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Abstract - For a connected graph 𝑮 = (𝑽, 𝑬), the square 

free detour distance 𝑫□𝒇(𝒖, 𝒗) is the length of a longest 

𝒖 − 𝒗  square free path in 𝑮, where 𝒖 and 𝒗 are the 

vertices of 𝑮. A 𝒖 − 𝒗  square free path of length 

𝑫□𝒇(𝒖, 𝒗) is called the 𝒖 − 𝒗   square free detour. In 

this article, we investigate the results on the square free 

detour number of standard graphs and special graphs. 

The relationship between the detour number and the 

square free detour number is exhibited. We also show 

that for any three integers 𝛂, 𝛃 and 𝛄 with 𝟑 ≤ 𝛂 ≤ 𝛃 ≤ 𝛄, 
there exists a connected graph 𝐆 such that 𝐝𝐧(𝐆) =
𝛂, 𝐝𝐧□𝐟(𝐆) = 𝛃 and 𝐝𝐦(𝐆) = 𝛄. 
 

Keywords - Detour number, detour monophonic number, 

Square free detour basis, Square free detour 
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1. INTRODUCTION 

In a graph 𝐺 = (𝑉, 𝐸) of order 𝑛, the distance 𝐷(𝑢, 𝑣) is 

known as the length of the longest 𝑢 − 𝑣 path for vertices 

𝑢 and 𝑣 of 𝐺.  It is said to be an 𝑢 − 𝑣 detour and denoted by 

𝐷(𝑢, 𝑣). A vertex 𝑤 ∈ 𝑉(𝐺) lies in an 𝑢 − 𝑣 path 𝑃 if 𝑤 is 

an internal vertex of 𝑃 distinct from u and 𝑣.  For any vertex 

𝑢 of 𝐺, the detour eccentricity of 𝑢 is 𝑒𝐷(𝑢) =
𝑚𝑎𝑥{𝐷(𝑢, 𝑣): 𝑣 ∈  𝑉}.  If 𝑒𝐷(𝑢) = 𝐷(𝑢, 𝑣), then 𝑣 is an 

eccentric vertex of 𝑢.  The detour diameter and detour radius 

are denoted and defined as 𝑑𝑖𝑎𝑚𝐷𝐺 = 𝑚𝑎𝑥{𝑒𝐷(𝑢): 𝑢 ∈ 𝑉} 

and 𝑟𝑎𝑑𝐷𝐺 = 𝑚𝑖𝑛{𝑒𝐷(𝑢): 𝑢 ∈ 𝑉}. 
 

A vertex set 𝑆 in 𝐺 is called a detour set if each vertex of 𝐺 

lies in an 𝑢 − 𝑣 detour such that 𝑢, 𝑣 ∈ 𝑆. The minimum 

cardinality of a detour set 𝑆 is said to be the detour number 

𝑑𝑛(𝐺).  Any detour set with cardinality 𝑑𝑛(𝐺) is said to be 

a detour basis. The geodetic number 𝑔(𝐺) based on the 

shortest path and the detour number 𝑑𝑛(𝐺) based on the 

longest path were defined by Chartrand et al.[1]-[5] and 

developed by number of authors [10]-[12]. The concept of 

the detour monophonic number 𝑑𝑚(𝐺), based on the detour 

chordless path was introduced by Titus et. al. [8]. 

 

The new concept of triangle free detour number and its 

parameters were studied by Sethu Ramalingam and 

Athisayanathan [7], [9]. The analogous concept of square free 

detour distance was studied by Priscilla Pacifica [6]. In this 

study, we introduce the concept based on square free detour 

distance called square free detour number of graphs and 

investigate the square free detour number for some classes of 

graphs.  

 

 In a connected graph 𝐺 a path 𝑃 is called a 𝑢 –  𝑣 square free 

path if no four vertices of P induce a square where 𝑢, 𝑣 ∈ 𝐺. 

The square free detour distance 𝐷□𝑓(𝑢, 𝑣) is the length of the 

longest 𝑢 − 𝑣 square free path in 𝐺. An 𝑢 − 𝑣 path of length 

𝐷□𝑓(𝑢, 𝑣) is called an 𝑢 − 𝑣 square free detour.  

 

Throughout this article we consider a graph 𝐺 to be a non-

trivial, finite, simple and connected graph of order 𝑛. 
 

2. SQUARE FREE DETOUR NUMBER OF A GRAPH  

A set 𝑆 ⊆ 𝑉(𝐺) is said to be a square free detour set of a 

connected graph 𝐺 if every vertex of 𝐺 lies on a square free 

detour joining a pair of vertices of 𝑆. The minimum 

cardinality of square free detour sets of 𝐺 is called the square 

free detour number 𝑑𝑛□𝑓(𝐺) of 𝐺. A square free detour set of 

cardinality 𝑑𝑛□𝑓(𝐺) is a square free detour basis of 𝐺.  

 

Example 2.2 We picture a graph 𝐺1 in Figure 1, in which 

𝑆1  =  {𝑣1, 𝑣4} of  𝑉 is a square free detour basis of 𝐺1 and so 

𝑑𝑛□𝑓(𝐺1) = 2. The sets 𝑆2  =  {𝑣2, 𝑣6},  𝑆3= {𝑣3, 𝑣4}, 𝑆4 =
{𝑣2, 𝑣5}, 𝑆5 = {𝑣1, 𝑣6} and 𝑆6 = {𝑣3, 𝑣5} are also the square 

free detour bases for the graph 𝐺1. Hence we notice that there 

can be many square free detour bases for a graph. Moreover, 

detour number and square free detour number are same for a 

graph depicted in Figure 1. 
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                                           FIGURE 1: G1 

 

Remark 2.3 The detour number, the detour monophonic 

number and the square free detour number of the graph 𝐺 are 

different. For the graph 𝐺2 given in Figure 2, 𝑆1 = {𝑎, 𝑐} is a 

detour basis of 𝐺2, 𝑆2 = {𝑎, 𝑔, ℎ} is a square free detour basis 

and 𝑆3 = {𝑎, 𝑑, 𝑒, ℎ} is a detour monophonic basis of 𝐺2. 

