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In recent years, progress in sequencing and computational biology has greatly expanded our capacity for 

studying microbial communities' taxonomic and functional components, which are critical in industrial 

processes of all kinds and sizes. As a result, commercial interest has increased in applications where 

microbial populations play a significant role. Probiotics, cosmetics, and enzyme research are a few examples. 

Gut microbiome data may also be used in commercial applications, such as software that provides evidence-

based, automated and individualised food recommendations for maintaining healthy blood sugar levels. Data 

integration for predictive machine learning requires strain-level precision in community profiles and many 

bioinformatic and data science difficulties. In this viewpoint, we touch on numerous industrial fields and 

briefly address the developments and future prospects of bioinformatics and data science in microbiome 

research in order to share our perspectives on such difficulties. 
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Introduction 

Industrial activities such as the manufacture of food, drinks, probiotics, paper, and cleaning goods rely heavily 

on microbial populations (for a review, see Singh et al., 2016). Marker gene (16S rRNA) and shotgun 

metagenome sequencing for product development, optimization, and quality control have become industry 

standards for studying the taxonomic makeup and functional capabilities of these microorganisms (Costessi et 

al., 2018). Metatranscriptomics and metabolomics data, for example, can be employed in integrative 

investigations to produce leads in enzyme discovery. In several of these microbiome research, strain-level 

analysis of community composition is required to determine the effectiveness of probiotics (McFarland et al., 

2018). Studies examining microbiome capacity to synthesise specific substances and requiring bacterial 

genome recovery from complicated microbiomes (e.g. dirt) are also being conducted (Howe et al., 2014). 

Bioinformatics, data mining, and machine learning approaches must be used to extend microbiome 

applications to the general population for practical findings, such as controlling blood sugar levels (Zeevi et 

al., 2015). 

Bioinformatic and data science problems are highlighted in this review of industrial microbiome applications. 

In addition, we discuss some of the new developments that might shed light on the issues that these 

applications face. We'll wrap things off by discussing where we see industrial microbiome applications going 

in the future and what computational components they'll need. 

 

Current Applications and Products 

Dairy Starter Cultures 

Cheese, yoghurt, pork, and wine all benefit from the utilisation of microbial populations (e.g. lactic acid 

bacteria) in various food and beverage manufacturing processes, including the creation of these products. 

Particularly during cheese ripening, when flavour and structure are formed, their contribution is critical. 

Enzymes unique to a particular strain control these processes (Escobar-Zepeda et al., 2016). Such enzymes 

may be challenging to isolate and study since cultivating strain representatives can be time-consuming or 
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tedious (Lagier et al., 2016). An alternative method of examining these enzymes is by metagenome 

sequencing, assembly, and annotation in the context of product improvement, for example (De Filippis et al., 

2017). As a result of the importance of metagenome assembly in understanding bacteriophage populations and 

the abundance, diversity, and development of these microorganisms, not only can it help prevent fermentation 

failures due to viral infections but it can also help unlock the potential of these microorganisms to fight food-

borne pathogens (Fernández et al., 2017). 

 

Probiotics 

When taken in sufficient quantities, probiotics are beneficial bacteria meant to promote the health of the host. 

To find new probiotics, researchers must first build a strain library using a method known as culturomics 

(Lagier et al., 2016). Following in vitro and computational study on the acquired strains, such as for their bile 

resistance and ability to survive the transit of the stomach, is the next step. After completing each of these 

phases, a smaller pool of candidates remains to be evaluated by regulatory agencies like the European Food 

Safety Authority (EFSA, FEEDAP et al., 2018). When combined with other datasets such as metabolomic, 

demographic, dietary, and lifestyle data, we believe that findings from comparative studies of the gut 

microbiome highlight associations between phenotypic traits such as inflammation (Andoh et al., 2012). 

