product λ � u are defined by [u + v]α = [u]α + [v]α,
[λ � u]α = λ[u]α, ∀α ∈ [0, 1], where [u]α + [v]α means the usual addition of two intervals (subsets) of < and
λ[u]α means the usual product between a scalar and a subset of <.
The metric structure is given by the Hausdroff distance
D : <F ×<F → <+ ∪ {0},
D(u, v) = sup

α∈[0,1]
max{|uα − vα| , |uα − vα|}

(<F , D) is a complete metric space and the following properties are well known:

D(u+ w, v + w) = D(u, v),∀u, v, w ∈ <F ,
D(k � u, k � v) = |k|D(u, v), ∀k ∈ <, u, v ∈ <F ,
D(u+ v, w + e) ≤ D(u,w) +D(v, e), ∀u, v, w, e ∈ <F .

Definition 2.2. Let x, y ∈ <F . If there exists z ∈ <F such that x = y+ z, then z is called the H-difference of x,
y and it is denoted x	 y.

In this paper the sign ” 	 ” always stands for the H- difference, and let us remark that x 	 y 6= x + (−1)y.
Usually we denote x+(−1)y by x−y,while x	y stands for theH-difference. In what follows, we fix I = (a, b),
for a, b ∈ <.

Definition 2.3. Let F : I → <F be a fuzzy function. We say F is differentiable at t0 ∈ I if there exists an
element F ′(t0) ∈ <F such that the limits

lim
h→0+

F (t0 + h)	 F (t0)
h

and lim
h→0+

F (t0)	 F (t0 − h)
h

, exist and are equal F ′(to). Here the limits are taken

in the metric space (<F , D), since we have defined h−1 � (F (t0)	F (t0 − h)) and h−1 � (F (t0 + h)	F (t0)).
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The above definition is a straightforward generalization of the Hukuhara differentiability of a set-valued func-
tion. From proposition 4.2.8 in [9], it follows that a Hukuhara differentiable function has increasing length of
support. Note that this definition of a derivative is very restrictive; for instance in [5], the authors showed that,
if F (t) = c � g(t), where c is a fuzzy number and g : [a, b] → <+ is a function with g′(t) < 0, then F is not
differentiable. To avoid this difficulty, the authors of [5] introduced a more general definition of a derivative for a
fuzzy-number-valued function. In this paper we consider the following definition [8]:

Definition 2.4. Let F : I → <F . Fix t0 ∈ I. We say F is differentiable at t0, if there exists an element
F ′(t0) ∈ <F such that

(1) for all h > 0 sufficiently close to 0, there exist F (t0 + h)	 F (t0),
F (t0)	 F (t0 − h) and the limits (in the metric D)

lim
h→0+

F (t0 + h)	 F (t0)
h

= lim
h→0+

F (t0)	 F (t0 − h)
h

= F ′(t0),

or

(2) for all h > 0 sufficiently close to 0, there exists F (t0 + h)	 F (t0),
F (t0)	 F (t0 − h) and the limits (in the metric D)

lim
h→0−

F (t0 + h)	 F (t0)
h

= lim
h→0−

F (t0)	 F (t0 − h)
h

= F ′(t0).

Remark 2.1. ([5]). This definition agrees with the one introduced in [5]. Indeed, if F is differentiable in the
senses (1) and (2) simultaneously, then for h > 0 sufficiently small, we have F (t0 + h) = F (t0) + u1, F (t0) =
F (t0 − h) + u2, F (t0) = F (t0 + h) + v1 and F (t0) = F (t0 + h) + v2, with u1, u2, v1, v2 ∈ <F .Thus,
F (t0) = F (t0) + (u2 + v1), i.e., u2 + v1 = X{0}, which implies two possibilities: u2 = v1 = X{0} if
F ′(t0) = X{0}; or u2 = X{a} = −v1, with a ∈ <, if F ′(t0) ∈ <. Therefore if there exists F ′(t0) in the first
form (second form) with F ′(t0) /∈ <, then F ′(t0) does not exist in the second form (first form, respectively).

Remark 2.2. In the previous definition, case(1) corresponds to the H-derivative, so this differentiability concept
is a generalization of the H-derivative.

Remark 2.3. In [5], the authors consider four cases for derivatives. Here we only consider the two first cases
of Definition 5 in [5]. In the other cases, the derivative is trivial because it is reduced to a crisp element (more
precisely, F ′ ∈ <; for details see Theorem 7 in [5]).

Definition 2.5. Let F : I → <F . we say F is (1)-differentiable on I if F is differentiable in the sense (1)of
Definition 2.4 and its derivative is denoted D1F , and similarly for (2)-differentiability we have D2F.

The principal properties of defined derivatives are well known and can be found in [5,8]. In this paper, we make
use of the following Theorem [8].

Theorem 2.1. Let F : I → <F and put [F (t)]α = [fα(t), gα(t)] for each α ∈ [0, 1].

(i) If F is (1)-differentiable then fα and gα are differentiable functions and [D1F (t)]
α = [f ′α(t), g

′
α(t)].