Therefore, 𝑑𝑛(𝐺1) = 2, 𝑑𝑚(𝐺2) =  4 and 𝑑𝑛□𝑓(𝐺2) = 3. 

 
                                       FIGURE 2: G2 

 

 

Theorem 2.4   For a connected graph 𝐺 of order 𝑛, 2 ≤
𝑑𝑛□𝑓(𝐺) ≤ 𝑛.   

Proof.  Since a square free detour set requires minimum of 

two vertices, 𝑑𝑛□𝑓(𝐺) ≥ 2. Moreover, 𝑉(𝐺) is a square free 

detour set for a graph 𝐺 and so 𝑑𝑛□𝑓(𝐺) ≤  𝑛.  Hence  2 ≤

𝑑𝑛□𝑓(𝐺) ≤ 𝑛.  

 

Remark 2.5 For any complete graph 𝐾𝑛 , 𝑑𝑛□𝑓(𝐺) =  2  and 

for the path of order 2, 𝑑𝑛□𝑓(𝐺) = 𝑛. Hence the bounds given 

in Theorem 2.4 hold sharp. Also, the bounds given in 

Theorem 2.4 hold strict for the graph depicted in Figure 1. 

 

Theorem 2.6 Let 𝐺 be a non-trivial graph. Then 

(i) Every end-vertex of a non-trivial graph 𝐺 

belongs to every square free detour set of 𝐺.  

(ii) If the set of all end-vertices of 𝐺 is a square free 

detour set, then it is the unique square free 

detour basis of 𝐺.    

(i) Proof.    Let 𝑆 be a square free detour set of 𝐺. Let 𝑣 

be an end-vertex of 𝐺. Assume 𝑣 ∉ S. Then 𝑣 is an 

internal vertex in an 𝑥 –  𝑦 square free detour path for 

some 𝑥, 𝑦 ∈ 𝑆. This contradicts that 𝑣 is an end-

vertex. Therefore, 𝑣 ∈ 𝑆. Thus 𝑣 is contained in 

every detour set of 𝐺.  

(ii)      Let 𝑆 be the square free detour basis of 𝐺. If 𝑆′ 
consists of all the end-vertices of 𝐺, then by (i) 

𝑑𝑛□𝑓(𝐺) = |𝑆| ≥ |𝑆′|. If 𝑆′ is a square free detour 

set of 𝐺, then 𝑑𝑛□𝑓(𝐺) ≤ |𝑆′|. Hence  𝑑𝑛□𝑓(𝐺) =
|𝑆′|. Then 𝑆 = 𝑆′ is the square free detour basis of 

𝐺. Thus the uniqueness of the square free detour basis 

containing end-vertices is proved. 

Corollary 2.7  For any tree 𝑇 with 𝑙 end-vertices, 𝑑𝑛□𝑓(𝑇) =

𝑙.  
Corollary 2.8 If 𝐺 is a connected graph with  𝑙 end-vertices, 

then {2, 𝑙} ≤ 𝑑𝑛□𝑓(𝐺) ≤ 𝑛.   

 

Theorem 2.9 If 𝑆 is a square free detour set of 𝐺, then for any 

cut-vertex 𝑦 of 𝐺, every component of 𝐺 –  𝑦 consists of a 

vertex of 𝑆. 

 

Proof.  Let 𝑆 be a square free detour set and 𝐹 be a component 

of 𝐺 − 𝑦. Suppose that 𝐹 does not contain any element of 𝑆. 

Let 𝑥 ∈ 𝐹. Let 𝑢, 𝑣 ∈ 𝑆 such that 𝑥 lies on any 𝑢 –  𝑣 square 

free detour path 𝑃∗ in 𝐺 for two vertices 𝑢 and 𝑣 different 

from 𝑥.  Then the 𝑢 –  𝑥 subpath Q′ of 𝑃∗and 𝑥 –  𝑣  subpath 

 𝑅′ of  𝑃∗ contain the cut-vertex 𝑦 of 𝐺, which implies 𝑃∗ is 

not a path.  This contradicts our assumption. Hence the proof.   
 

Corollary 2.10 Let 𝑦 be a cut-vertex in 𝐺 and let the number 

of components of 𝐺 − 𝑦 be 𝑡. Then 𝑑𝑛□𝑓(𝐺) ≥ 𝑡.  

 

Corollary 2.11 Let 𝑦 be a cut-vertex in 𝐺. Then a vertex of 

the square free detour set 𝑆 belongs to every branch at 𝑦. 
 

Theorem 2.12 If 𝑆 is a square free detour basis of 𝐺, then 

no cut-vertex of 𝐺 belongs to 𝑆.  

Proof. Consider a square free detour basis 𝑆 of 𝐺 and a cut-

vertex 𝑦 such that 𝑦 ∈ 𝑆. Then every component of 𝐺 − 𝑦 

contains a vertex of 𝑆, by Theorem 2.9. Suppose 𝐹 and 𝐻  are 

two components of 𝐺 −  𝑦. Then 𝑦 is an internal vertex of 

all 𝑢 −v square free detour paths, where 𝑢 ∈ 𝐹 and 𝑣 ∈ 𝐻. 

Let 𝑆∗ = 𝑆 − {𝑦}. Clearly, 𝑆∗ is a square free detour set of 𝐺. 

Hence |𝑆∗| <  |𝑆| which contradicts that S is a square free 

detour basis of 𝐺.   

 

Theorem 2.13 For a non-complete connected graph 𝐺 of 

order 𝑛 with vertex connectivity 𝜅, 𝑑𝑛□𝑓(𝐺) ≤ 𝑛 − 𝜅.  

Proof. Let 𝐺 be a non-complete connected graph. Then 1 ≤
 𝜅 ≤ 𝑛 − 2. Let 𝐴′ = { 𝑎1, 𝑎2, 𝑎3, … . , 𝑎𝜅} be a vertex cut of 

𝐺. Suppose 𝐹1, 𝐹2, 𝐹3,…, 𝐹𝑡(𝑡 ≥ 2) are the components of  

𝐺 − 𝐴′ and 𝑆 = 𝑉 − 𝐴′. Then every vertex of 𝐴′ is adjacent 

to at least one vertex of 𝐺𝑖(1 ≤ 𝑖 ≤ 𝑡). By Theorem 2.12, 

𝑎𝑗 ∉ S (1 ≤ 𝑗 ≤ 𝜅) and so 𝑑𝑛□𝑓(𝐺) ≤  𝑛 − 𝜅. 

