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Abstract - For a connected graph G = (V, E), the square
free detour distance Dy s (1, V) is the length of a longest

u — v square free path in G, where u and v are the
vertices of G. A U — v square free path of length
Dof(u,v) is called the u — v square free detour. In
this article, we investigate the results on the square free
detour number of standard graphs and special graphs.
The relationship between the detour number and the
square free detour number is exhibited. We also show
that for any three integersa,andywith3 <a < B <v,
there exists a connected graph G such that dn(G) =
o, dng(G) = Band dm(G) =v.

Keywords - Detour number, detour monophonic number,
Square free detour basis, Square free detour
number.

1. INTRODUCTION

In a graph G = (V,E) of ordern, the distance D(u,v) is
known as the length of the longest u — v path for vertices
uand v of G. It is said to be an u — v detour and denoted by
D(u,v). Avertex w € V(G) lies in anu — v path P ifw is
an internal vertex of P distinct from u and v. For any vertex
uofG, the detour eccentricity of u isep(u)=
max{D(u,v):v € V}. If ep(uw) = D(u,v), then v is an
eccentric vertex of u. The detour diameter and detour radius
are denoted and defined as diampG = max{ep(u):u € V}
and radpG = minfep(u):u € V}.

A vertex set S in G is called a detour set if each vertex of G
lies in an u — v detour such that u,v € S. The minimum
cardinality of a detour set S is said to be the detour number
dn(G). Any detour set with cardinality dn(G) is said to be
a detour basis. The geodetic number g(G) based on the
shortest path and the detour number dn(G) based on the
longest path were defined by Chartrand et al.[1]-[5] and
developed by number of authors [10]-[12]. The concept of
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the detour monophonic number dm(G), based on the detour
chordless path was introduced by Titus et. al. [8].

The new concept of triangle free detour number and its
parameters were studied by Sethu Ramalingam and
Athisayanathan [7], [9]. The analogous concept of square free
detour distance was studied by Priscilla Pacifica [6]. In this
study, we introduce the concept based on square free detour
distance called square free detour number of graphs and
investigate the square free detour number for some classes of
graphs.

Ina connected graph G a path P is called a u - v square free
path if no four vertices of P induce a square where u,v € G.
The square free detour distance Dy (u, v) is the length of the
longest u — v square free path in G. An u — v path of length
Doy (u, v) is called an u — v square free detour.

Throughout this article we consider a graph G to be a non-
trivial, finite, simple and connected graph of order n.

2. SQUARE FREE DETOUR NUMBER OF A GRAPH

A set S € V(G) is said to be a square free detour set of a
connected graph G if every vertex of G lies on a square free
detour joining a pair of vertices of S. The minimum
cardinality of square free detour sets of G is called the square
free detour number dngf(G) of G. A square free detour set of
cardinality dny(G) is a square free detour basis of G.

Example 2.2 We picture a graph G, in Figure 1, in which
S, = {v,,v,}of Visasquare free detour basis of G, and so
dngr(Gy) = 2. The sets S, = {v,,ve}, S3={v3, v}, Sy =
{v,,v5}, Ss = {vy, v} and S = {v3, vs} are also the square
free detour bases for the graph G. Hence we notice that there
can be many square free detour bases for a graph. Moreover,
detour number and square free detour number are same for a
graph depicted in Figure 1.
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FIGURE 1: G:

Remark 2.3 The detour number, the detour monophonic
number and the square free detour number of the graph G are
different. For the graph G, given in Figure 2, S; = {a,c}isa
detour basis of G,, S, = {a, g, h} is a square free detour basis
and S; ={a,d, e, h} is a detour monophonic basis of G,.
Therefore, dn(G,) = 2, dm(G,) = 4 and dny;(G,) = 3.

a
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g h
FIGURE 2: G2

Theorem 2.4
dngs(G) < n.
Proof. Since a square free detour set requires minimum of
two vertices, dngf(G) = 2. Moreover, V(G) is a square free
detour set for a graph G and so dngr(G) < n. Hence 2 <
dngs(G) < mn.