 

Quality Control 

Live organisms are found in items like probiotics and dairy starter cultures, which are either marketed to 

customers or utilised in the production of consumer goods. Quality control of the finished product is just as 

important as checking the raw materials for proper strains and the absence of harmful microorganisms (Fenster 

et al., 2019). Due to the wide variety of phenotypes that may exist across various strains of the same species of 

microorganism, strain-level identification throughout the quality control process is essential for identifying 

any potential contaminants (Huys et al., 2013). 

 

Cosmetics 

Skin microbiome research is becoming more popular in the cosmetics sector as a possible treatment target for 

conditions such as acne, eczema, and Malassezia folliculitis (Wallen-Russell, 2019). Despite this, these 

investigations are sometimes impeded by the low biomass of skin samples, which may lead to inaccurate 

results due to contaminations (e.g., from nearby skin or reagents) (Kong et al., 2017). Human skin microbiota 

(Zeeuwen et al., 2012) is subject-specific and difficult to generalise about the effects of skin products on a 

large group. As a result of this, there is a need for personal longitudinal studies, where statistical methods such 

as redundancy analysis and principle response curve (Van den Brink and Braak, 1999) can be used to assess 

correlations between taxonomic or functional composition and the characteristics of the samples being studied 

(environmental variables). A further benefit is that data may be adjusted for one of the covariates before the 

actual analysis is conducted, making it easier to determine the treatment's impact. 

 

Enzyme Discovery 

Cleaning agents, laundromat chemicals, paper and textile enzymes, and many more are among the many types 

of industrial chemicals whose costs, environmental impact, and efficacy are under constant scrutiny. Enzymes 

with desirable qualities may be found in a variety of microbiomes, including those found in seawater and soil, 

as well as those found in lakes and wetlands. In addition, new enzymes that can perform complex reactions 

may also be found in these microbiomes (Popovic et al., 2015). Two enzymes recently discovered that allows 

a sustainable alternative to toluene, a petrochemical with an annual market of 29 million tonnes, to be 

produced by complex microbial communities living in sewage and lakes are significant examples of the latter 

(Beller et al., 2018). 
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Microbiome-Based Health and Personalized Nutrition 

Services such as MyMicroZoo1, Biovis2, and American Gut3 make microbiome analysis accessible to the 

general public at low prices. They must pay significantly greater attention to the clarity of their findings even 

if the results are declared not to be construed as a diagnosis, even though they are operationally identical to 

those employed in research. As a practical matter, this implies that skilled healthcare experts [such as 

dieticians and general practitioners (GPs)) should assist the end-user in making sense of the (actionable) data 

to avoid misinterpretation. 

Based on published research findings is an excellent practice, but the fact that most studies concentrate on a set 

cohort and present "averaged" population trends makes it doubtful whether results can be applied to 

individuals. Function-based techniques using metagenomics may make such individual translations less 

difficult since the 'personalised' impacts in these datasets are less evident (Lloyd-Price et al., 2017). Zeevi and 

colleagues (2015) demonstrated that a person's gut microbiome can be used to predict post-meal glycemic 

responses by integrating data from their blood parameters, anthropometrics and physical activity as well as the 

gut microbiome into a machine learning algorithm that predicted the post-meal glycemic responses of their 

subjects. The final prediction model incorporated 72 taxonomic or functional microbiome characteristics. An 

example of how huge datasets from scientific research and data science may be merged in commercial settings 

for providing consumers with evidence-based health-related advice is DayTwo4, which is now available to the 

public. 

 

Current Advances 

Metagenome Assembly, Binning, and Annotation 

Because it allows for gene prediction, annotation, and abundance profiling, metagenome assembly is an 

essential computational step in studies of microbiome function. There is a variety of (de Bruijn graph-based) 

metagenome assembly techniques available, and it is critical to choose the one that best suits the research topic 

at hand in terms of simplicity of use, scalability, run time, and memory requirements. (Van der Walt et al., 

2017). Measuring the influence of probiotic supplementation on the abundance of gene groups and pathways 

in large cohorts requires computationally less demanding techniques like MEGAHIT (Li et al., 2015). In 

contrast, investigations with a modest number of samples, such as enzyme discovery applications, may employ 

assembly tools like metaSPAdes (Nurk et al., 2017) that incorporate optimizations such as error correction but 

with a consequent runtime trade-off. 