(ii) If F is (2)-differentiable then fα and gα are differentiable functions and we have [D2F (t)]
α = [g′α(t), f

′
α(t)].

Proof. see [8]
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3. Generalized characterization theorem for FDEs under generalized differentiability

Let us consider the fuzzy differential equations with initial value condition

x′(t) = f(t, x), x(0) = x0, (3.1)

where f : I × <F → <F is a continuous fuzzy mapping and x0 is a fuzzy number. The interval I may be [0, A]
for some A > 0 or I = [0,∞).

Theorem 3.1. Let f : I × <F → <F be a continuous fuzzy function such that there exists k > 0 such that
D(f(t, x), f(t, z)) ≤ kD(x, z), ∀t ∈ I, x, z ∈ <F . Then problem (3) has two solutions (one (1)- differentiable
and the other one (2)-differentiable on I.

Proof. see [12].
Let y : I → <F be a fuzzy function such that D1y or D2y exists. If y and D1y satisfy problem (3), we say y

is a (1)-solution of problem (3). Similarly, if y and D2y satisfy problem (3), we say y is a (2)-solution of problem
(3).

Then Theorem 2.9 shows us a way to translate the FIVP(3) into a system of ODEs. Let [x(t)]α = [xα(t),
xα(t)]. If x(t) is (3)-differentiable then [D1x(t)]

α = [x′α(t), x
′
α(t)],and (3)-translates into the following system

of ODEs: 
x′(t) = f

α
(t, xα, xα) = F (t, x, x), x(0) = x0,

x′(t) = fα(t, xα, xα) = G(t, x, x), x(0) = x0.

(3.2)

Also, if x(t) is (2)-differentiable then [D2x(t)]
α = [x′α(t), x

′
α(t)], and (1.1) translates into the following system

of ODEs: 
x′(t) = fα(t, xα, xα) = G(t, x, x), x(0) = x0,

x′(t) = f
α
(t, xα, xα) = F (t, x, x), x(0) = x0,

(3.3)

where [f(t, x)]α = [f
α
(t, xα, xα), fα(t, xα, xα)]. Then, the authors of [8] state that if we ensure that the solution

[xα(t), xα(t)] of the system (4) are valid level sets of a fuzzy number valued function and if [x′α(t), x
′
α(t)] are valid

level sets of a fuzzy valued function, then by the stacking Theorem [14], it is possible to construct the (1)-solution
of FIVP (3). Also, for the (2)-solution, we can proceed in a similar way.

The characterization theorem [5] states that a fuzzy differential equation is equivalent to a system of ordinary
differential equations under certain conditions. The next result extends Bede’s characterization theorem to fuzzy
differential equations under generalized differentiability.

Theorem 3.2. Let us consider the FIVP (3) where f : I ×<F → <F is such that

(i) [f(t, x)]α = [f
α
(t, xα, xα), fα(t, xα, xα)];

(ii) f
α

and fα are equicontinuous;

(iii) there exists L > 0 such that∣∣∣f
α
(t, x1, y1)− fα(t, x2, y2)

∣∣∣ ≤ Lmax{|x1 − x2| , |y1 − y2|}, ∀α ∈ [0, 1],∣∣fα(t, x1, y1)− fα(t, x2, y2)∣∣ ≤ Lmax{|x1 − x2| , |y1 − y2|}, ∀α ∈ [0, 1].

Then, for (1)-differentiability, the FIVP (3) and the system of ODEs (4)are equivalent and in (2)-differentiability,
the FIVP (3) and the system of ODEs (5) are equivalent.

Proof. In the paper [5] , the authors proved for (1)- differentiability. The result for (2)- differentiability is
obtained analogously by using Theorem 2.9.
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4. Numerical solution of FDE by generalized characterization theorem

In this section we present numerical methods for solving (3) by the generalized characterization theorem. Here
we assume the existence of two solutions for (3) based on Theorem 3.1.

Lemma 4.1. ([5]). The fuzzy differential equation (3), where f : I × <F → <F is supposed to be continuous, is
equivalent to one of the integral equations:

x(t) = x0 +

∫ t

0

f(s, x(s))ds, ∀t ∈ I, or

x0 = x(t) + (−1)�
∫ t

0

f(s, x(s))ds, ∀t ∈ I,

depending on the strongly differentiability considered, (1)-differentiability or (2)-differentiability, respectively.
Here the equivalence between two equations means that any solution of an equation is a solution too for the other
one.

Remark 4.1. ([5]). Under appropriate conditions, the fuzzy initial value problem (3) considered under generalized
differentiability has locally two solutions, and the successive iterations

x(0) = x0, xn+1(t) = x0 +

∫ t

0

f(s, xn(s))ds, and

x(0) = x0, xn+1(t) = x0 	 (−1)�
∫ t

0

f(s, xn(s))ds,

converge to the (1)- solution and the (2)- solution, respectively.