For a connected graph G of order n,2 <

Remark 2.5 For any complete graph K,,, dn,(G) = 2 and
for the path of order 2, dn(G) = n. Hence the bounds given
in Theorem 2.4 hold sharp. Also, the bounds given in
Theorem 2.4 hold strict for the graph depicted in Figure 1.

Theorem 2.6 Let G be a non-trivial graph. Then

(i) Every end-vertex of a non-trivial graph G
belongs to every square free detour set of G.
(i) If the set of all end-vertices of G is a square free

detour set, then it is the unique square free
detour basis of G.

Q) Proof. LetS be a square free detour set of G. Let v
be an end-vertex of G. Assume v € S. Then v is an
internal vertex inan x — y square free detour path for
some x,y € S. This contradicts that v is an end-
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vertex. Therefore, v € S. Thus v is contained in
every detour set of G.

Let S be the square free detour basis of G. If S’
consists of all the end-vertices of G, then by (i)
dngr(G) = |S| = |S']. I1f S is a square free detour
set of G, then dnyr(G) < |S'|. Hence dngf(G) =
|S’]. Then S = S’ is the square free detour basis of

G. Thus the uniqueness of the square free detour basis
containing end-vertices is proved.

(i)

Corollary 2.7 For any tree T with [ end-vertices, dng¢(T) =
L.

Corollary 2.8 If G is a connected graph with [ end-vertices,
then {2, 1} < dngr(G) < n.

Theorem 2.9 If S is a square free detour set of G, then for any
cut-vertex y of G, every component of G - y consists of a
vertex of S.

Proof. Let S be a square free detour set and F be a component
of G — y. Suppose that F does not contain any element of S.
Let x € F. Let u,v € S such that x lies on any u - v square
free detour path P* in G for two vertices u and v different
from x. Then the u - x subpath Q" of P*and x - v subpath
R’ of P* contain the cut-vertex y of G, which implies P* is
not a path. This contradicts our assumption. Hence the proof.

Corollary 2.10 Let y be a cut-vertex in G and let the number
of components of G — y be t. Then dnyf(G) = t.

Corollary 2.11 Let y be a cut-vertex in G. Then a vertex of
the square free detour set S belongs to every branch at y.

Theorem 2.12 If S is a square free detour basis of G, then
no cut-vertex of G belongs to S.

Proof. Consider a square free detour basis S of G and a cut-
vertex y such that y € S. Then every component of G — y
contains a vertex of S, by Theorem 2.9. Suppose F and H are
two components of G — y. Then y is an internal vertex of
all u —v square free detour paths, where u € F and v € H.
Let S* =S — {y}. Clearly, S is a square free detour set of G.
Hence |S*| < |S| which contradicts that S is a square free
detour basis of G.

Theorem 2.13 For a non-complete connected graph G of
order n with vertex connectivity k, dngf(G) < n — k.
Proof. Let G be a non-complete connected graph. Then 1 <
k<n-—2 Let A" ={aya,as, ..., a,} be a vertex cut of
G. Suppose Fy, F,, Fs,..., F.(t = 2) are the components of
G—A"and S =V — A'. Then every vertex of A is adjacent
to at least one vertex of G;(1 <i < t).By Theorem 2.12,
a; € S(1<j<k)andsodng(G) < n—k.

Remark 2.14 For the cycle graph C,, xk = 2. Hence
dngr(G) =n — k. Thus the bounds given in Theorem 2.13
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hold sharp. Also, For the graph G, depicted in Figure 2 with
n =8, k =1, dngr(G) < n— k. Thus the bounds given in
Theorem 2.13 hold strict.

We denote the union of the m disjoint copies of G by
mG(m = 1).

Theorem 2.15 If G = (K,, UK, U..UK,, UmK;) +
x isablock graph ofordern > 4withm > 1 andn, + n, +
“++n,+m = n-1,then dny(G) =t +m.

