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Abstract - IoT has seen rapid development over the past decade in many applications that consume considerable memory, 

energy, computing resources and mainly impose strict time requirements. This can be fulfilled by the concept of edge 

computing by bringing the intelligence nearer to the data source itself for task computation and other necessary 

executions. The requirement of smart control and decision at each level depends on the time sensitivity of the IoT 

application. There is a need of mechanism in task and device management for assigning, offloading and scheduling the 

task among the edges. This paper proposes a scheme of computation offloading termed as Task scheduling with CPU 

allocation offloading Scheme (TSCAOS) and formulated for providing all-inclusive processes to derive the optimal 

computation offloading decision for tasks between the edge nodes and edge servers. In this work, primarily, tasks are 

partially offloaded with the calculation of the energy consumption by the task from the edge node to edge servers. Edge 

server’s tasks scheduling algorithm is developed in which tasks received from the edge nodes are scheduled according to 

the priority level of tasks arranged in the queue with high, low and medium levels. Finally, the processes are combined 

with the resource allocation scheme where after the task arrangement, edge CPU utilization is calculated and servers are 

arranged with their utilization power. Then the resources are allocated according to CPU levels and task priorities to 

complete the computation. Here the proposed scheme is experimented using virtual reality application in EdgeCloudSim 

simulator comparing with three other existing offloading algorithms. The evaluation and analysis show that TSCAOS 

performs better in terms of response time, processing delay, low failed task rate and execution time.     

 

Index Terms - Edge computing, Edge server, IoT, Offloading computation, Partial offloading, Resource allocation, Task 

scheduling. 

INTRODUCTION 

The huge expansion of Internet-of-Things (IoT) devices has increased the demands for effective processing of low latency 

stream data generated near the edge of the network. By 2030, IHS Market has predicted that the number of IoT devices will 

proliferate to more than 125 billion [1]. The general fact is that applications developed using IoT put forth severe demands for low 

latency computations. For instance, Virtual Reality (VR) applications utilize head tracked systems which needs latencies less than 

16 ms for achieving perceptual stableness [2]. Vehicle applications that are connected autonomously with features like traffic 

efficiency, warning of collisions, autonomous driving etc. possess latency requirements ranging from 10ms to 100ms [3]. This 

requirement of low latency computing is facilitated by edge computing with an efficient infrastructure for the IoT based 

applications by moving the computation near the end devices including smart home hubs (for instance., Amazon, Amazon Echo, 

Google Home), micro datacenters and road side units [4], [5] deployed at the edge of the network near the IoT devices. Edge 

computing [2] provides computations and storage devices at the edge of the network by utilizing edge servers close to users like 

Cloudlet and MEC. Moreover, it has some unique features like high bandwidth, low latency and security when compared to cloud 

computing mode whereas the problem lies in the way of making offloading decision influenced by several factors like the 

characteristics of tasks, network conditions and differences in platform. The potential gains from offloading are diminished by the 

complexity and versatility of the task is an instance of this. Also, the offloading benefits are affected by the instability in network 

and if the offloading decision fails to take account of variations in these factors, poor performance results. Therefore, the ways to 

make offloading decision in accordance with different factors and their unpredictable variations for achieving the desired 

objectives is still under research. 

The process of computation offloading deals with offloading the computation tasks to Edge Computing using certain 

procedures for transmission, remote execution and sending back the results. The scheme of offloading involves the following key 

components – i) Task partition, ii) Placement of tasks, iii) Resource allocation. (i)Task partition: If a task can be divided, then it is 

divided optimally before the process of offloading commences. If not, then the entire task needs to be offloaded to an EC server. 