 

Remark 2.14 For the cycle graph 𝐶4, 𝜅 = 2. Hence 

𝑑𝑛□𝑓(𝐺) = 𝑛 −  𝜅. Thus the bounds given in Theorem 2.13 
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hold sharp. Also, For the graph 𝐺2 depicted in Figure 2 with 

𝑛 = 8, 𝜅 = 1, 𝑑𝑛□𝑓(𝐺) < 𝑛 −  𝜅. Thus the bounds given in 

Theorem 2.13 hold strict. 

    We denote the union of the 𝑚 disjoint copies of 𝐺 by 

𝑚𝐺(𝑚 ≥ 1).  
 

Theorem 2.15 If  𝐺 = ( 𝐾𝑛1
∪ 𝐾𝑛2

∪ … ∪ 𝐾𝑛𝑡
∪ 𝑚𝐾1) +

𝑥  is a block graph of order 𝑛 ≥ 4 with 𝑚 ≥ 1  and 𝑛1 + 𝑛2 +
⋯ + 𝑛𝑟 + 𝑚 =  𝑛 –  1, then  𝑑𝑛□𝑓(𝐺) = 𝑡 + 𝑚. 

Proof.   Consider 𝐺 = ( 𝐾𝑛1
∪ 𝐾𝑛2

∪ … ∪ 𝐾𝑛𝑡
∪ 𝑚𝐾1) + 𝑦, a 

block graph. Let 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚 be the end-vertices of 𝐺 and 

𝑆 be a square free detour set of 𝐺. Then by Theorem 2.6, 𝑥𝑗 ∈

𝑆(1 ≤ 𝑗 ≤ 𝑚) and by Theorem 2.9, 𝑆 consists of an element 

from each 𝐾𝑛𝑗
(1 ≤ 𝑗 ≤ 𝑡). Let exactly one element 𝑦𝑗 from 

each component 𝐾𝑛𝑗
 be chosen such that 𝑦𝑗 ∈ 𝑆(1 ≤ 𝑗 ≤ 𝑡). 

Since every square free detour joining a pair of vertices of 𝑆 

contains the element 𝑦 of 𝐺 and by Theorem 2.14, 𝑦 ∉ S. 

Hence 𝑆 is the square free detour set with 𝑡 + 𝑚 vertices and 

𝑑𝑛□𝑓(𝐺) = 𝑡 + 𝑚.  

 

Theorem 2.16 Let 𝐺 = (𝑉, 𝐸) be a complete graph 

𝐾𝑛(𝑛 ≥ 2). Then a set of vertices 𝑆 is a square free detour 

basis of 𝐺 if and only if 𝑆 contains any two adjacent vertices 

of 𝐺. 

Proof.  Let 𝐺 = 𝐾𝑛 be a complete graph of order 𝑛(𝑛 ≥ 2 ) 

and 𝑉(𝐺) = { 𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑛}. Let 𝑆 = {𝑥1, 𝑥2} be a set of 

two vertices of 𝐺. Let 𝑥𝑖 ∈ 𝑉. 
             Case 1:  Let 𝑥𝑖 ∉ S . Then 𝑥𝑖 (3 ≤ 𝑖 ≤ 𝑛) lies on a square 

free detour 𝑥1𝑥𝑖𝑥2 of length 2. 

Case 2:  Let 𝑥𝑖 ∈ S and say 𝑥𝑖 = 𝑥1. Then 𝑥𝑖 lies on a square 

free detour 𝑥𝑖 𝑥𝑗 𝑥2 of length 2 where 𝑥𝑗 ∉  S. Thus every 

vertex 𝑥𝑖 of 𝑉 lies on a square free detour in 𝐺 and so 𝑆 is a 

square free detour set of 𝐺. Also, |𝑆| = 2. Therefore, 𝑆 is a 

square free detour basis of 𝐺. 

                    Conversely, let 𝑆 be a square free detour basis of 𝐺. 

Let 𝑆∗be any set containing two vertices that are adjacent in 

𝐺. Then by previous discussion of this theorem, 𝑆∗ is a square 

free detour basis of 𝐺. Hence |𝑆| =  |𝑆∗| = 2. Thus 

𝑆 contains any two adjacent vertices of 𝐺.  
 

Theorem 2.17 Let 𝐺 = (𝑉, 𝐸)  be a complete bipartite graph 

𝐾𝑛1,𝑛2
(2 ≤ 𝑛1 ≤ 𝑛2) with partitions 𝑋 and 𝑌 where |𝑋| =

𝑛1, |𝑌| = 𝑛2. Then a set 𝑆 ⊆ 𝑉 is a square free detour basis 

of 𝐺 if and only if 𝑆 = 𝑋. 
               Proof.  Let 𝐺 =  𝐾𝑛1,𝑛2

(2 ≤ 𝑛1 ≤ 𝑛2) be a complete 

bipartite graph with bipartite sets 𝑋 and 𝑌.  Let 𝑋 =
{ 𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑛1

} and 𝑌 = { 𝑦1, 𝑦2, 𝑦3, … . , 𝑦𝑛2
}. Let 𝑆 =

𝑋 and 𝑣 ∈ 𝑉. 
              Case 1:  Let 𝑣 ∈ 𝑋.  Let 𝑣 = 𝑥𝑘(1 ≤ 𝑘 ≤ 𝑛1). Then 𝑣 = 𝑥𝑖 

lies on the square free detour 𝑣 = 𝑥𝑘𝑥𝑙𝑥𝑚 for some distinct 𝑘 

and 𝑚 (1 ≤ 𝑘, 𝑚 ≤ 𝑛1, 1 ≤ 𝑙 ≤ 𝑛2), where 𝐷□𝑓(𝑥𝑘, 𝑥𝑚) =

2.  

