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Abstract: 

Irrigation Internet of Things (IrIoT) networks consist of farm-based sensors that are connected to identify 

crop-based & soil-based parameters for yield enrichment purposes. These networks also use high-performance 

processing methods to predict future events like change in fertilization quantity, yield extraction, change in 

water flows, etc. Existing IrIoT network design models integrate multiple parameters, but have limited 

correlation capabilities, which restrict their usability under real-time conditions. These models are inconsistent 

in terms of their processing capabilities which affects the yield of underlying farms. These models are also 

observed to have limited actuation efficiency, which is due to lack of comprehensive recommendation models. 

To overcome these limitations, this text proposes design of a novel Bioinspired Model for IrIoT Based Smart 

Irrigation Monitoring and Control operations. The model initially uses a Grey Wolf Optimization (GWO) 

method to estimate data correlation between different on-field sensors. The model scans values for these 

sensors at different time instances, and estimates their effect on yield performance in farms. Based on the 

similarity in yield performance, correlation is estimated via single objective optimization process. This 

correlation assists in identification of sensors that are highly useful for monitoring, recommendation, and 

quality control purposes. Data from different identified sensors is further augmented via use of a high-

efficiency recommendation engine, that uses environmental, geographical, and topological information to 

estimate optimum yield maximization operations. These operations include fertilizer type selection, water flow 

management, quantity of fertilizer to be used, and yield extraction, based on temporal analysis. The proposed 

model was tested on different farms, and its efficiency in terms of accuracy of fertilizer prediction, accuracy of 

water flow prediction, precision of monitoring, and accuracy of yield extraction were evaluated for multiple 

seasons. This performance was compared with various state-of-the-art models, and it was observed that the 

proposed model showcased 8.3% better recommendation accuracy, and 15.5% better control accuracy, due to 

which it is highly useful for a wide variety of smart farming application scenarios.  

Keywords: Irrigation, IoT, Recommendation, GWO, Correlation, Water Flow, Yield, Temporal, Accuracy, 

Fertilizer 

 

1. Introduction 

Design of Irrigation IoT Networks is a multidomain task, that involves integration of farm-specific sensing 

interfaces, with processing & control models. These interfaces are useful for estimation of crop specific 

parameters, soil-specific parameters, and geography specific parameters, that allow the model to analyze and 

recommend yield maximization suggestions under different environmental conditions. These sensors also 

include livestock management devices that can detect different changes in livestock status. A typical layered 

model [1] for smart farming is depicted in figure 1, wherein the entire interface is segregated into physical, 

edge & cloud layers. Each of these layers performs a specific optimization task, which assists them in 

continuously monitoring & improving farm performance.  
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Figure 1. A typical Irrigation IoT Network Model 

 

In this model, the physical layer estimates soil information via interior & exterior sensors, and combines it 

with energy information & livestock information, to create aggregated information vectors. These vectors are 

communicated to the edge computing devices, which process this data via decision support systems, real time 

monitoring & visualization, Machine Learning Models (MLMs), diagnosis models, etc. Data from different 

farms is collected, and used for edge-to-edge learning operations. This process enhances recommendation 

performance, thereby assisting in optimizing farm yield levels. Similar models are proposed by researchers [2, 

3, 4], and they vary in terms of the internal operating characteristics. A survey of these models in terms of their 

functional nuances, contextual advantages, deployment-specific lacunas, and performance specific future 

scopes is discussed in the next section of this text. Based on this discussion, it can be observed that existing 

models are inconsistent in terms of their processing capabilities which affects the yield of underlying farms, 

and they are also observed to have limited actuation efficiency, which is due to lack of comprehensive 

recommendation models. To overcome these issues, section 3 proposes design of a novel Bioinspired Model 

for IrIoT Based Smart Irrigation Monitoring and Control operations. The model proposes use of GWO, with a 

high-efficiency recommendation engine, that assists in continuous optimization of farm performance. This 

performance was evaluated in terms of different accuracy measures, and compared in section 4 with various 

state-of-the-art models. Finally, this text concludes with some contextual observations about the proposed 

model, and recommends different fusion methods to further improve its performance under different farm 

types. 

