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ABSTRACT: 

Detection of epilepsy relies heavily on the electroencephalogram (EEG). An epileptic patient's long-term EEG recordings contain 

an enormous amount of EEG data. As a result, detecting epileptic activity is a difficult task that necessitates an in-depth review of 

the full EEG data set by a professional. Using wavelet transform and statistical pattern recognition, this work describes an 

automated classification of EEG signals for the identification of seizures. Feature extraction based on wavelet transform, feature 

space dimension reduction with scatter matrices, and classification with quadratic classifiers are the three primary stages of the 

decision-making process. This methodology was applied to EEG data sets from three subject categories: (a) healthy volunteers, 

(b) epileptics during a seizure-free time, and (c) epileptics during a seizure. Overall, we were able to attain a classification 

accuracy of 99 percent. According to the study results, a proposed algorithm has the ability to classify EEG signals and detect 

epileptic episodes. This could help improve the diagnosis of epilepsy. 
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INTRODUCTION: 

Nearly 60 million individuals worldwide are estimated to suffer from epilepsy, according to the World Health Organization. As 

many as one in a hundred people will suffer from a seizure at some point in their lives. People who suffer from epilepsy 

experience seizures that are frequent and unexpected, which can put them in danger and even endanger their lives[2]. In the EEG 

signal, which represents the electrical activity of the brain, there occurs a momentary and unexpected electrical disturbance of the 

brain and excessive neuronal discharge. When it comes to assessing the brain's health and detecting epileptic seizures, EEG is the 

most commonly used signal. This is critical for a thorough diagnosis of epilepsy. 

Patients' EEG data is laborious and time-consuming to scan for signs of epileptic seizures via visual scanning. EEG recordings 

must be analysed in their entirety by an expert to detect epileptic activity. Epilepsy diagnosis and long-term patient monitoring 

and treatment would be vastly improved with an automated categorization and detection system that could be relied upon to 

provide objective results. An antiepileptic pharmacological treatment that may generate cognitive or other neurological side 

effects could, for example, be reduced to a focused short-acting intervention[3]. In order to properly evaluate and treat 

neurological illnesses such as epilepsy, there is a high demand for the creation such automated systems due to the large volumes 

and rising use of long-term EEG recordings. The expert's ability to misinterpret the data and come up with an incorrect conclusion 

would also be reduced[4,5]. 

There have been a slew of new algorithms for classifying and detecting seizures in EEG signals that have appeared in recent years. 

For example, Gotman's computerised system can detect a wide range of seizures, while Qu and Gotman's nearest-neighbor 

classifier on EEG data derived in both time and frequency domains may detect epileptic seizures. For epileptic seizure onset 

prediction from intracranial epileptic EEG recordings, Gigola et al.[8] used a method based on the evolution of accumulated 

energy using wavelet analysis, while Adeli et al.[9], Guler et al.[10], and Ubeyli [11] discussed the potential of nonlinear time 

series analysis in seizure detection. 

Several researchers [11–13] have proposed artificial neural network-based detection systems for epilepsy diagnosis. According to 

Weng and Khorasani[14], an adaptive structured neural network is fed with the Gotman and Wang[15] properties of average EEG 

amplitude and duration as well as variation coecients, dominating frequencies, and average power spectra. Learning vector 

quantization networks can be trained using raw EEG signals, as demonstrated by Pradhan and colleagues[16]. Two EEG 

properties, relative spike amplitude and spike rhythmicity have been employed as inputs for the aim of identifying seizures in a 

new neural network model presented by Nigam and Graupe [17]. 

Uses back propagation neural network with periodogram and autoregressive (AR) characteristics as inputs for automated detection 

of epileptic seizures, according to Kiymik et al. [18]. Wavelet analysis, radial basis function, and a Levenberg–Marquardt 

backpropagation neural network were used by Ghosh-Dastidar et al. to develop a classification approach. Classifying EEG signals 
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and seizures using wavelet analysis and a combination of specialists was done by Srinivasan et al. [20] using an approach based 

on approximation entropy as an input to an artificial neural network classifier. 

Most present approaches have low accuracy, a high proportion of false alarms, and missed detections since the mechanisms 

behind the problem are so little understood[22]. Most EEG analysis-based algorithms are based on a small number of datasets, 

which often show acceptable accuracy for selected EEG segments but are not strong enough to adjust to EEG variability 

commonly observed in a hospital setting[20]. These studies included a greater number of EEG data sets from three different types 

of participants: healthy individuals (normal EEG), epileptic individuals during a seizure-free time (interictal EEG), and epileptic 

individuals experiencing a seizure itself (periictal EEG) (ictal EEG). Using a three-group classification problem, the EEG signal 

classification and seizure detection problem was analysed. One can utilise an automated method that is capable of properly 

separating between normal and ictal EEG data to determine if a person has epilepsy, while another is capable of detecting seizures 

in the clinical situation. In order to effectively classify all three categories, the classification system must be able to handle EEG 

signal fluctuations across different mental states and people. By identifying combinations of all extracted features that promote 

inter-class separation, and classifiers that can effectively classify all three groups of EEG signals based on a restricted feature 

space, the classification accuracy can be improved. It was found that the algorithm may be used in an automated epilepsy 

diagnosis system after it was tested using real EEG data. 