Case 2:  Let 𝑣 ∈ 𝑌. Let 𝑣 = 𝑦𝑙(1 ≤ 𝑗 ≤ 𝑛). Then 𝑣 = 𝑦𝑙 lies 

on the square free detour 𝑣 = 𝑥𝑘 𝑦𝑙  𝑥𝑚(1 ≤ 𝑘, 𝑚 ≤ 𝑛1, 1 ≤
𝑙 ≤ 𝑛2, 𝑘 ≠ 𝑚) such that 𝐷□𝑓(𝑥𝑘, 𝑥𝑚) = 2.  

Hence every vertex of 𝑉 lies on the square free detour. Thus 

𝑆 is a square free detour set of 𝐺. Moreover, |𝑆| = 𝑛1 and so 

𝑆 is a square free detour basis of 𝐺. 
 Conversely, let 𝑆 be a square free detour basis of 𝐺. Let 𝑆′ ⊆
𝑉 and 𝑆′ contain the elements from both 𝑋 and 𝑌. Let 𝑥 ∈ 𝑋 

and 𝑦 ∈ 𝑌. Then any 𝑥 –  𝑦 detour induces a square. 

Therefore, 𝑆′ cannot contain the elements of both 𝑋 and 𝑌.  

Hence 𝑆′ must consist of the vertices of 𝑋 or that of 𝑌. Since  
|𝑌| ≥ |𝑋|, 𝑆′ consists of 𝑛1 vertices of 𝑋 only. Then by the 

previous discussion of this theorem, 𝑆′ is a square free detour 

basis of 𝐺. Therefore, |𝑆| = | 𝑆′| = 𝑛1 and 𝑆 = 𝑋.  
 

Theorem 2.18 Let 𝐺 = (𝑉, 𝐸)  be a cycle 𝐶𝑛 of order 𝑛(𝑛 ≥
3; 𝑛 =  odd ). Then a set 𝑆 ⊆ 𝑉 is a square free detour basis 

of 𝐺 if and only if  𝑆 contains any two vertices adjacent to 

each other in 𝐺. 

Proof.  Let 𝐺 = 𝐶𝑛: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, 𝑥1 be a cycle of order 

𝑛(𝑛 ≥ 3; 𝑛 =  odd ).  Let 𝑆 = {𝑥𝑖, 𝑥𝑖+1: 1 ≤ 𝑖 ≤ 𝑛 − 1} be a 

set of two adjacent vertices of 𝐺. Then all the vertices of 𝐺 lie 

on the square free detour 𝑥𝑖 − 𝑥𝑖+1 of length 𝑛 − 1 and so 𝑆 

is a square free detour set of 𝐺. Moreover,  |𝑆| = 2. Hence 𝑆 

is a square free detour basis of 𝐺.                 

            Now assume that 𝑆 is a square free detour basis of 𝐺. 

Suppose 𝑆∗is a set consists of two vertices adjacent in 𝐺. Then 

by previous discussion of this theorem, 𝑆∗ is a square free 

detour basis of 𝐺. Therefore, |𝑆| =  | 𝑆∗| = 2. Thus 𝑆 

contains any two vertices adjacent in 𝐺. 

 

Theorem 2.19 Let 𝐺 = (𝑉, 𝐸)  be a cycle 𝑛(𝑛 ≥ 6; 𝑛 =
even). Then a set 𝑆 ⊆ 𝑉 is a square free detour basis of 𝐺 if 

and only if 𝑆 consists of two vertices either adjacent or 

antipodal to each other in 𝐺. 

Proof. Suppose 𝐺 = 𝐶𝑛: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 , 𝑥1 is an even cycle 

of order 𝑛 ≥ 6.  

Case 1:  Consider 𝑆 = {𝑥𝑗, 𝑥𝑘 |1 ≤ 𝑗 ≤ 𝑛; 𝑥𝑘 ∈ 𝑁(𝑥𝑗)}, a set 

of two vertices that are adjacent in 𝐺. Then all the vertices 

of 𝐺 lie on the square free detour 𝑥𝑗 − 𝑥𝑘 of length 𝑛 − 1.  

Case 2:  Suppose 𝑆 = {𝑥𝑖, 𝑥𝑖+
𝑛

2
 | 1 ≤ 𝑖 ≤

𝑛

2
 } is a set of two 

antipodal vertices of 𝐺. Then there exist two square free 

detours 𝑥𝑖 − 𝑥𝑖+
𝑛

2
 and 𝑥𝑖+

𝑛

2
− 𝑥𝑖 of length 

𝑛

2
 . Obviously, each 

𝑥𝑗(1 ≤ 𝑗 ≤ 𝑛) of 𝑉(𝐺) lies on any one of these square free 

detours. Thus 𝑆 is a square free detour set of 𝐺. Since |𝑆| =
2, 𝑆 is a square free detour base of 𝐺.        

       Now assume in a graph 𝐺, S is a square free detour basis. 

Let 𝑆∗ be any set of two vertices that are either adjacent or 

antipodal in 𝐺. By previous discussion of this theorem, 𝑆∗is 

a square free detour basis of 𝐺. Hence |𝑆| =  |𝑆∗| = 2. Thus 

𝑆 contains two vertices either adjacent or antipodal in 𝐺.  

Theorem 2.20 Let 𝐺 be a cycle 𝐶4. Then a set 𝑆 ⊆ 𝑉 is a 

square free detour basis of 𝐺 if and only if 𝑆 contains any two 

vertices antipodal to each other in 𝐺.  
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Proof. Let 𝐺 = 𝐾4 or 𝐶4, where 𝑉(𝐺) = {𝑥1, 𝑥2, 𝑥3, 𝑥4}. 
Suppose 𝑆 = {𝑥𝑠 , 𝑥𝑡} is the set of two vertices antipodal in 𝐺 

with 𝐷□𝑓(𝑥𝑠 , 𝑥𝑡) = 2.  Then each vertex of 𝐺 lies on 𝑥𝑠−𝑥𝑡 

square free detour. Thus 𝑆 is a square free detour set of 𝐺. 
Moreover |𝑆| = 2. Therefore, 𝑆 is a square free detour basis 

of 𝐺.  
Assume that 𝑆 is a square free detour basis of 𝐺. Let 𝑆∗ be a 

set of any two vertices that are antipodal in 𝐺. By previous 

discussion of this theorem, 𝑆∗ is a square free detour basis 

of 𝐺. Therefore, |𝑆| = |𝑆∗| = 2 and 𝑆 contains any two 

antipodal vertices to each other in 𝐺. 