(ii) Task placement (offloading decision): Here, the process of deciding which EC server is to be executing the whole or divided 

task and it is also to be noted that the task can also be executed locally. (iii) Resource allocation: It deals with determining the 

number of resources (computing, communication and energy) required to be allocated to tasks. These key components have a key 

role in the modeling of computation offloading process. The purpose of offloading modeling lies in finding an optimal solution for 

these components (the way of partitioning the task, the type of decision, and the number of resources to be allocated) so as to 

optimize the offloading performance. 
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In our proposed work, for decreasing the total cost of the whole system with respect to energy consumption and network 

latency, an effective computation offloading model is constructed as an integer optimization problem for a Virtual reality (VR) 

based multi-level multi-player multi-task edge-cloud computing system. Additionally, the environment has concerned a single 

cloud computing connected with the multi edge computing server through an intelligent core network. And it is based on Software 

Defined Networking (SDN) technology for providing more resources if the number of VR devices expands and the resources of 

edge server becomes insufficient. An effective algorithm termed as Task scheduling with CPU allocation offloading Scheme 

(TSCAOS) is formulated for providing all-inclusive processes for deriving the optimal offloading decision in computation. This 

scheme is detailed in the upcoming sections. The proposed scheme is developed and implemented in VR application scenario that 

is simulated in Edgecloudsim and evaluated with edge metrices. 

RELATED WORKS 

Several existing works have focused on task scheduling, computation offloading problem and overloaded CPU in the edge 

computing environment with multi user or multi IoT devices combined in edge computing scenarios. The major problem of edge 

computing lies in the way offloading decisions are made and it is influenced by several factors like characteristics of task, network 

conditions and platform differences. A review on the offloading policies, task scheduling approaches and CPU allocation with 

energy, priority and server service availability constraints is given. 

 
FIGURE 1 

THE PROPOSED ALGORITHM WORKING ON THE EDGE COMPUTING SCENARIO. 

 Offloading Approaches: Different locations such as IoT devices, edge server or cloud can be used for computation tasks.  

The offloading destination relies on the exchange between various objectives and impact factors [6]. The most crucial step in 

the offloading process is to find whether to offload. The offloading decision is influenced by various transient factors like the 

devices, network, services and user which tend to change often. The edge servers like Fog nodes [5], Cloudlets [7] or MEC 

servers are used by the IoT devices to offload the computation tasks and that gets further processing and hence, cost and 

latency can be reduced effectively. The authors in [8] utilized generic edge servers like MEC or cloudlets for offloading Deep 

Neural Network (DNN) computation tasks from IoT devices. Machine Learning (ML) algorithms are used by the embedded 

devices in offloading scenarios for the further improvement of the app performance. Two categories of processing such as 

parallel processing and program partitioning are capable of improving the offloading performance. However, some tasks 

cannot be partitioned into multiple tasks for the parallel execution as some programs would be highly interconnected or 

comparatively small. Therefore, local device is preferred for such execution or it is offloaded as a whole in the server. to sum 

up with, the offloading strategies can be categorized as full offloading and partial offloading. 

Partial offloading deals with partitioning the program into several tasks and offloading them to the server. The strategies 

involved in partial offloading is classified as single and multiple users. Authors in [9] introduced wireless parameter and 

utilized component dependency graphs (CDG) for optimizing the task scheduling and offloading decisions by proposing 

mobile application based joint scheduling and computation offloading (JSCO). This method completely reduced the time 

taken for execution by acquiring the benefits of mobile and cloud parallel processing. [10] described a general offloading 

scheduling problem for video applications in real time based on energy saving methodology.  An adaptive scheduling method 

is proposed based on the dynamic wireless network conditions. [12] explained about single Edge and an Edge computing 

server and the edge decides on whether to offload a partial computation task to the EC server.[13], [14] extended the above 

mentioned scenario to multiple users computation offloading in the multi-channel wireless contention scenario.[11] and  [14] 

discussed offloading with parallel components. where, an edge divides the task and offloads  part of the components to an EC 

server. λ(0 ≤ λ ≤ 1) was defined as the proportion of locally executed amount of bits to the total input data bits, i.e., (1 − λ) is 

the ratio of offloaded bits to the total bits. Complete granularity is assumed in data partition for simplifying the analysis [16] 

and the task is divided into components of any size. The important factor to optimize the offloading performance is to 

determine the optimal λ.[17] performed offloading based on complete granularity in partitioning of data and simultaneous 

execution of components. Through this survey, it is concluded that energy consumption with task management has to be 

considered for the partial offloading in edge nodes to edge server level architecture. 