Proof. Consider G = ( Ky, U Ky, U ..U Ky, UmK;) +,a
block graph. Let x4, x5, x5, ..., x,,, be the end-vertices of G and
S be a square free detour set of G. Then by Theorem 2.6, x; €
S(1 <j <m) and by Theorem 2.9, S consists of an element
from each Knj(l < j < t). Let exactly one element y; from
each component Ky, be chosen such that y; € S(1 < j < t).
Since every square free detour joining a pair of vertices of S
contains the element y of G and by Theorem 2.14, y ¢ S.
Hence S is the square free detour set with ¢t + m vertices and
dnge(G) =t +m.

Theorem 2.16 Let G = (V, E) be a complete graph
K,(n = 2). Then a set of vertices S is a square free detour
basis of G if and only if S contains any two adjacent vertices
of G.
Proof. Let G = K,, be a complete graph of order n(n = 2)
and V(G) = { xq, %2, X3, ..., X, }. Let S = {x4, x,} be a set of
two vertices of G. Letx; € V.

Case 1: Letx; € S. Thenx; (3 < i < n) lies on a square

free detour x,x;x, of length 2.

Case 2: Letx; € Sand say x; = x,. Then x; lies on a square
free detour x; x; x, of length 2 where x; & S. Thus every
vertex x; of V lies on a square free detour in G and so S is a
square free detour set of G. Also, |S| = 2. Therefore, S is a
square free detour basis of G.

Conversely, let S be a square free detour basis of G.
Let S*be any set containing two vertices that are adjacent in
G. Then by previous discussion of this theorem, $* is a square
free detour basis of G. Hence |S| = |S*| =2. Thus
S contains any two adjacent vertices of G.

Theorem 2.17 Let G = (V, E) be acomplete bipartite graph
K, n,(2 < ny < ny) with partitions X and Y where |X| =
ny, |Y| = n,. Then a set S € V is a square free detour basis
of G ifand only if S = X.

Proof. LetG = K, ,,(2<n; <n,)be a complete
bipartite graph with bipartite sets X and Y. Let X =
{xl,xz,x3, ....,xnl} and Y = {y1,¥2,¥3, -, Vn,}- LEL S =
Xandvev.

Case 1: LetveX. Letv=x,(1<k<n,). Thenv=x;
lies on the square free detour v = x;x;x,,, for some distinct k
andm (1 <k,m <ny, 1 <1< ny), where Dgp(xy, x,) =
2.
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Case2: LetveY.Letv=y,(1 <j<n). Thenv =y, lies
on the square free detour v = x, y; x,,(1 <km<n,, 1 <
I < ny, k #m)suchthat Dyp(xy, x,,) = 2.

Hence every vertex of V lies on the square free detour. Thus
S is a square free detour set of G. Moreover, |S| = n, and so
S is a square free detour basis of G.

Conversely, let S be a square free detour basis of G. Let S’ ©
V and S’ contain the elements from both X and Y. Let x € X
and y€Y.Then any x-y detour induces a square.
Therefore, S’ cannot contain the elements of both X and Y.
Hence S’ must consist of the vertices of X or that of Y. Since
Y| = |X]|, S’ consists of n, vertices of X only. Then by the
previous discussion of this theorem, S’ is a square free detour
basis of G. Therefore, |S| =|S'| =n,and S = X.

Theorem 2.18 Let G = (V, E) beacycle C, of order n(n =
3;n = odd). Thenaset S €V is a square free detour basis
of G if and only if S contains any two vertices adjacent to
each other in G.

Proof. Let G = Cy: xq, %5, X3, ..., xp, X1 be a cycle of order
nn=3;n= odd). LetS ={x;,x,1:1<i<n-—1}bea
set of two adjacent vertices of G. Then all the vertices of G lie
on the square free detour x; — x;,, of lengthn — 1 and so S
is a square free detour set of G. Moreover, |S| = 2. Hence S
is a square free detour basis of G.