 

Theorem 2.21 Let 𝐺 = (𝑉, 𝐸) be a wheel 𝑊𝑛 = 𝐾1 +
 𝐶𝑛−1(𝑛 ≥  11 and 𝑛 is odd). Then a set 𝑆 ⊆ 𝑉 is a square 

free detour basis of 𝐺 if and only if 𝑆 contains any two 

vertices either adjacent or antipodal in 𝐶𝑛−1 and the hub.  

Proof. Let 𝐺 be a wheel 𝑊𝑛 = 𝐾1 +  𝐶𝑛−1(𝑛 ≥ 11 and 𝑛 is 

odd). Let 𝑉(𝐾1) = {𝑥0}. Let 𝑆∗ = {𝑦, 𝑧} be the set of two 

vertices of 𝐶𝑛−1 such that 𝑦 and 𝑧 are either adjacent or 

antipodal on 𝐶𝑛−1. Then by Theorem 2.19, all the vertices of 

𝐺 except the hub lie on a 𝑦 − 𝑧 square free detour. Thus 𝑆 =
𝑆∗ ⋃  { 𝑥0} is a square free detour set of 𝐺. Thus |𝑆| = 3 and 

so 𝑆 is a square free detour basis of 𝐺. 
     Now consider S is a square free detour basis of 𝐺. Assume 

that 𝑆# be any set contain the hub with two vertices either 

adjacent or antipodal on 𝐶𝑛−1. By previous discussion of this 

theorem, 𝑆# is a square free detour basis of 𝐺. Thus |𝑆| =
 |𝑆#| = 3 and so  𝑆 contains any two vertices that are either 

adjacent or antipodal in 𝐶𝑛−1 and the hub.  

 

 Theorem 2.22 Let 𝐺 be a wheel  𝑊𝑛 = 𝐾1 +  𝐶𝑛−1( 𝑛 =
6, 𝑛 ≥ 10 and 𝑛 is even). Then a set 𝑆 ⊆ 𝑉 is a square free 

detour basis of 𝐺 if and only if 𝑆 contains any two vertices 

that are adjacent in 𝐶𝑛−1 and the hub.  

Proof. Let 𝐺 be a wheel 𝑊𝑛 = 𝐾1 +  𝐶𝑛−1( 𝑛 ≥ 10 and 𝑛 is 

even). Let 𝑉(𝐾1) = {𝑥0}. Let 𝑆1 = {𝑢, 𝑣} be the set of two 

vertices of 𝐶𝑛−1 such that 𝑢 and 𝑣 are either adjacent or 

antipodal on 𝐶𝑛−1. Then by Theorem 2.18, all the vertices 

except the hub of 𝐺 lie on the 𝑢 − 𝑣 square free detour. Thus 

𝑆 = 𝑆1 ⋃{ 𝑥0} is a square free detour set of 𝐺. Moreover, 
|𝑆| = 3. Therefore, 𝑆 is a square free detour basis of 𝐺.   
       Conversely, let S be a square free detour basis of 𝐺. 

Suppose  𝑆∗ be a set containing any two vertices that are 

adjacent on 𝐶𝑛−1 and a hub. By previous discussion of this 

theorem, 𝑆∗ is a square free detour basis of 𝐺. Therefore, 
|𝑆| = |𝑆∗| = 3. Thus 𝑆 contains any two vertices that are 

adjacent in 𝐶𝑛−1 and the hub of  𝑊𝑛 . 
 

Theorem 2.23 Let 𝐺 = (𝑉, 𝐸) be a wheel 𝑊𝑛 = 𝐾1 +
𝐶𝑛−1(𝑛 = 4,5,7,8,9). Then a set of vertices 𝑆 is a square free 

detour set of 𝐺 if and only if 𝑆 contains any two vertices 𝑢 

and 𝑣 such that 

(i) 𝑢 and 𝑣 are adjacent when 𝑛 = 4 

(ii) 𝑢 and 𝑣 are antipodal when 𝑛 = 5 

(iii) 𝐷□𝑓(𝑢, 𝑣) = 4 when 𝑛 = 7,8,9. 

Proof. (i) Let 𝐺 = 𝑊4 be the wheel with central vertex 𝑥0. 

Since 𝑊4 ≅ 𝐾4, the result follows from Theorem 2.20.  

(ii) Let 𝐺 = 𝑊5, where 𝑥0 is the central vertex. Suppose 𝑆 =
{𝑢, 𝑣} is the set of two vertices antipodal on 𝐶4 with 

𝐷□𝑓(𝑢, 𝑣) = 2.  Then by Theorem 2.20, all the vertices of 𝐶4 

lie on a 𝑢 −  𝑣 square free detour. Moreover, the central 

vertex of 𝑊5 also lies on 𝑢, 𝑥0, 𝑣 square free detour. Thus 𝑆 

is a square free detour set of 𝐺. Since |𝑆| = 2, 𝑆 is a square 

free detour basis of 𝑊5.   
        Assume that 𝑆 is a square free detour basis of 𝑊5. Let 

𝑆∗ be a set of any two vertices that are antipodal on 𝐶4. Then 

from the previous discussion 𝑆∗ is a square free detour basis 

of 𝑊5. Therefore, |𝑆| = |𝑆∗| = 2 and so 𝑆 contains any two 

antipodal vertices of 𝐶4. 

(iii) Let 𝐺 = 𝑊𝑛 (6 ≤ 𝑛 ≤ 9), where 𝑥0 is the central vertex. 

Suppose 𝑆 = {𝑢, 𝑣} is the set of two vertices on 𝐶𝑛−1 such 

that 𝐷□𝑓(𝑢, 𝑣) = 4.  Then all the vertices of 𝐺 lie on 𝑢 −  𝑣 

square free detour. Thus 𝑆 is a square free detour set of 𝑊𝑛 . 
Since |𝑆| = 2, 𝑆 is a square free detour basis of 𝑊𝑛(𝑛 =
7,8,9).  