 Task Scheduling in Edge computing: Internet services has attained a rapidity in its growth that led to versatility in 

computation intensive applications like virtual reality. There is a need for the users to decide about offloading their 
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applications to central/ edge clouds as high computing costs results when the applications are executed in end devices and 

high transmission cost incurs when the applications are executed in central/edge clouds. Task offloading involves mapping 

the users’ tasks to appropriate resources in the form of Virtual Machines (VMs) for execution. In Cloud Computing (CC), 

users alone are considered to decide whether to offload their tasks or not as there is only one data center usually whereas in 

Edge Computing (EC), users have an option to consider where to offload their tasks as many edge clouds are present. For 

improving QoS in CC and EC, task scheduling becomes a critical issue [18].  

Authors in [19] proposed a Genetic Algorithm (GA) oriented computation task offloading methodology for Mobile Cloud 

Computing (MCC). Energy consumption and execution time are optimized for arriving at robust offloading in mobile 

devices. The proposed approach produces near optimal solutions which is demonstrated by numerical results with near linear 

algorithmic complexity. GA based methodology was framed in [19] for reducing the communication and computation energy 

for elastic applications by determining the optimum offloading solution through augmented execution of mobile applications. 

The authors devised an optimization problem by lessening the cost function which is the combination of communication and 

computation energy. [20] states a GA for the placement of service in FC and surveyed about mapping data streams over fog 

nodes and given an optimized model. An extensible heuristic over GA is applied for tackling this model. The stability and 

performance of the proposed heuristic approach was verified using the experimental results. [21] satisfied the constraints in 

completion time and minimized the energy consumption by suggesting a task caching and migration mechanism in MEC 

based on GA. A fine-grained task partitioning migration model was applied for transforming the users’ tasks into directed 

graphs with multiple subtasks. Further, the task caching is performed for reducing the energy consumption and delay. From 

the above survey, it is evident that the proposed methodology should be efficient specifically in dealing with task processing 

delay and energy consumption. 

 CPU Service Allocation: The impact of computation offloading majorly relies in selecting the edge server nodes for 

providing service to process the tasks [22]. The edge server nodes could be edge servers or IoT based edge servers in the 

vicinity of cloud server [23]. A task is offloaded to any server node for execution where Edge device considers server nodes’ 

computing capacity, available resources, distance and access technologies before arriving at the offloading decision. Authors 

in [24] studied reinforcement learning (RL) for allocating resources autonomously in CC, where proper initialization is 

framed at the early stages and convergence speedups are also applied in the learning stages. Authors [25] have chosen fog 

radio access networks by proposing a RL associated resource allocation algorithm.  They framed the resource allocation 

problem as an Markov decision process (MDP) in two alternative formulations: infinite and finite-horizon MDP. Authors [26] 

infused greedy Q-learning for allocating the resources by proposing a RL approach in EC. Authors in [27] developed a GA 

for scheduling tasks in CC by distributing the loads among VMs efficiently for optimizing the complete response time using 

greedy based methods and First Come First Served approach. Authors [28] created a job scheduling model in CC based on 

multi objective GA for minimizing the consumption of energy and maximizing the profit of service. 