 

2. Literature Review 

A large number of IoT models have been proposed for various irrigation applications, and each of them have 

their own internal working characteristics. For instance, work in [5, 6] propose use of dynamic irrigation 

scheduling model, and radiofrequency energy harvesting for agricultural applications. These models are 

observed to have lower efficiency when applied to large-scale farms, due to which they cannot be applied to 

real-time use cases. To overcome this limitation, work in [7] proposes use of discreteevent simulations for 

irrigation IoT deployments, which makes it easier for researchers to design & use IoT models for large-scale 

applications. Work in [8, 9] extend this model via use of Deep Learning Neural Network (DLNN), and fuzzy 

rules based irrigation controller (FRBIC), both of which assist in improving farm yield while reducing 

deployment costs for a wide variety of farm applications. These models must be extended via use of 

integration of renewable energy sources [9], greenhouse crop production [10], and their performance can be 

improved via use of ensemble classification methods [11], that assist in estimation of better yield & high 

efficiency recommendations for fertilization & yield extraction plans. Such integrated models are discussed in 

[12, 13, 14], which propose use of Naïve Bayes (NB), PenmanMonteith Optimization, and Model driven 
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processes, which assist in continuously improving yield performance via pattern recognition & analysis for 

large-scale deployments. 

Researchers in [15, 16] propose development of Buildout IoT Application Language (BIoTA), and extend it to 

farm applications. This language can be used for inter-communication between different farm sensors, which 

assists in estimating their sensing performance. This performance can be correlated with yield levels, 

fertilization levels, and water flow levels for recommendation of better yield opportunities under different 

weather & geographical conditions. An application of this process is described in [17, 18] which propose use 

of Ontology-Based Semantic Model, and Back-Propagation Neural Network with Particle Swarm 

Optimization (BPNN-PSO) for continuous learning from real-time farm environments. These models apply 

different pattern analysis methods to farm areas, and assist in identification of yield patterns under a wide 

variety of farm environments. Extension to these models is discussed in [19, 20], which propose use of 

Traceability models for Greenhouse Seedling Crops via block layers, and Automation for Precision 

Agriculture under area specific farm lands. These models showcase high-efficiency with low power 

requirements, which makes them highly useful for scalable irrigation applications. Models in [21, 22, 23] 

further explore these concepts, and propose Energy-Efficient Edge-Fog-CloudModels, and various deep 

learning methods to continuously optimize farming performance under different crop types. These models 

must be validated for large-scale crops, and can be used for incrementally improving performance of existing 

IrIoT deployments. Work in [24, 25] further extends these models, and proposes use of hydrokinetic 

converters, and Bidirectional Recurrent Neural Network (BiRNN), which aim at improving sensor accuracy 

for different farm sites. These models are useful when applied to multiple farm lands, that require sensing of 

similar parameters. But most of these models have limited sensor data correlation capabilities, due to which 

their usability is restricted under real-time scenarios. To overcome this limitation, next section proposes use of 

a Bioinspired Model for IrIoT Based Smart Irrigation Monitoring and Control operations. The proposed model 

was also tested & validated under different real-time conditions. 

 

3. Design of the proposed Bioinspired Model for IrIoT Based Smart Irrigation Monitoring and 

Control operations 

Based on the brief discussion about existing IrIoT models, it was observed that they have limited sensor data 

correlation capabilities, due to which their usability is restricted under real-time scenarios. This causes 

inconsistency in model deployment, which affects their yield estimation and optimization capabilities. These 

models also lack in terms of recommendation efficiency, which limits its actuation capabilities for 

maximization of yield levels. To overcome these limitations, this section discusses design of the 

proposedGWO based model for Smart Irrigation Monitoring and Control operations. Flow of the model is 

depicted in figure 2, wherein it can be observed that the model initially uses a Grey Wolf Optimization (GWO) 

method forestimation of data correlation between different on-field sensors. To perform this task, the model 

scans values of these sensors at different time instances, and estimates their effect on yield performance in 

farms. This is facilitated by temporal datasets, which assist in optimizing GWO performance under real-time 

conditions. The yield performance-correlation assists in identification of sensors that are highly useful for 

monitoring, recommendation, and quality control operations. A Genetic Algorithm (GA) based 

recommendation engine is deployed that makes use of environmental, geographical, and topological 

information for estimation of optimum yield maximization operations. 
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Figure 2. Overall flow of the proposed GWO & GA Based Model for IrIoT Optimizations 