    Assume that 𝑆 is a square free detour basis of 𝑊𝑛(𝑛 =
7,8,9).  Consider 𝑆∗ is a set of any two vertices that are at 

square free detour distance 4 on 𝐶𝑛−1. By previous discussion 

of this theorem, 𝑆∗ is a square free detour basis of 𝑊𝑛(𝑛 =
7,8,9). Therefore, |𝑆| = |𝑆∗| = 2 and 𝑆 contains any two 

vertices on 𝐶𝑛−1 with 𝐷□𝑓 = 4.  

 

Theorem 2.24 Let 𝐺 = (𝑉, 𝐸) be a Windmill 

𝑊𝑛
(𝑚)

consisting of 𝑚 copies of  𝐾𝑛(𝑚 ≥ 2)  with a vertex 𝑥 

in common.  Then the set of vertices 𝑆 is a square free detour 

basis of 𝐺 if and only if 𝑆 consists of 𝑚 vertices, exactly one 

vertex adjacent to 𝑥 from each copy of 𝐾𝑛. 

Proof.   Suppose 𝐺 = 𝑊𝑛
(𝑚)

 is a Windmill containing 𝑚 

copies of 𝐾𝑛(𝑛 ≥ 2) with the common vertex 𝑥 and of order 

𝑚(𝑛 − 1) + 1.  Let 𝑆 = { 𝑥𝑘𝑙| 1 ≤ 𝑘 ≤ 𝑚;  1 ≤ 𝑙 ≤ 𝑛 − 1}  
be a set of 𝑚 vertices adjacent to 𝑥, exactly one from 𝑚 copies 

of 𝐾𝑛
(𝑚)

. Then every vertex of 𝐺 lies on any square free detour 

𝑥𝑖𝑙 − 𝑥(𝑖+1)𝑙(1 ≤ 𝑖 ≤ 𝑚 − 1;  1 ≤ 𝑙 ≤ 𝑛 − 1 ) of length 2. 

Thus |𝑆| = 𝑚 and 𝑆 is a square free detour basis of 𝑊𝑛
(𝑚)

. 
 

     Now let 𝑆 be a square free detour basis of 𝑊𝑛
(𝑚)

.  
Suppose 𝑆∗ is a set of 𝑚 vertices of 𝐺, taken exactly one 

vertex from 𝑚 copies of 𝐾𝑛 . By previous discussion of this 

theorem, 𝑆∗ is a square free detour basis of 𝑊𝑛
(𝑚)

.  Thus |𝑆| =
|𝑆∗| = 𝑚 and 𝑆 contains exactly one vertex from each 

𝐾𝑛
(𝑖)(1 ≤ 𝑖 ≤ 𝑚) of 𝑊𝑛

(𝑚)
. 

 

 Theorem 2.25 Let 𝐺 = (𝑉, 𝐸) be a Dutch Windmill 

𝐷𝑛
(𝑚)

(𝑛 ≥ 3, 𝑚 ≥ 2) consisting of 𝑚 copies 𝐶𝑛 with a 

common vertex 𝑥. Then a set of vertices 𝑆 is a square free 

detour basis of 𝐺 if and only if 𝑆 contains 𝑚 vertices exactly 

one from each copy of 𝐶𝑛(𝑛 ≥ 3) in 𝐷𝑛
(𝑚)

. 

Proof.  Let 𝐺 = 𝐷𝑛
(𝑚)

 be a Dutch Windmill graph of order 

𝑚(𝑛 − 1) + 1 consisting of 𝑚 copies of  𝐶𝑛(𝑛 ≥ 3) with the 
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common vertex 𝑥. Let 𝑉(𝐷𝑛
(𝑚)) = {𝑥, 𝑥𝑘𝑙| 1 ≤ 𝑘 ≤ 𝑚;  1 ≤

𝑙 ≤ 𝑛 − 1}. Let a set 𝑆 consist of 𝑚 vertices of 𝐷𝑛
(𝑚)

.  Then 

we have three cases.  

Case 1: Consider 𝑛 ≥ 3 and 𝑛 is odd.  Suppose 𝑆 =
{ 𝑥𝑘𝑗| 1 ≤ 𝑘 ≤ 𝑚;  𝑙 = 1 𝑜𝑟 (𝑛 − 1)} is a set of 𝑚 adjacent 

vertices of 𝑥, exactly one vertex from each copy of 𝐶𝑛.  Then 

all the vertices of 𝐺 lie on the square free detour joining two 

vertices of 𝑆, which admits 𝑥 as the central vertex with 𝐷□𝑓 =

2(𝑛 − 1) and 𝐷□𝑓(𝑥, 𝑥𝑘𝑗) = 𝑛 − 1. Since 𝑥 is a cut-vertex of 

𝐺 by Theorem 2.9, every component of 𝐺 − 𝑥 contains a 

vertex of 𝑆 and so 𝑆 is a square free detour set of 𝐺.  

Case 2: Consider 𝑛 ≥ 6 and 𝑛 is even. Suppose 𝑆 =

{ 𝑥𝑖𝑗 | 1 ≤ 𝑖 ≤ 𝑚; 𝑗 = 1 𝑜𝑟 
𝑛

 2
 𝑜𝑟 (𝑛 − 1)}  contains either 𝑚 

vertices that are adjacent or antipodal to 𝑥. Then every vertex 

of 𝐺 lies on 𝑥𝑘𝑗 − 𝑥(𝑘+1)𝑗 (1 ≤ 𝑘 ≤ 𝑚 − 1; 𝑗 =

1 𝑜𝑟 
𝑛

 2
 𝑜𝑟 (𝑛 − 1)) square free detour. Consider 𝑢 = 𝑥𝑘𝑗 and 

𝑣 = 𝑥(𝑘+1)𝑗 . We have three subcases.  