 Task management Edge computing Architecture: The architecture has mobile edge nodes and edge servers as shown in 

Figure 1. The architecture considers many mobile edge nodes and edge servers which is connected in same wireless network 

with a task exchange. Each end device is the source generator of task and connected to the closer edge nodes where the task 

data is collected and processed, further offloaded to the edge server network for the task execution. If the task needs more 

computational power, then further sent to cloud for the execution of the task. This architecture can be considered as 4 tier 

architecture with end node layer, edge node layer, edge server layer and cloud server layer. Applications having computation 

intensive and time sensitive tasks can be handled well by four-tier architecture where the cloud and edge manage the former 

and latter respectively. The interface between the edge node and edge server and assigning of tasks are more focused in 

designing the four-tier architecture (i.e., assigning which tasks are executed at the edge node and at the edge server). The task 

allocation and offloading methodology between this layer is described in next section. 

TASK SCHEDULING WITH CPU ALLOCATION OFFLOADING SCHEME (TSCAOS) 

The Edge computing system’s structure is depicted in Figure 1. The edge server is considered as a mini data center installed at a 

wireless access station and several edge node devices communicate with edge server. Edge node is appended to edge server that is 

closer and with the help of wireless channel, edge node sends the tasks. A similar MEC architecture was described by methods in 

[29]. Here in this working edge servers   are benefited with improved computation performance and reduced energy consumption 

in edge devices using task offloading.  

The proposed model possesses two layers: Mobile edge nodes and edge servers. Here, several task allocation methods are 

provided along with the specifications of how and where to handle tasks. Two models for allocation of tasks are framed and 

combined together in the proposed TSCAOS edge-based architecture that are (i) Partial offload process (ii) task allocation iii) 

CPU utilization server allocation. Scheduling and allocations in task management with respect to edge computing are discussed 

further in the following sections.   

The decision for optimal offloading fraction of tasks for each mobile edge node is the crucial problem drawn up from an energy 

efficiency optimizing problem under the edge-based system. The partial offloading formula is formulated from the equation of 

 that is called as fraction of task offloading and it is detailed and derived in [29]. The derivation is based on the energy 

consumption of each mobile edge node with local execution and partial offloading decision mechanism. It is further optimized by 

the lambert function and adapted as a result  which is called as optimal fraction task offloading and it is derived in [29] to 

compute the optimal partial offloading equation whose equation is defined in Eq. (1) and its variable are detailed in the Table I. 

   (1) 
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TABLE I 

PARAMETERS USED IN OFFLOAD PROCESS MODEL 

Variables Description 

 

Task  

 

End edge node  

 
Task modeled by each edge node  

 

CPU cycle per bit of task 

 

Task data size 

 

Deadline requirement 

 

Task Priority value 

 
Task offloading fraction 

 

Collection of task t by edge node m 

 
Edge node offloading data size calculated using  

 

 

Edge node power consumption 

 

Optimal fraction task offloading  

 

Edge server computing capability 

 

Transmission range of edge node  

 

Edge node computing capability 

 

The variables in Equation (1) are briefly explained in Table I. From the above discussion, it can be inferred that optimal 

computation offloading fraction is closely related to the task’s data size and latency requirement. 

 

 
The TSCAOS mechanism is composed of three modules: Module I in mobile edge node layer for partial offloading, Module II in 

edge layer with task allocation and Module III in edge layer with resource allocation The optimal offloading decision model 

calculates the offloading fraction with each node generating its task randomly within the mobile edge device as explained in the 

pseudo code for Module I. Initially, the optimal computation offloading fractions are calculated by the mobile edge devices for 

each batch of task in Module I. Fraction  and  of tasks are offloaded to the edge server and executed in local edge 

node within this step respectively.  
TABLE II 

PARAMETERS USED IN SCHEDULING ALGORITHM 

Variables Description 

 

High priority queue  

 

Medium priority queue 

 Low priority queue 

 

Threshold 1 

 

Threshold 2 

 

Waiting time for each task x 

 

Task x  

 Latency requirement 

 

Current time  

  Formula for waiting time for 
each task 

 

Estimated service time for task  

 

Subscribed priority catalog 

value, Level High = 1 , Level 
Medium = 2, Level Low = 3 

 