In the interval I = [0, A] we consider a set of discrete equally spaced grid points 0 = t0 < t1 < t2 <
... < tN = A at which two exact solutions [Y1(t)]α = [Y1(t, α), Y1(t, α)] and [Y2(t)]

α = [Y2(t, α), Y2(t, α)] are
approximated by some [y1(t)]

α = [y1(t, α), y1(t, α)] and [y2(t)]
α = [y2(t, α), y2(t, α)], respectively. The grid

points at which the solutions are calculated are tn = t0 + nh, h = A/N. The exact and approximate solutions at
tn, 0 ≤ n ≤ N are denoted by Y1n(α), Y2n(α), y1n(α), and y2n(α) respectively.

The generalized Improved Euler method based on the first-order approximation of Y1′(t, α), Y1
′
(t, α), and

Y2
′(t, α), Y2

′
(t, α) are equations (2)and (3) is obtained as follows:



y1n+1
(α) = y1n(α) +

h

2

{
F [tn, y1n(α), y1n(α)] + F

[
tn + h, y1n(α)

+ hF [tn, y1n(α), y1n(α)], y1n(α) + hF [tn, y1n(α), y1n(α)]
]}

y1n+1(α) = y1n(α) +
h

2

{
G[tn, y1n(α), y1n(α)] +G

[
tn + h, y1n(α)

+ hG[tn, y1n(α), y1n(α)], y1n(α) + hG[tn, y1n(α), y1n(α)]
]}

y10(α) = y0(α)

y10(α) = y0(α)

(4.1)
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y2n+1
(α) = y2n(α) +

h

2

{
G[tn, y2n(α), y2n(α)] +G

[
tn + h, y2n(α)

+hG[tn, y2n(α), y2n(α)], y2n(α) + hG[tn, y2n(α), y2n(α)]
]}

y2n+1(α) = y2n(α) +
h

2

{
F [tn, y2n(α), y2(n)(α)] + F

[
tn + h, y2n(α)

+hF [tn, y2n(α), y2n(α)], y2n(α) + hF [tn, y2n(α), y2n(α)]
]}

y20(α) = y0(α)

y20(α) = y0(α)

(4.2)

where y0 is an initial value. Our next result determines the pointwise convergences of the generalized Improved
Euler approximates to the exact solutions. Let F (t, u, v) and G(t, u, v) be the functions F and G of equations (2)
and (3), where u and v are constants and u≤ v. The domain where F and G are defined is therefore
K = {(t, u, v) |0 ≤ t ≤ A, −∞ < v <∞, −∞ < u ≤ v}.

Theorem 4.2. Let F (t, u, v) and G(t, u, v) belong to C1(K) and let the partial derivatives of F,G be bounded
over K. Then, for arbitrary fixed α : 0 ≤ α ≤ 1, the generalized Improved Euler approximates of equations (4)
and (5) converge to the exact solutions Y1(t;α), Y2(t;α) uniformly in t.

Proof. If we consider (1)-differentiability, then convergence of equation (4) is obtained from Theorem 1 in [11].
In the same way, if we consider(2)-differentiability then analogously to the demonstration of Theorem (1) in [11],
we can prove the convergence of equation (5).

Remark 4.2. By Theorem 3.1 we observe that the solution of the fuzzy differential equations is not unique. This
may seem a deficiency of the method. However, this disadvantage can be converted into an advantage since
we may sometimes choose between two solutions, so for example we can study the real system and choose the
solution which better reflects the behavior of the system and then consider that solution in all similar cases. This
advantage is shown by the following simple modeling Example [6].

5. Example

Let us consider the equation

x′(t) = −λ� x(t), x(0) = x0. (5.1)

Let λ = 1, I = [0, 1] and x0 = [α− 1, 1− α].
By using the formulation (2) we get the exact solution

x(t, α) = [(α− 1)et, (1− α)et],

that is a (1)-differentiable solution of the problem (1).
Using the formulation (3),

x(t, α) = [(α− 1)e−t, (1− α)e−t],

is a (2)-differentiable solution of the problem (1).
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To get the generalized Improved Euler approximation we divide I into N =10 equally spaced subintervals and
calculate 

y1
α
n+1

= y1
α
n

(
1 +

h2

2

)
− h y1αn,

y1
α
n+1 = y1

α
n

(
1 +

h2

2

)
− h y1αn,

y1
α
0
= x0,

y1
α
0 = x0,

(5.2)

for finding the (1)-solution and compute

y2
α
n+1

= y2
α
n

(
1− h

)
+
h2

2
y2
α
n,

y2
α
n+1 = y2

α
n

(
1− h

)
+
h2

2
y2
α
n
,

y2
α
0
= x0,

y2
α
0 = x0,

(5.3)

for finding the (2)-solution.
A comparison between the exact the and the approximate solutions at t = 1 is shown in the following figures (1)

and (2).
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Figure 1: Solution for h=0.1
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Figure 2: Solution for h=0.1

6. Conclusion
In this paper we presented the solution of fuzzy differentiable equations under generalized differentiability

by using generalized characterization theorem, we translate the fuzzy differential equations into two systems of
ordinary differential equations and then solve numerically by Improved Euler method. From figures (1) and (2)
we see that our proposed Improved Euler method gives better solution than Euler method which was studied by
Nieto et all.[16].
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