 

These operations include selection of fertilizer type & quantity, management of water flows, and yield 

extraction timelines, which are recommended based on temporal analysis. The model design is segregated into 

3 different modules, which are described in different sub sections of this text. Researchers can refer these sub 

sections to deploy the proposed model in part(s) or as a whole, depending upon their application requirements. 

3.1. Design of the GWO Model for selection of highly correlative sensors 

Data from multiple on-field sensors is collected and processed via the GWO Model, which assists in 

identification of sensors that can yield maximum yield performance. To perform this task, the following 

process is used, 

 Initialize the following GWO Parameters, 

o Total number of Wolves (𝑁𝑤) 

o Total GWO Iterations (𝑁𝑖) 

o GWO Learning Rate (𝐿𝑟) 

o Total number of sensors available (𝑇𝑠) 

o Temporal yield data for the farm (𝑌𝑑) 

 Initially mark all the wolves as ‘Delta Wolves’ 

 Go to each iteration between 1 to 𝑁𝑖, and perform the following tasks, 



Copyrights @Kalahari Journals  Vol. 6 No. 2(September, 2021) 

International Journal of Mechanical Engineering 

189 

o For each wolf in 1 to 𝑁𝑤, perform the following process, 

 If the wolf is not marked as ‘Delta Wolf’, then go to the next wolf in sequence 

 Else, generate new configuration for this wolf via the following process, 

 Select 𝑁𝑟 stochastic sensors from the list of sensors via equation 1, 

𝑁𝑟 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑟 ∗ 𝑇𝑠, 𝑇𝑠) … (1) 

Where, 𝑆𝑇𝑂𝐶𝐻 indicates a Stochastic Markovian Process. 

 For each sensor, estimate its correlation with yield levels via equation 2, 

𝐶 = ⋁
𝑣𝑎𝑟(𝑆𝑉𝑖)

𝑀𝑎𝑥(𝑆𝑉)
+

𝑣𝑎𝑟(𝑌𝑖)

𝑀𝑎𝑥(𝑌)
… (2)

𝑁𝑠

𝑖=1

 

Where, 𝑁𝑠 represents number of temporal samples used for analysis, 𝑆𝑉 & 𝑌 represents sensor values & yield 

levels for these temporal samples, while 𝑣𝑎𝑟(𝑋) represents variance levels, and are estimated via equation 3, 

𝑣𝑎𝑟(𝑋) =
√∑ (𝑋𝑖 − ∑

𝑋𝑗

𝑁
𝑁
𝑗=1 )

2
𝑁
𝑖=1

𝑁
… (3) 

 Based on these correlation values, fitness is estimated for each wolf via equation 4, 

𝑓𝑖 = ∑
𝐶𝑦𝑖

𝑁𝑟

𝑁𝑟

𝑖=1

… (4) 

 Repeat this for all wolves, and evaluate iteration threshold via equation 5, 

𝑓𝑡ℎ = ∑ 𝑓𝑖 ∗
𝐿𝑟

𝑁𝑤

𝑁𝑤

𝑖=1

… (5) 

o At the end of each iteration perform the following process, 

 If 𝑓𝑖 < 𝑓𝑡ℎ ∗ 𝐿𝑟, then mark the wolf as ‘Delta Wolf’ 

 If 𝑓𝑖 < 𝑓𝑡ℎ ∗
𝐿𝑟

2
, then mark the wolf as ‘Gamma Wolf’ 

 If 𝑓𝑖 < 𝑓𝑡ℎ ∗
𝐿𝑟

4
, then mark the wolf as ‘Beta Wolf’ 

 Else, mark the wolf as ‘Alpha Wolf’ 

 At the end of all iterations, select the Wolf with maximum fitness, and use its sensors for maximization of 

yield at different locations 

Based on this process, multiple sensors are selected, and their values are used for maximizing farm yields. 