Pseudocode for Module I: Mobile Edge Node Layer – 

Task offloading Algorithm 

1:  for each edge node m 

2:        for each  

3:     Calculate  ; 

4:     Offload   task to edge server; 

5:      Execute   task at local node 

6: end for  

7: end for  
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The existing priority-based scheduling algorithm in edge server layer is enhanced as offloading tasks from mobile users with 

varying latency needs that required to be satisfied with respect to research in [30]. Table II presents the parameters and the 

formulas used in prioritized scheduling model. In Module II (edge server layer), all the offloading tasks from mobile edge node 

are processed and ordered by edge server in a priority queue depending on the subscription catalogues, latency requirement and 

priority levels. 

With respect to latency requirement and subscription catalogues, task is placed in one of three queues. Thresholds are used for 

rearranging the tasks in accordance to their latency requirements and subscribed priority levels.  Based on the experiments, the 

threshold values   and  are set such that  is less than  .Therefore, the maximum waiting time,  is used to 

check against estimated service time ,  and  . The tasks having severe latency requirement and loose latency 

requirement will be inserted into high priority and medium or low priority queues respectively. Therefore, tasks having high 

priority are processed first. 

Module II is executed for those tasks offloading to edge server. All offloading requests from mobile edge devices are processed 

here with maximum waiting time and compared against estimated execution time . If  is less than or equal to,  

the task is placed in to highest priority queue   irrespective of subscription catalogues. The value of  withis added   

threshold value  and  individually. And if the value of   lies between them, then the task is placed into the queue 

based on its subscription catalogues. Finally,  plus   is checked with threshold valueIf the corresponding queue .  

has space, the task is placed in its original subscription catalogue, or else, downgrade one queue level. This model ensures that 

high priority tasks are executed first by the application of this algorithm. 

Module III is final execution of the whole TSCAOS system where the CPU allocation according to the task of major concern. In 

this process module I and module II  are executed at the step 3 and 4 with the calculation of the partial offloading  that is executed 

for the task priority calculation. The tasks are placed in the ,   according to the priorities of the tasks categories. 

After the sorting of tasks in the edge server pool, edgesi CPU utilization is calculated. Each edgesi CPU utilization is divided into 

high and low utilization and if it is having same utilization then the steps of the partial offloading is repeated till the value 

changes. From the task queue the 3 categorical tasks are assigned where  is assigned to the low utilization CPU edgesi,  is 

assigned to CPU edgesi – 1,  is assigned to CPU edgesi – 2. In this way the task is assigned to the edge server where the tasks 

are computed efficiently. Through this task failure is reduced, the processing speed increases and the overall delay performance is 

reduced. 

 

Pseudocode for Module II: Edge Layer - Priority offloading 

Algorithm  

 

1: for each task in edge server queue 
2:  Task manager in edge server check maximum waiting time 

  by (2); 

3:  if  ≤  ,then 

4:   Place task x in ; 

5:  else if  .,then 

6:   if  ==1, then 

7:        Place task x in  ; 

8:   if  ==2, then 

9:        Place task x in  ; 

10:  if  ==3, then 

11:        Place task x in  ; 

12: else if  .,then 

13:   if  ==1, and is  not full, then 

14:    Place  in ; 

15:  else 

16:   Place  in ; 

17:   else if  ==2, and is  not full, then 

18:    Place  in ; 

19:  else 

20:   Place  in ; 

21:  else if  ==3, then 

22:   Place  in ; 

23: end if 

24: end for 
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TABLE III 
COMPARISON OF DIFFERENT SCHEMES WITH PROPOSED SCHEME 

Model used for 

Comparison 

Schemes applied at 

Edge nodes 

Schemes 

applied at Edge 

servers 
All local processed First Come First 

Served (FCFS) 

Not Applicable 

All Edge processed Not Applicable  Earliest Deadline 
First (EDF) 

Partial offload with Task 

allocation (POTA) 