Now assume that S is a square free detour basis of G.
Suppose S*is a set consists of two vertices adjacent in G. Then
by previous discussion of this theorem, S* is a square free
detour basis of G. Therefore, |S| = |S*|=2. Thus S
contains any two vertices adjacent in G.

Theorem 2.19 Let G = (V,E) be a cycle n(n=6;n =
even). Thenaset S C V is a square free detour basis of G if
and only if S consists of two vertices either adjacent or
antipodal to each other in G.

Proof. Suppose G = C,,: x4, X5, X3, ..., Xn, X1 IS @Nn even cycle
of ordern = 6.

Case 1: Consider S = {x;,x, |1 < j < n; x; € N(x;)}, aset
of two vertices that are adjacent in G. Then all the vertices
of G lie on the square free detour x; — x,, of length n — 1.

Case 2: Suppose S = {x;,x; n|1<i< g} is a set of two
2

antipodal vertices of G. Then there exist two square free
detours x; — x, » and x; ,n — x; of Iengthg . Obviously, each
2 2

xj(1 <j <n) of V(G) lies on any one of these square free
detours. Thus S is a square free detour set of G. Since |S| =
2,S is a square free detour base of G.

Now assume in a graph G, S is a square free detour basis.
Let S* be any set of two vertices that are either adjacent or
antipodal in G. By previous discussion of this theorem, S*is
a square free detour basis of G. Hence |S| = |S*| = 2. Thus
S contains two vertices either adjacent or antipodal in G.
Theorem 2.20 Let G be a cycle C,. Thenaset SCV is a
square free detour basis of G if and only if S contains any two
vertices antipodal to each other in G.
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Proof. LetG =K, orC,, where V(G) = {xq, %5, X3, %4}.
Suppose S = {x, x.} is the set of two vertices antipodal in G
with Dyf(xs,x¢) = 2. Then each vertex of G lies on x;—x,
square free detour. Thus S is a square free detour set of G.
Moreover |S| = 2. Therefore, S is a square free detour basis
of G.

Assume that S is a square free detour basis of G. Let S* be a
set of any two vertices that are antipodal in G. By previous
discussion of this theorem, S* is a square free detour basis
of G. Therefore, |S| =1|S*| =2 and S contains any two
antipodal vertices to each other in G.

Theorem 2.21 Let G = (V,E) be a wheel W, =K; +
Cp_1(n = 11 and n is odd). Then a set S € V is a square
free detour basis of G if and only if S contains any two
vertices either adjacent or antipodal in C,,_, and the hub.
Proof. Let G be a wheel W,, = K; + C,,_;(n =11 and n is
odd). Let V(K;) = {x,}. Let S* = {y, z} be the set of two
vertices of C,_; such that y and z are either adjacent or
antipodal on C,,_;. Then by Theorem 2.19, all the vertices of
G except the hub lie ona y — z square free detour. Thus S =
S* U { x,}is a square free detour set of G. Thus |S| = 3 and
so S is a square free detour basis of G.

Now consider S is a square free detour basis of G. Assume
that S* be any set contain the hub with two vertices either
adjacent or antipodal on C,,_. By previous discussion of this
theorem, S* is a square free detour basis of G. Thus |S| =

|S#] = 3 and so S contains any two vertices that are either
adjacent or antipodal in C,,_; and the hub.