 

MATERIALS AND METHODS: 

Materials: 

Subsets of normal and epileptic EEG data made accessible by Dr. Ralph Andrzejak of the Epilepsy Center at the University of 

Bonn were utilised. Patients with epilepsy during a period without seizures had their interictal EEG data evaluated, while patients 

with epilepsy during a seizure episode had their seizure-related ictal (epileptic) EEG data examined. These three categories of 

patients' EEG data were examined. 100 single-channel EEG segments were recorded with a 128-channel amplifier setup at 173.61 

Hz for a total of 23.6 s in length for each of the data sets. After a visual assessment for artefacts (e.g. due to muscular activity or 

eye movement), these segments were selected and cut from the continuous multi-channel EEG recordings. The segments also 

required to meet a stationarity condition, which was detailed in detail in Andrzejak et al. [23]. Using a consistent electrode 

placement technique, the first set of EEG data relating to healthy people was obtained from surface EEG recordings made while 

the subjects were calm and awake. The second and third data sets were acquired from intracranial EEG recordings made during 

presurgical diagnosis from five distinct epileptic participants during seizure-free and seizure intervals, respectively. 

Temporal lobe epilepsy with the epileptogenic foci in hippocampal formations was diagnosed. Figure 1[23] depicts a schematic of 

how intracranial electrodes are to be placed. They implanted both depth electrodes and strip electrodes symmetrically into the 

hippocampal formations, which are located in the neocortex's anterior and posterior regions. All of the recording sites that showed 

ictal activity were used to select the EEG segments. A total of 300 EEG data segments were generated by treating each EEG 

segment as an unique EEG signal. 

 

Figure 1 Implanted electrodes in the brain 

The first five seconds of all three EEG data segments are displayed in Fig. 2 as an example. Only transient waveforms, such as 

isolated spikes, spike trains, sharp waves, or spike wave complexes, can be found in interictal EEG data; however, continuous 

discharges of polymorphic waveforms, spike and sharp wave complexes, rhythmic hypersynchrony, or electrocerebral inactivity, 

observed over a duration longer than the average duration of these abnormalities during interictal perfusion, can be found in ictal 

EEG data. 



Copyrights @Kalahari Journals Vol. 7 (Special Issue 5, April-May 2022) 

International Journal of Mechanical Engineering 

523 

 

Figure 2 Segments of EEG data: (A) Normal, (B) Interictal and (C) Ictal 

It is common practise to study the EEG signal in terms of the following five wide spectral subbands: delta (0–4Hz), theta (4–8Hz), 

alpha (8–16 Hz), beta (16–32 Hz), and gamma waves (32–64 Hz). As a result of aberrant brain states like epilepsy, the EEG signal 

energy shifts from lower frequency bands to higher frequency bands before and during a seizure. It is possible that alterations in 

the EEG signal that are not readily apparent in the full-spectrum signal can be increased when each of these five frequency sub-

bands is analysed separately because they provide more accurate information about the neuronal processes at the root of the 

problem. This study's key concept was that. The wavelet decomposition of the full-spectrum EEG signal, as well as the inverse 

wavelet transform, were used to extract most of the information from each sub band. For example, in Fig. 3, where only theta sub-

bands are shown, the contrast between normal and interictal EEG data is more obvious than in Fig. 2, where the identical signals 

but entire spectrum are provided. In contrast, the greater amplitudes of ictal EEG data make them easier to discern. 

Methods: 

Wavelet transforms and statistical pattern recognition are used to classify EEG signals for the detection of epileptic episodes. A 

wavelet transform of the EEG data is used to derive a collection of features, including energy, entropy and standard deviation of 

the wavelet coefficients and the EEG signal in various frequency bands of clinical interest, as the initial step in this procedure. 

Scatter matrices are used to reduce the dimension of the feature space in the second stage. Classifiers that are able to discriminate 

all three EEG signal groupings from each other are then developed, including two quadratic ones. In Fig. 4, you can see the 

algorithm's whole structure. 

Wavelets transform: 

When diagnosing serious neurological conditions such as epilepsy, abnormalities in EEG data are too subtle to be discovered by 

standard techniques, which typically turn primarily qualitative diagnostic criteria into a more objective quantitative signal feature 

classification problem. The autocorrelation function, time domain features, frequency domain features, time frequency analysis, 

nonlinear time series analysis, and the wavelet transform have all been used to analyse EEG signals in order to detect epileptic 

convulsions. Wavelet transform, on the other hand, has emerged as the best method for obtaining EEG signal characteristics. As a 

result, EEG signals were subjected to the wavelet transform in order to extract useful information. 

There are several uses for the wavelet transform, which is a linear time-frequency transform, including investigation of transient 

or non-stationary phenomena, as well as the reduction of noise. A class of functions, it has the capacity to localise information in 

both time and frequency. It is because of this that the wavelet transform has been frequently used in biological signal processing. 