These sensors are further augmented via a GA Model, which assists in recommendation of fertilization, water 

flow, and yield extraction timelines. Design of this model is discussed in the next section of this text. 

 

3.2. Design of the GA Model for recommendation of different entities 

After identification of sensors that are used for maximizing farm yield performance, a GA Model is used to 

estimate fertilization, water flow and yield extraction timelines. This model works via the following process, 

 Initialize the following parameters for GA, 

o Total number of GA Iterations (𝑁𝑖) 

o Total number of GA Solutions (𝑁𝑠) 

o GA Learning Rate (𝐿𝑟) 

o Temporal data for fertilization, water flow & yield extraction timeline for previous evaluations 

 Initialize all solutions by marking them as ‘to be processed’ 

 Go to each of the iterations in 1 to 𝑁𝑖, and perform the following, 

o Go to each of the solutions in 1 to 𝑁𝑠, and perform the following process, 

 If the solution is marked as ‘not to be processed’, then skip it and go to the next solution 
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 Else, generate a new solution via the following process, 

 Select fertilizer for the given crop, and generate stochastic values for fertilizer quantity (𝐹𝑞), water flow 

level (𝑊𝑓𝑙), and yield extraction timeline (𝑌𝑒𝑡) via equation 6, 7, & 8 as follows, 

𝐹𝑞 = 𝑆𝑇𝑂𝐶𝐻 (𝐿𝑟 ∗ 𝑀𝑎𝑥(𝐹𝑞), 𝑀𝑎𝑥(𝐹𝑞)) … (6) 

𝑊𝑓𝑙 = 𝑆𝑇𝑂𝐶𝐻 (𝐿𝑟 ∗ 𝑀𝑎𝑥(𝑊𝑓𝑙), 𝑀𝑎𝑥(𝑊𝑓𝑙)) … (7) 

𝑌𝑒𝑡 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑟 ∗ 𝑀𝑎𝑥(𝑌𝑒𝑡), 𝑀𝑎𝑥(𝑌𝑒𝑡)) … (8) 

 Based on these values, identify yield levels from the temporal database, and estimate fitness for this 

solution via equation 9, 

𝑓𝑖 = 𝑓(𝐹𝑞 , 𝑊𝑓𝑙 , 𝑌𝑒𝑡) … (9) 

Where, 𝑓 represents yield function, which is calculated from temporal instances of previous yield extraction 

states. This value is estimated by the farmers based on environmental, geographical, and topological 

information about the farms. 

 Evaluate fitness levels for all solutions. 

 At the end of each iteration, evaluate fitness threshold via equation 10, 

𝑓𝑡ℎ = ∑ 𝑓𝑖 ∗
𝐿𝑟

𝑁𝑠

𝑁𝑠

𝑖=1

… (10) 

 Check for solution fitness, and perform the following tasks, 

 If 𝑓𝑖 > 𝑓𝑡ℎ, then mark solution as ‘not to be processed’, and crossover it to the next iteration 

 Else, mark solution as ‘to be processed’, and mutate it in the next iteration 

 Repeat this process for all iterations 

Select the solution with maximum fitness levels, and use its fertilizer quantity (𝐹𝑞), water flow level (𝑊𝑓𝑙), and 

yield extraction timeline (𝑌𝑒𝑡) levels for optimizing farm yield under current environmental conditions. These 

values are further processed via a correlation engine, which assists in continuous optimization of model 

performance under real-time conditions. 