Theorem 2.22 LetG be a wheel W, =K, + C,_;(n=
6,n = 10and n is even). Then a set S € V is a square free
detour basis of G if and only if S contains any two vertices
that are adjacent in C,,_; and the hub.
Proof. Let G be a wheel W,, = K, + C,,_;(n=10and n is
even). Let V(K;) = {xq}. Let S; = {u, v} be the set of two
vertices of C,_, such that u and v are either adjacent or
antipodal on C,,_;. Then by Theorem 2.18, all the vertices
except the hub of G lie on the u — v square free detour. Thus
S =35, U{x,}is a square free detour set of G. Moreover,
|S| = 3. Therefore, S is a square free detour basis of G.
Conversely, let S be a square free detour basis of G.
Suppose S* be a set containing any two vertices that are
adjacent on C,,_; and a hub. By previous discussion of this
theorem, S* is a square free detour basis of G. Therefore,
[S| = |S*| = 3. Thus S contains any two vertices that are
adjacent in C,,_, and the hub of /.

Theorem 2.23 Let G = (V,E) be a wheel W, =K; +
Cn-1(n =4,5,7,8,9). Then a set of vertices S is a square free
detour set of G if and only if S contains any two vertices u
and v such that

(i u and v are adjacent whenn = 4
(i) u and v are antipodal whenn = 5
(iii) DDf(u, v) = 4whenn = 7,8,9.
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Proof. (i) Let G = W, be the wheel with central vertex x,.
Since W, = K,, the result follows from Theorem 2.20.
(ii) Let G = W5, where x,, is the central vertex. Suppose S =
{u,v} is the set of two vertices antipodal on C, with
Dyr(u, v) = 2. Then by Theorem 2.20, all the vertices of C,
lie on a u — v square free detour. Moreover, the central
vertex of W5 also lies on u, x,, v square free detour. Thus S
is a square free detour set of G. Since |S| = 2, S is a square
free detour basis of W.

Assume that S is a square free detour basis of W;. Let
S* be a set of any two vertices that are antipodal on C,. Then
from the previous discussion S* is a square free detour basis
of Ws. Therefore, |S| = |S*| = 2 and so S contains any two
antipodal vertices of C,.
(iii) Let G = W, (6 < n < 9), where x, is the central vertex.
Suppose S = {u, v} is the set of two vertices on C,,_; such
that Dy (u, v) = 4. Then all the vertices of G lie onu — v
square free detour. Thus S is a square free detour set of W,.
Since |S| = 2,5 is a square free detour basis of W, (n =
7,8,9).

Assume that S is a square free detour basis of W, (n =
7,8,9). Consider S* is a set of any two vertices that are at
square free detour distance 4 on C,,_,. By previous discussion
of this theorem, S* is a square free detour basis of W, (n =
7,8,9). Therefore, |S| =|S*| =2 and S contains any two
vertices on Cy,_; With Dy = 4.

Theorem 224 Let G=(V, E) be a Windmill
m(m)consisting of m copies of K,,(m = 2) with a vertex x
in common. Then the set of vertices S is a square free detour
basis of G if and only if S consists of m vertices, exactly one
vertex adjacent to x from each copy of K,,.

Proof. Suppose G = W™ is a Windmill containing m
copies of K,,(n = 2) with the common vertex x and of order
mn—1+1 LetS={xyll<k<m 1<i<n-1}
be a set of m vertices adjacent to x, exactly one from m copies
of K,Sm). Then every vertex of G lies on any square free detour
Xg— Xl Si<m-—-1,1<l<n-1)of length 2.
Thus |S| = m and S is a square free detour basis of W™ .

Now let S be a square free detour basis of W;fm).
Suppose S* is a set of m vertices of G, taken exactly one
vertex from m copies of K,,. By previous discussion of this

theorem, S* is a square free detour basis of Wn(m). Thus |S| =
|S*| =m and S contains exactly one vertex from each

kP <i<m)of WM™,

Theorem 2.25 Let G = (V,E) be a Dutch Windmill
D,(lm)(n >3,m > 2) consisting of m copies C, with a
common vertex x. Then a set of vertices S is a square free
detour basis of G if and only if S contains m vertices exactly

one from each copy of C,(n = 3) in D{™.
Proof. Let G = D,ﬁm) be a Dutch Windmill graph of order
m(n — 1) + 1 consisting of m copies of C,,(n = 3) with the
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common vertex x. Let V(D,(lm)) ={xxyll<k<m 1<
I <n—1} Let aset S consist of m vertices of DS™. Then
we have three cases.