Subcase 1: Let 𝑆 contain the vertices adjacent to 𝑥 and let  

𝑗 = 1 𝑜𝑟(𝑛 − 1). Then 𝐷□𝑓(𝑢, 𝑥) = 𝐷□𝑓(𝑣, 𝑥) = 𝑗 and all 

the vertices of 𝐷𝑛
(𝑚)

 lie on a 𝑢 − 𝑣 square free detour of length 

2(𝑛 − 1). Thus 𝑆 is a square free detour set of 𝐷𝑛
(𝑚)

.  

Subcase 2: Let 𝑆 contain the vertices antipodal to 𝑥 and let 

𝑗 =
𝑛

2
. Then 𝐷□𝑓(𝑢, 𝑥) = 𝐷□𝑓(𝑣, 𝑥) = 𝑗 and all the vertices of 

𝐷𝑛
(𝑚)

 lie on a 𝑢 − 𝑣 square free detour of length 𝑛. Therefore, 

𝑆 is a square free detour set of 𝐷𝑛
(𝑚)

.  
Subcase 3: Let 𝑆 contain the vertices either adjacent or 

antipodal to 𝑥. Without loss of generality consider 𝑢 =
𝑥𝑘(𝑛−1) and 𝑣 = 𝑥(𝑘+1)

𝑛

2
. Then 𝐷□𝑓(𝑢, 𝑥) = 𝑛 −

1,   𝐷□𝑓(𝑣, 𝑥) =
𝑛

2
 and all vertices of 𝐷𝑛

(𝑚)
 lie on a 𝑢 − 𝑣 

square free detour of length 
3𝑛−2

2
. Thus 𝑆 is a square free 

detour set of 𝐷𝑛
(𝑚)

.  

Case 3: Let 𝑛 = 4 and 𝑆 consist of 𝑚 antipodal vertices of 𝑥, 

from each copy of 𝐶4
(𝑖)

: 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4, 𝑥𝑖1(1 ≤ 𝑖 ≤ 𝑚). 
Then every vertex of 𝐺 lies on 𝑥𝑘2 − 𝑥(𝑘+1)2(1 ≤ 𝑘 ≤ 𝑚 −

1) square free detour of length 4 where 𝐷□𝑓(𝑥, 𝑥𝑘2) =

𝐷□𝑓(𝑥, 𝑥(𝑘+1)2) = 2. Thus 𝑆 is a square free detour set of 

𝐷𝑛
(𝑚)

. 

 From all the above three cases, we observe that |𝑆| = 𝑚 and 

𝑆 is a square free detour basis of 𝐺.   

 Assume that 𝑆 is a square free detour basis of 𝐷𝑛
(𝑚)

. Consider 

𝑆∗ is any set of 𝑚 vertices adjacent to the common vertex 𝑥, 
exactly one vertex from each copy of 𝐶𝑛 of 𝐺 when 𝑛 is odd 
(𝑛 ≥ 3), 𝑚 antipodal vertices of 𝑥 when 𝑛 is 4 and either 𝑚 

adjacent vertices or antipodal vertices of 𝑥 when 𝑛 is even 

(𝑛 ≥ 6). Then by previous discussion of this theorem, 𝑆∗ is 

a square free detour basis of 𝐷𝑛
(𝑚)

. Thus |𝑆| = |𝑆∗| = 𝑚 and 

𝑆 contains 𝑚 vertices that are adjacent or antipodal to 𝑥 or 

both adjacent or antipodal to 𝑥 according to 𝑛 is odd, 𝑛 is 4 

and 𝑛 is even, exactly one element from each copy of 𝐶𝑛(𝑛 ≥

3) in 𝐷𝑛
(𝑚)

.   

 

Corollary 2.26  

(a) For a tree 𝑇 with 𝑙 end-vertices, 𝑑𝑛□𝑓(𝑇) = 𝑙 

(b) For a complete graph 𝐾𝑛, 𝑑𝑛□𝑓(𝐾𝑛) = 2  

(c) For a complete bipartite graph 𝐾𝑛1,𝑛2
(2 ≤ 𝑛1 ≤

𝑛2), 𝑑𝑛□𝑓(𝐾𝑛1,𝑛2
) = 𝑛1   

(d) For a cycle 𝐶𝑛(𝑛 ≥ 3), 𝑑𝑛□𝑓(𝐶𝑛) =  2. 

(e) For a wheel 𝑊𝑛 = 𝐾1 + 𝐶𝑛−1, 𝑑𝑛□𝑓(𝑊𝑛) = 

{
 2   if  𝑛 = 4,5,7,8,9  

      3  if n = 6, 𝑛 ≥ 10       
 

(f) For a Windmill 𝑊𝑛
(𝑚)

,  𝑑𝑛□𝑓(𝑊𝑛
(𝑚)) = 𝑚 

(g)  For a Dutch Windmill 𝐷𝑛
(𝑚)

,  𝑑𝑛□𝑓(𝐷𝑛
(𝑚)) = 𝑚. 

Proof.  (a) This follows from Corollary 2.7 

(b) This follows from Theorems 2.16 and 2.20 

(c) This follows from Theorem 2.17 

(d) This follows from Theorems 2.18, 2.19 and 2.20 

(e) This follows from Theorems 2.21, 2.22 and 2.23  

(f) This follows from Theorems 2.24  

(g) This follows from Theorem 2.25. 

 

Theorem 2.27   For each pair of integers 𝑝 and 𝑛 with 2 ≤
𝑝 ≤ 𝑛, there exists a connected graph 𝐺 of order 𝑛 with 

𝑑𝑛□𝑓(𝐺)  = 𝑝. 

 

Proof.    Suppose that 𝐺 is a connected graph of order 𝑛.   

Case 1:   𝑝 = 𝑛 = 2. It is trivially true for complete graph 𝐾2 

and path 𝑃2. 

 Case 2:  2 ≤ 𝑝 < 𝑛. Assume that P is a path of order 𝑛 −
𝑝 + 2. Then the graph 𝐺 obtained from 𝑃 by adding 𝑝 −
2 new vertices to 𝑃 and joining them to any cut-vertex of 𝑃 

is a tree of order 𝑛 and so by corollary 2.7, 𝑑𝑛□𝑓(𝐺)  = 𝑝. 