 

Hypothesis-Driven Functional Analyses 

A microbiome dataset's functional components and prospective longitudinal and cross-sectional aspects are 

often thought hopeless to analyse exhaustively and query. Even if it is technically possible, several testing 

difficulties reduce the analytical power significantly. Determining the important functional elements is a 

significant step toward addressing these restrictions, even while measures like the elimination of collinear 

variables and confirmation of putative correlations in separate datasets may in part solve these concerns 

(Falony et al., 2016). Such a strategy involves using a specific database to answer a specific hypothesis, such 

as in the case of select enzyme classes or an entire set of enzymatic pathways. To provide three examples, 

Resfams (Gibson et al., 2015) and dbCAN (Yin and al., 2012) both concentrate on antibiotic resistance while 

antiSMASH (Blin et al., 2017) examines secondary metabolite syntheses. A method like STRING (Szklarczyk 

et al., 2014) that uses guilt by association approaches to identify genes that are not directly flagged by 

comparison to specific functional datasets, such as those described above, can be used to identify genes whose 

distribution patterns are similar enough to genes that are represented in the reference set. Functional studies 

that need protein sequences have the problem of requiring assembly and gene prediction, which may be 

computationally costly, as explained above. This is a limitation. For profiling protein family abundance, tools 

such as HUMAnN2 (Franzosa et al., 2018) operate directly with short-read data. 
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Assembly-Independent Strain-Level Characterization 

Both Bifidobacterium long subsp. longum and Bifidobacterium longum subsp. infantis, which have two 

unique phenotypes with major functional implications in infant nutrition, vary just slightly in their 16S rRNA 

gene sequences (Lawley et al., 2017). In OTU clustering-based taxonomic analysis, these distinctions are not 

preserved. Unorthodox techniques such as UNOISE2 and DADA2 (Callahan et al., 2016) avoid the need for 

clustering and sequence filtering processes, allowing single-nucleotide-level differentiation between sequences 

(ASVs). The phylogenetic depth at which microbiome investigations may be understood may be improved 

greatly as a result of this. Among the notable uses of these new algorithms were fresh insights into oral 

(Mukherjee et al., 2018) and vaginal microbiomes at the sub-species level (Callahan et al., 2017). 

These methods may be used to perform strain-level studies using shotgun metagenomic datasets without the 

necessity for metagenome assembly in circumstances when many strains of the same species have identical 

16S rRNA sequences (Truong et al., 2017; PanPhlAn (Scholz et al., 2016). (Figure 1). Routine compositional 

analysis may now be performed to confirm the presence of desired strains or to detect possible infections in 

finished goods using these approaches. 

 

 

Figure 1 An overview of approaches to achieve taxonomic resolution at different levels. 

 

Long-Read Sequencing and Other Advances 

Even though long-read sequencing systems PacBio and Oxford Nanopore Technologies (ONT) are yet to be 

widely used in microbiome investigations, they provide interesting prospects for a variety of commercial 

applications. As an example, PacBio's circular consensus sequencing application offers the essential 

phylogenetic precision for applications like fermentation investigations, which is impossible with short-read 

amplicon sequencing. Quality control applications for pathogen identification may benefit from ONT's on-

demand sequencing, but the high rate of error prevents reliable strain-level detection. 