Case 1: Consider n >3 and n is odd. Suppose S =
{xxj]1<k<m;l=10r (n—1)}is a set of m adjacent
vertices of x, exactly one vertex from each copy of C,,. Then
all the vertices of G lie on the square free detour joining two
vertices of S, which admits x as the central vertex with Dy =
2(n — 1) and Dyf(x, xi;) = n — 1. Since x is a cut-vertex of
G by Theorem 2.9, every component of G — x contains a
vertex of S and so S is a square free detour set of G.

Case 2: Consider n =6 and n is even. Suppose S =
{xj|1<i<smj=10r = or (n—1)} contains either m
vertices that are adjacent or antipodal to x. Then every vertex
of G lies on Xij — X(k+1)j (1 <k<m-—- 1,] =
1lor 32 or (n — 1)) square free detour. Consider u = x,; and

v = X(41)j- We have three subcases.

Subcase 1: Let S contain the vertices adjacent to x and let
j=1lor(n—1). Then Dys(u,x) = Dyr(v,x) =j and all
the vertices of D,(lm) lie onau — v square free detour of length
2(n — 1). Thus S is a square free detour set of D,(lm).
Subcase 2: Let S contain the vertices antipodal to x and let

n

j=7 Then Dyf(u, x) = Dyp(v,x) = j and all the vertices of

D,(lm) lie on a u — v square free detour of length n. Therefore,
S is a square free detour set of D,(lm).

Subcase 3: Let S contain the vertices either adjacent or
antipodal to x. Without loss of generality consider u =
Xkn-1) and v = X (ka1 Then  Dye(u,x) =n-—

2

1, Dys(v,x) =§ and all vertices of D,(Im) lieonau—v
square free detour of length 3"2—_2 Thus S is a square free

detour set of D{™.

Case 3: Letn = 4 and S consist of m antipodal vertices of x,
from each copy of Ci‘): Xi1, Xiz) Xiz» Xigr Xi1 (1 < 1 < m).
Then every vertex of G lies on x,, — X(k41)2(1 <k <m—
1) square free detour of length4 where Dgf(x,xy,) =
DDf(x, x(k+1)2) = 2. Thus S is a square free detour set of
D™,

From all the above three cases, we observe that |S| = m and
S is a square free detour basis of G.

Assume that S is a square free detour basis of D,(lm). Consider
S* is any set of m vertices adjacent to the common vertex x,
exactly one vertex from each copy of C,, of G when n is odd
(n = 3), m antipodal vertices of x when n is 4 and either m
adjacent vertices or antipodal vertices of x when n is even
(n = 6). Then by previous discussion of this theorem, S* is
a square free detour basis of D,(lm). Thus |S| = |S*] = m and
S contains m vertices that are adjacent or antipodal to x or
both adjacent or antipodal to x according to n is odd, n is 4
and n is even, exactly one element from each copy of C,,(n >

3)in D{™.
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Corollary 2.26
(@) Foratree T with [ end-vertices, dngs(T) = 1
(b) For acomplete graph Ky, dngs(Ky,) = 2
(c) For a complete bipartite graph K,

nz), dnmf(Knl,nz) =ng
(d) Foracycle Cp(n = 3), dngr(Cy) = 2.
(e) For a wheel W, =K;+C,_1,

2 if n=4,5,7.89
{ 3ifn=6n=>10

1M (2 < nq <

dnmf(Wn) =

(f) For a Windmill W™, dng(W,™) = m
(g) Fora Dutch Windmill D{™, dn;(DS™) = m.
Proof. (a) This follows from Corollary 2.7
(b) This follows from Theorems 2.16 and 2.20
(c) This follows from Theorem 2.17
(d) This follows from Theorems 2.18, 2.19 and 2.20
(e) This follows from Theorems 2.21, 2.22 and 2.23
(f) This follows from Theorems 2.24
(g) This follows from Theorem 2.25.