3.3. Design of a correlation model for continuous database updates 

The GWO Model assists in identification of on-field sensors (𝐹𝑆) that can maximize the yield, while GA 

assists in identification of fertilizer quantity (𝐹𝑞), water flow level (𝑊𝑓𝑙), and yield extraction timeline (𝑌𝑒𝑡) 

levels. This information is given to a correlation model, which estimates similarity between currently selected 

values, and values in the database. This correlation is estimated via equation 11 as follows, 

𝐶𝑜𝑟𝑟 =

∑(𝐹𝑆 − 𝐹𝑆̅̅̅̅ ) (𝐹𝑞 − 𝐹�̅�)

(𝑊𝑓𝑙 − 𝑊𝑓𝑙
̅̅ ̅̅ ̅)(𝑌𝑒𝑡 − 𝑌𝑒𝑡

̅̅ ̅̅ )

√
∑(𝐹𝑆 − 𝐹𝑆̅̅̅̅ )2 (∑ 𝐹𝑞 − 𝐹�̅�)

2

(∑ 𝑊𝑓𝑙 − 𝑊𝑓𝑙
̅̅ ̅̅ ̅)

2
(∑ 𝑌𝑒𝑡 − 𝑌𝑒𝑡

̅̅ ̅̅ )2

… (11) 

If the value of 𝐶𝑜𝑟𝑟 > 0.999, then the sensor readings are matching with the database, and thus are added 

back to the database for incremental learning operations. Other values are discarded, because they do not 

confidently estimate entity values, thus cannot be used for incremental learning operations. Due to these 

operations, the model is capable of improving accuracy of fertilizer prediction, accuracy of water flow 

prediction, precision of monitoring, and accuracy of yield extraction for different seasons. These parameters 

were evaluated & compared with various state-of-the-art models in the next section of this text. 
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4. Result analysis & comparison 

The proposed model uses a combination of GWO & GA with continuous optimization in order to improve 

yield levels for different farms. To estimate the performance of this model, it was initially trained on the 

following datasets, 

 Historical Irrigation Dataset, which is available at https://aquaknow.jrc.ec.europa.eu/en/content/historical-

irrigation-dataset-hid 

 Earth System Science Data, which is available at https://essd.copernicus.org/articles/13/5689/2021/ 

 Intelligent Irrigation System Data, which is available at 

https://www.kaggle.com/datasets/harshilpatel355/autoirrigationdata 

After training the model on these sets, it was evaluated on farm lands near Mumbai, Maharashtra, India region, 

for different seasons. A total of 40 different farms, were evaluated with 3 years of temporal datasets in order to 

estimate accuracy of fertilizer prediction (𝐴𝑓), accuracy of water flow prediction (𝐴𝑤), precision of monitoring 

(𝑃𝑚), and accuracy of yield extraction (𝐴𝑦) for over 5000 different samples. This evaluation was compared 

with the models proposed in DLNN [8], FR BIC [9], and BPNN PSO [18], which assisted in estimating 

current model’s performance under real-time use cases. Based on this strategy, the accuracy of fertilizer 

prediction (𝐴𝑓) w.r.t. Number of Farm Samples (NS) can be observed from table 1 as follows, 

NS Af (%) 

DLNN [8] 

Af (%) 

FR BIC [9] 

Af (%) 

BPNN PSO [18] 

Af (%) 

BMSICM 

500 86.50 90.50 91.50 96.50 

750 86.90 90.56 91.55 96.80 

1000 87.50 90.59 91.56 97.10 

1250 88.30 90.65 91.59 97.20 

1500 88.50 90.90 91.61 97.30 

1750 88.90 91.20 91.65 97.50 

2000 89.10 91.30 91.67 97.80 

2250 89.20 91.40 91.70 97.90 

2500 89.30 91.50 91.73 97.95 

2750 89.35 91.66 91.75 98.01 

3000 89.38 91.80 91.78 98.05 

3250 89.39 91.95 91.81 98.06 

3500 90.22 92.09 91.84 98.10 

3750 90.48 92.23 91.86 98.15 

4000 90.74 92.37 91.89 98.51 

4250 91.00 92.51 91.92 98.64 

4500 91.26 92.65 91.95 98.76 

4750 91.52 92.80 91.97 98.88 

5000 91.78 92.94 92.10 99.10 

Table 1. Accuracy of fertilizer prediction for different farm samples & different models 