 

Theorem 2. 28 For a connected graph 𝐺 = (𝑉, 𝐸) of order 𝑛,
2 ≤ 𝑑𝑛(𝐺) ≤ 𝑑𝑛□𝑓(𝐺) ≤ 𝑑𝑚(𝐺) ≤ 𝑛.  

Proof.   

Case 1:  Suppose 𝐺 = 𝑇 is a tree. Then 𝑇 is acyclic and every 

square free detour set is a detour set and a detour monophonic 

set. Hence 𝑑𝑛(𝐺) = 𝑑𝑛□𝑓(𝐺)  = 𝑑𝑚(𝐺).  

Case 2:  Assume 𝐺 = 𝐶 is a cyclic graph and 𝐶∗  is a cycle 

in  𝐺 . Suppose 𝑥𝑦 is a chord of 𝐺. Let 𝑎 and 𝑏  be two vertices 

different from 𝑥 and 𝑦 in 𝐶∗ such that these four vertices 

induce a square. Then a vertex 𝑎 or 𝑏 must lie in a square free 

detour set. Hence 𝑑𝑛(𝐶) ≤ 𝑑𝑛□𝑓(𝐶) =  𝑑𝑚(𝐺). If no four 

vertices of 𝐶∗ induce a square, then 𝑑𝑛□𝑓(𝐺) ≤ 𝑑𝑚(𝐺). 

Since every square free detour set is a detour set 𝑑𝑛(𝐶) ≤
𝑑𝑛□𝑓(𝐶). Also, since 𝐶 is connected 𝑑𝑚(𝐶) ≤ 𝑛. Hence  2 ≤

𝑑𝑛(𝐶) ≤ 𝑑𝑛□𝑓(𝐶) ≤ 𝑑𝑚(𝐶) ≤ 𝑛.  

 

Remark 2.29 The bounds given in Theorem 2. 29 hold sharp 

for the path 𝑃2, 𝑑𝑛(𝑃2) = 𝑑𝑛□𝑓(𝑃2) = 𝑑𝑚(𝑃2) =

2. Moreover, the inequalities given in Theorem 2. 29 hold 

strict for the graph 𝐺2 given in Figure 2 with order 𝑛 =
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 8, 𝑑𝑛(𝐺2) = 2, 𝑑𝑛□𝑓(𝐺2)  = 3 and 𝑑𝑚(𝐺2) = 4. Hence 

𝑑𝑛(𝐺2) < 𝑑𝑛□𝑓(𝐺2) < 𝑑𝑚(𝐺2) < 𝑛. 

 

Theorem 2.30 For any three integers 𝛼, 𝛽 and 𝛾 with 3 ≤
𝛼 ≤ 𝛽 ≤ 𝛾, there exists a connected graph 𝐺 such that 

𝑑𝑛(𝐺) = 𝛼, 𝑑𝑛□𝑓(𝐺) = 𝛽 and 𝑑𝑚(𝐺) = 𝛾. 

Proof.   Let 𝐺1 be a graph obtained from the path 

𝑃5: 𝑥1, 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5  of order 5 by the addition of 𝛼 − 1 new 

vertices  𝑦1, 𝑦2, … , 𝑦𝛼−1   and by joining each 𝑦𝑎 (1 ≤ 𝑎 ≤
𝛼 − 1) to the vertex 𝑥5 in 𝑃5. Suppose 𝐺2 is the graph 

generated from 𝐺1 by addition of  2(𝛽 − 𝛼) new vertices 

𝑝1, 𝑝2, … , 𝑝𝛽−𝛼  and  𝑞1, 𝑞2, … , 𝑞𝛽−𝛼 and by joining each 

𝑝𝑏(1 ≤ 𝑏 ≤ 𝛽 − 𝛼) to the vertex 𝑥2 in 𝑃5 and joining each 

vertex 𝑞𝑏(1 ≤ 𝑏 ≤ 𝛽 − 𝛼) to the vertex 𝑥3 in 𝑃5. Let 

𝑃3
𝑐: 𝑟𝑐 , 𝑠𝑐, 𝑡𝑐 (1 ≤ 𝑐 ≤ 𝛾 − 𝛽) be the 𝛾 − 𝛽 copies of 𝑃3. Let 

𝐺3 be obtained from the graph 𝐺2  by adding new vertices   

𝑟1, 𝑟2, … , 𝑟𝛾−𝛽  , 𝑠1, 𝑠2, … , 𝑠𝛾−𝛽  and  𝑡1, 𝑡2, … , 𝑡𝛾−𝛽   and 

joining each vertex 𝑟𝑐(1 ≤ 𝑐 ≤ 𝛾 − 𝛽) to the vertex 𝑥3 in 𝑃5 

and joining each vertex 𝑡𝑐 (1 ≤ 𝑐 ≤ 𝛾 − 𝛽) to the vertex 𝑥4 

in 𝑃5. The required graph 𝐺 = 𝐺3 is a connected graph of 

order 3𝛾 − 𝛽 − 𝛼 + 4 and is shown in Figure 3.  

 

                                       FIGURE 3: 𝐺 

By Theorem 2.6, it can be easily verified that 𝑆1 =
{𝑥1, 𝑦1, 𝑦2,𝑦3, … , 𝑦𝛼−1} is a detour basis of 𝐺, 𝑆2 =

 𝑆1 ⋃  { 𝑝1, 𝑝2, … , 𝑝𝛽−𝛼}  is a square free  detour basis and 

𝑆3 =  𝑆2 ⋃  {𝑡1, 𝑡2, … , 𝑡𝛾−𝛽  }  is a detour monophonic basis. 

Hence 𝑑𝑛(𝐺) = 𝛼, 𝑑𝑛□𝑓(𝐺) = 𝛽 and 𝑑𝑚(𝐺) = 𝛾 and 𝛼 ≤

𝛽 ≤ 𝛾. 

 

  3. CONCLUSION 

In this article, we determined the square free detour number 

of some standard graphs and special graphs. The relationship 

between the square free detour number and detour number 

was discussed. Derivation of similar results in this context for 

some other classes of graphs is an open area of research. 
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