Theorem 2.27 For each pair of integers p and n with 2 <
p < n, there exists a connected graph G of order n with

dnnf(G) =p.

Proof. Suppose that G is a connected graph of order n.
Case 1: p =n = 2. Itistrivially true for complete graph K,
and path P,.

Case 2: 2 < p < n. Assume that P is a path of order n —
p + 2. Then the graph G obtained from P by adding p —
2 new vertices to P and joining them to any cut-vertex of P
is a tree of order n and so by corollary 2.7, dn;(G) = p.

Theorem 2. 28 For a connected graph G = (V, E) of order n,
2 < dn(G) < dngs(G) < dm(G) < n.

Proof.

Case 1: Suppose G = T isatree. Then T is acyclic and every
square free detour set is a detour set and a detour monophonic
set. Hence dn(G) = dngr(G) = dm(G).

Case 2: Assume G = C is a cyclic graph and C* is a cycle
in G .Suppose xy isachordof G. Letaand b be two vertices
different fromx and yin C* such that these four vertices
induce a square. Then a vertex a or b must lie in a square free
detour set. Hence dn(C) < dngf(C) = dm(G). If no four
vertices of C*induce a square, then dngr(G) < dm(G).
Since every square free detour set is a detour set dn(C) <
dngf(C). Also, since C is connected dm(C) < n.Hence 2 <
dn(C) < dngf(C) < dm(C) < n.

Remark 2.29 The bounds given in Theorem 2. 29 hold sharp
for the path P, dn(P,) = dnge(P;) = dm(P,) =
2. Moreover, the inequalities given in Theorem 2. 29 hold
strict for the graph G, given in Figure 2 with order n =
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8,dn(G,) = 2,dngr(G;) =3 and dm(G,) = 4. Hence
dn(G,) < dngp(Gy) < dm(G,) <n.

Theorem 2.30 For any three integers «, 8 and y with 3 <
a < B <y, there exists a connected graph G such that
dn(G) = a,dnge(G) = fand dm(G) =y.

Proof. Let G; be a graph obtained from the path
Ps: xq,x5,%x5,x,,xs Of order 5 by the addition of @ — 1 new
vertices yi,¥; ..,Yq—1 and by joining each y, (1< a <
a —1) to the vertex xs in Ps. Suppose G, is the graph
generated from G, by addition of 2(8 — a) new vertices
D1, P2, - Dp—a @A qq,qy, ..., qp-gand by joining each
pp(1 < b < f — a) to the vertex x, in Ps and joining each
vertex qp(1<b < B —a) to the vertex x; in Ps;. Let
P51, s, t. (1 <c <y —p) bethe y — B copies of P;. Let
G5 be obtained from the graph G, by adding new vertices
T, T2, s Ty » 51,52, e s Sy—pg and ti, by s ty—p and
joining each vertex .(1 < ¢ <y — ) to the vertex x5 in Ps
and joining each vertex t. (1 < ¢ <y — B) to the vertex x,
in Pg. The required graph G = G5 is a connected graph of
order 3y — B — a + 4 and is shown in Figure 3.

Ppa 9.

/ . o \\
Py qy A\
/ \
L 2
X Xy X3\

FIGURE 3: G

By Theorem 2.6, it can be easily verified that S,
{x1, Y1, ¥2¥3, .., Ya—1} IS a detour basis of G, S,
S1U {p1,p2 -, Pp-a} is a square free detour basis and
S3= S5, U {ty, t5, ..., t,_p } is a detour monophonic basis.
Hence dn(G) = a,dngr(G) = fand dm(G) =yand a <
B <vy.

3. CONCLUSION

In this article, we determined the square free detour number
of some standard graphs and special graphs. The relationship
between the square free detour number and detour number
was discussed. Derivation of similar results in this context for
some other classes of graphs is an open area of research.
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