Based on this evaluation, it was observed that the proposed model showcases 8.5% improvement in accuracy 

of fertilizer prediction when compared in DLNN [8], 5.9% improvement when compared with FR BIC [9], 

and 6.5% improvement when compared with BPNN PSO [18], which is due to use of GA Model, that assists 

in continuous optimization of fertilizer prediction under different farm-based use cases. Due to this, the model 

https://aquaknow.jrc.ec.europa.eu/en/content/historical-irrigation-dataset-hid
https://aquaknow.jrc.ec.europa.eu/en/content/historical-irrigation-dataset-hid
https://essd.copernicus.org/articles/13/5689/2021/
https://www.kaggle.com/datasets/harshilpatel355/autoirrigationdata
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is capable of improving farm yield, while minimizing fertilization costs. Similar evaluation for accuracy of 

water flow prediction can be observed from table 2 as follows, 

NS Aw (%) 

DLNN [8] 

Aw (%) 

FR BIC [9] 

Aw (%) 

BPNN PSO [18] 

Aw (%) 

BMS ICM 

500 84.16 89.07 85.82 96.80 

750 84.74 89.11 85.84 97.03 

1000 85.26 89.23 85.86 97.20 

1250 85.71 89.43 85.89 97.33 

1500 85.97 89.64 85.92 97.53 

1750 86.19 89.80 85.94 97.73 

2000 86.32 89.90 85.97 97.88 

2250 86.40 90.02 85.99 97.95 

2500 86.46 90.15 86.02 98.00 

2750 86.49 90.30 86.05 98.04 

3000 86.77 90.44 86.07 98.07 

3250 87.12 90.58 86.10 98.10 

3500 87.56 90.72 86.12 98.25 

3750 87.81 90.86 86.15 98.43 

4000 88.06 91.00 86.17 98.64 

4250 88.31 91.13 86.20 98.76 

4500 88.56 91.27 86.26 98.91 

4750 88.82 91.41 86.29 99.04 

5000 89.07 91.55 86.32 99.17 

Table 2. Accuracy of water flow prediction for different farm samples & different models 

 

Based on this evaluation, it was observed that the proposed model showcases 10.5% improvement in accuracy 

of water flow predictionwhen compared in DLNN [8], 8.5% improvement when compared with FR BIC [9], 

and 12.5% improvement when compared with BPNN PSO [18], which is due to use of GA Model, that assists 

in continuous optimization of water flow predictionunder different farm-based use cases. Due to this, the 

model is capable of improving farm yield, while minimizing watering costs. Similar evaluation for precision 

of monitoringcan be observed from table 3 as follows, 
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NS Pm (%) 

DLNN [8] 

Pm (%) 

FR BIC [9] 

Pm (%) 

BPNN PSO [18] 

Pm (%) 

BMS ICM 

500 83.49 87.62 86.51 94.42 

750 84.00 87.68 86.54 94.67 

1000 84.58 87.78 86.56 94.84 

1250 84.99 87.96 86.59 94.97 

1500 85.26 88.18 86.61 95.14 

1750 85.49 88.34 86.64 95.35 

2000 85.62 88.44 86.67 95.50 

2250 85.70 88.55 86.69 95.56 

2500 85.76 88.69 86.72 95.61 

2750 85.85 88.83 86.75 95.65 

3000 86.02 88.97 86.77 95.68 

3250 86.41 89.10 86.80 95.74 

3500 86.84 89.24 86.82 95.84 

3750 87.09 89.38 86.85 96.03 

4000 87.34 89.52 86.87 96.23 

4250 87.59 89.65 86.91 96.36 

4500 87.84 89.79 86.94 96.48 

4750 88.09 89.93 87.00 96.63 

5000 88.34 90.06 87.02 96.75 

Table 3. Precision of monitoring for different farm samples & different models 

 