Copyrights @Kalahari Journals Vol. 7 (Special Issue 5, April-May 2022) 

International Journal of Mechanical Engineering 

524 

Decomposing a given signal x(t) into increasingly finer details using two sets of basis functions, wavelets and scaling functions, is 

known as discrete wavelet analysis. 

 

 

The wavelet approximation and detail coefficients are denoted by aj(k) and dj(k), respectively. The DWT divides the frequency 

axis into dyadic intervals when the bandwidth length drops exponentially at lower frequencies. DWT is generalised into the 

wavelet packet (WP) transform, which decomposes data in both directions (lower and higher frequencies). The general 

decomposition is more flexible than the discrete wavelet decomposition in signal analysis. Decomposition levels (scales) and 

frequency bands are used to identify each node in the WP tree. An efficient signal analysis method is provided by the wavelet 

transform's adaptive time-scale representation and decomposition of a signal into different frequency sub-bands[36]. It is possible 

to rebuild the signal and study its time-domain characteristics in each of the privy-derived subbands using wavelet coefficients 

generated following a wavelet transform. 

Reduction of feature space: 

The reduction matrix A can be determined in a number of distinct ways utilising various methods. Among these, the Karhunen–

Loeve Expansion method[38], which, depending on the field of application, is sometimes known as principal component analysis,  

is the most frequently used (PCA). By analysing a covariance matrix, the objective of these methods is to discover the direction in 

which the random vector's scattering is highest. It is thought that this direction is the most informative and that, in the case of 

dimension reduction, it should be maintained because it conveys the most information. Nonetheless, such an approach is not 

always suitable for certain applications, such as the one being presented here. Figure 5 depicts the instances of a random two-

dimensional vector. Based on the obtained eigenvectors and eigenvalues, the Karhunen–Loeve Expansion approach would 

determine the principal components z 1 and z. Since the eigenvalue that corresponds to the component z 2 is greater than the 

corresponding value of the component z 1, the dimension of the component z2 would be sacrificed and z1 would be kept 

following dimension reduction. 

Nonetheless, the samples depicted in Figure 5 form two clusters that represent measurement data collected under different settings 

and belong to two distinct classes. If dimension reduction is merely a part of a broader process whose objective is the ultimate 

classification of measurements, then dimension reduction must address the separability of the categories that result from 

reduction. Figure 5 demonstrates unmistakably that it is preferable to retain another principal component, z, even though its 

eigenvalue is somewhat lower, because the projection of the original vectors onto the axis z2 will result in no overlap of matching 

probability density functions. In this manner, it is possible to accomplish a good categorization even in a little space. 

 

Where E is the expectation operator in mathematics. In reality, however, because the related joint probability density functions are 

typically unknown, these mathematical expectations are frequently estimated by sample estimation. 

 

It is also feasible to predict a priori probabilities of specific classes occurring within the data set. 
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On the basis of these estimates, the scatter matrices inside class S w and between classes Sb are created as follows: 

 

Within statistical discriminant analysis, within-class and between-class scatter matrices are utilised to determine class separability 

requirements. A within-class scatter matrix represents the scatter of samples around their respective class anticipated vectors, 

whereas a between-class scatter matrix represents the scatter of expected vectors around the mixed mean. The components of the 

within-class matrix should be as tiny as possible, whereas the elements of the between-class matrix should be as large as possible, 

if the members of various classes are distinguishable and no mixing occurs. There are various ways to satisfy these two needs. In 

this study, the following criterion is adopted: 

 

 

 

 

An index of informativity could be used for l(m), given its importance. It is defined that the informativity index spans from 0% for 

m1/4 n to 100% for m1/4n. Using this index, it is possible to measure the amount to which information was saved after a 

dimension reduction. Dimension reduction outcomes with an informativity index more than or equal to 85% are generally 

considered satisfactory, as was the case in this instance. 

 

CONCLUSIONS: 

EEG data categorization was given in this study using a wavelet transform and statistical pattern recognition-based method that 

can objectively determine the type of EEG data processed and consequently a patient's brain state. The algorithm's main 

advantages include: (a) the ability of the algorithm to run robustly in a clinical setting with noisy EEG; (b) feature extractions with 

highly meaningful wavelet transform because hidden EEG information can be revealed and the noise effort reduced as certain data 

under some scales are omitted; (c) simplicity and low computational cost guaranteeing real clinical application; (d) very good 

sensitivity and specificity as well as an overall clas This means that the suggested approach is applicable in clinical settings for the 

classification of EEG signals and the detection of seizures. 

Additional improvements can be made to the suggested algorithm, despite the overall classification accuracy being relatively 

good. Nonlinear series analysis (i.e., chaos analysis) of EEG data can be used to add extra features to the feature vector. Choosing 

more advanced pattern recognition algorithms results in a more complicated but also more accurate classification procedure. This 

is the other option. In addition, long-term continuous EEG recordings should be used to test the algorithm's ability to detect online 

seizures, as well as other EEG changes (e.g., those generated by cognitive tasks). 
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