It is usual for short-read datasets to be quite fragmented even with high dataset coverage and sophisticated 

algorithms, particularly in samples from diverse ecosystems like soil. Long-read sequencing will likely 

become more widely used in research aimed at assembling whole microbial genomes at the chromosomal level 

shortly. The possibility to apply hybrid assembly techniques such as hySPADES for long- and short-read 

metagenome datasets is something we're excited about. 10x Genomics (http://10xgenomics.com) is a company 

that provides barcoded short reads with long-range information for microbiome research. Athena assembler 



Copyrights @Kalahari Journals Vol. 7 (Special Issue 5, April-May 2022) 

International Journal of Mechanical Engineering 

692 

(Bishara et al., 2018) is an example of a customised bioinformatics tool that exploits barcode information in 

short reads and enhances the congruency of metagenome assemblies. 

 

Machine Learning and Data Science 

In microbiome investigations, the number of datasets and the depth of sequencing per sample have grown as 

the cost of sequencing has fallen. Studying OTU tables and functional profiles as starting material for further 

analyses such as machine learning (ML) applications became possible because of the increased statistical 

power of the investigations (Pasolli et al., 2016). Random forests (RF) methods have been employed 

effectively by many in the context of illness, for example, properly predicting IBS (Saulnier et al., 2011) and 

bacterial vaginosis (Beck and Foster, 2014) based on taxonomic profiles (for a review, see LaPierre et al., 

2019 and Qu et al., 2019). A median accuracy of only 56.68 percent was found when Sze and Schloss (2016) 

used 10 previously published obesity datasets to train RF ML models on one dataset and test them on the other 

nine, suggesting that the method may not be applicable for some diseases or ii) the disease signal may be more 

apparent at the level of differentially expressed functions (gene transcripts) of the microbiome. 

Microbiome uses of ML in the industrial sector include constructing classification models for oil sites based 

on soil microbiome data, and the previously mentioned customised health-related lifestyle advice services that 

are in part based on gut microbiome data. When it comes to screening new probiotics, we anticipate data 

integration and machine learning to have an influence. Microbiome analysis tools like MicrobiomeAnalyst 

(Dhariwal et al., 2017), QIIME 2 (Bokulich et al., 2018), and USEARCH (Edgar, 2010) have begun 

incorporating ML methods that can be used by researchers who aren't necessarily bioinformaticians to meet 

the general demand for user-friendly ML in microbiome research. 

 

Conclusions and Outlook 

Microbiome research has a wide range of options due to the wide range of experimental and computational 

approaches accessible. While standards and standardisation are critical for improving comparability and 

reproducibility, reaching worldwide agreement on the methodologies utilised is still a difficulty. To a large 

extent, researchers are constrained by the time and effort required to implement new procedures, which might 

in turn compromise the comparability of results between investigations, or even within studies that last for a 

long time. We agree with Knight et al. (2018) that standardising the documentation of procedures, tools, data 

formats, and data processing settings should be a fundamental goal of microbiome investigations, and these 

"logs" should be published alongside the final findings and interpretations. BaseClear5, NIZO food research6, 

Clinical Microbiomics7, Vedanta Biosciences8, and COSMOSID9 are among the microbiome analysis 

providers that are concerned about revealing a major portion of their intellectual property if they were to be be 

completely disclose their findings. 

 

For microbiome investigations, we predict long-read sequencing to become more widespread as prices 

continue to fall. This will allow for better taxonomic resolution, as well as greater functional analysis, due to 

more continuous metagenome assemblies. Bioinformatic procedures currently defined for short readings, such 

as denoising and read categorization, will likely be translated to long-read versions as the primary emphasis of 

future advances. 

The use of costly computations in de novo assembly and annotation for shotgun metagenome analysis in big 

studies may also cause capacity concerns. If your company can't afford a significant on-premise computer 

infrastructure, the cloud offers a flexible solution where cloud computing knowledge is vital. 

 

It will also continue to be stimulated by the fast translation of microbiome research into key commercial uses 

in the healthcare, energy, and food industries. In this interaction, we anticipate the role of bioinformatics and 

data science to grow in importance. 
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