Based on this evaluation, it was observed that the proposed model showcases 8.3% improvement in precision 

of monitoring when compared in DLNN [8], 6.5% improvement when compared with FR BIC [9], and 9.5% 

improvement when compared with BPNN PSO [18], which is due to use of GWO Model, that assists in 

continuous optimization of sensor selection under different farm-based use cases. Due to this, the model is 

capable of improving farm yield, while minimizing sensor activation costs. Similar evaluation for accuracy of 

yield extractioncan be observed from table 4 as follows, 
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NS Ay (%) 

DLNN [8] 

Ay (%) 

FR BIC [9] 

Ay (%) 

BPNN PSO [18] 

Ay (%) 

BMS ICM 

500 86.15 90.57 89.43 96.55 

750 86.66 90.63 89.47 96.81 

1000 87.23 90.71 89.49 97.03 

1250 87.80 90.86 89.51 97.15 

1500 88.04 91.09 89.54 97.31 

1750 88.33 91.30 89.57 97.51 

2000 88.49 91.41 89.60 97.71 

2250 88.58 91.52 89.62 97.79 

2500 88.65 91.64 89.65 97.84 

2750 88.71 91.79 89.68 97.89 

3000 88.87 91.94 89.70 97.92 

3250 89.13 92.08 89.73 97.95 

3500 89.70 92.22 89.76 98.05 

3750 89.96 92.36 89.78 98.19 

4000 90.22 92.50 89.81 98.45 

4250 90.48 92.64 89.84 98.57 

4500 90.73 92.79 89.88 98.71 

4750 90.99 92.93 89.92 98.84 

5000 91.25 93.07 89.98 99.00 

Table 4. Accuracy of yield extractionfor different farm samples & different models 

 

Based on this evaluation, it was observed that the proposed model showcases 6.5% improvement in accuracy 

of yield extractionwhen compared in DLNN [8], 5.9% improvement when compared with FR BIC [9], and 

9.5% improvement when compared with BPNN PSO [18], which is due to use of GWO& GA Model, that 

assists in continuous optimization of yield extraction timings under different farm-based use cases. Due to this, 

the model is capable of improving farm yield, while optimizing yield extraction timings & deployment costs. 

Thus, the model is suitable for low cost, high precision, and high-performance farm deployments, with high 

efficiency of yield extraction under real-time use cases. 

 

5. Conclusion and future scope 

The proposed BMSICM Model uses a combination of GWO with GA for continuous optimization of sensor 

selection, water flow estimation, fertilizer quantity estimation, and yield extraction time lines. The model also 

proposes use of a correlation engine which assists in continuous optimization of the IrIoT deployments. Due to 

these optimizations, it was observed that the proposed model is capable of showcasing8.5% improvement in 

accuracy of fertilizer prediction when compared in DLNN [8], 5.9% improvement when compared with FR 

BIC [9], and 6.5% improvement when compared with BPNN PSO [18], which is due to use of GA Model, that 

assists in continuous optimization of fertilizer prediction. It was also observed that the proposed model 

showcased10.5% improvement in accuracy of water flow prediction when compared in DLNN [8], 8.5% 

improvement when compared with FR BIC [9], and 12.5% improvement when compared with BPNN PSO 

[18], which is due to use of GA Model, that assists in continuous optimization of water flow prediction. The 

model also showcased8.3% improvement in precision of monitoring when compared in DLNN [8], 6.5% 
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improvement when compared with FR BIC [9], and 9.5% improvement when compared with BPNN PSO [18], 

which is due to use of GWO Model, that assists in continuous optimization of sensor selection. It was also 

observed that the model showcases 6.5% improvement in accuracy of yield extraction when compared in 

DLNN [8], 5.9% improvement when compared with FR BIC [9], and 9.5% improvement when compared with 

BPNN PSO [18], which is due to use of GWO & GA Model, that assists in continuous optimization of yield 

extraction timings under different farm-based use cases. In future, the model must be validated on larger farm 

scenarios, and can be extended via use of Q-Learning, & Reinforcement Learning based methods. The model 

performance can also be improved via use of large-scale Convolutional Neural Networks (CNNs), Region 

based CNNs (RCNNs), and Recurrent NNs (RNNs), which will assist in further optimizing its performance 

under different real-time farm-based use cases. 
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