Partial offloading 

Scheme 

Task Scheduling 

Scheme  
TSCAOS Partial offloading 

Scheme 

Task Scheduling 

Scheme + CPU 

allocation 
Scheme  

PERFORMANCE & EVALUATION  

Edge computing has stepped into different applications like Virtual/Augmented Reality (VR/AR), online videos and games. In 

Cloud computing and Edge computing, metrics like privacy and security, cost, latency, throughput, resource utilization, energy 

consumption need to be evaluated for proving the effectiveness of the system and to provide Quality of Service (QoS). These 

metrics can be enhanced by considering issues like allocation of tasks, scheduling of jobs and offloading of tasks. For instance, 

designing of effective task offloading and accurate resource allocation improves privacy, security and energy consumption, 

latency respectively [31], [32]. Additionally, appropriate task offloading approaches enable the optimality in consumption of 

energy and latency [21], [33].  However, TSCAOS is proposed for increasing the efficiency of task completion and fulfilling the 

edge computing purpose that to compute the task near the edge nodes itself. In this work, four models as shown in Table III are 

developed in the simulator to check the efficiency of the proposed scheme between the edge servers. 

The EdgeCloudSim simulator is used for the experimental purpose to implement the four models and check the efficiency of the 

model. Although, EdgeCloudSim simulator simulates the mobility of devices and thereby investigates the failure rate of tasks, 

Pseudo code for Module III: Task Allocation through 

edge server CPU utilization 

 

1: for each task  in edge server queue, where 

 

2:  Calculate   by eq (1); 

3:  Partial_offload (); by module 1 

4:  Task_assignment (); by module 2 

5: end for 

6: Update & store task information; 

7: for all edgesi in edge server pool where si = {1, 2…n} 

8:       calculate edgesi CPU utilization; 

9:          Find high edgesn & low edgesn CPU utilization;      

10:          if the edgesi with same CPU utilization 

11:                goto step 2; 

12:             else 

13:                for each task   in edge server 

queue;  

14:                    if  task arrives 

15:     Find the edgesi with low CPU 

utilization; 

16:     Assign  in edgesi; 

17:                    else if  task arrives 

18:      Find the (edgesi – 1) with low CPU 

utilization; 

19:      Assign  in edgesi; 

20:                   else if  task arrives; 

21:      Find the (edgesi – 2) with low CPU 

utilization; 

22:      Assign  in edgesi; 

23:             end if 

24:                 end for  

25:              end if 

26: end for  
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virtual machine (VM) migration methods are not supported by it. Also, it considers the impact of network load and delays in 

transmission over the delay of service requests. The load generator facilitates the task generation dynamically with individual data 

size and length. For experimental purpose, the models are considered as shown in Table III that are (i) All local processed model 

runs locally between the edge nodes where the computation of task is locally processed and executed near the source itself and 

uses FCFS scheme in the edge nodes. (ii) All edge processed model, in which every task generated from the source of edge node 

is sent to the edge server network and executed in the edge server with the help of Earliest Deadline First (EDF) scheme. (iii) 

Partial offload with task allocation (POTA) model offloads the task partially from edge nodes to the edge servers. And these tasks 

are again scheduled based on priority using priority scheduling algorithm.   (iv)TSCAOS is the proposed scheme which is 

developed by extending POTA model using CPU utilization scheme at the edge server network. Here, the task execution occurs in 

edge server network according to the CPU usage and availability. These four models are framed with the experimental parameters 

as shown in Table III where the scenarios are created accordingly with some application framework working with task execution.  

 A virtual reality game application is modeled with some random simulation parameters in the EdgeCloudSim. The four models 

listed in Table III are deployed and evaluated through performance metrices such as response time, processing delay, total task 

failure rate and execution time. 
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FIGURE 2  

(A) UPLOADING, (B)PROCESSING, (C) DOWNLOADING TIME COMPARISON WITH DIFFERENT TASK SIZES. 

 

FIGURE 3  

 RESPONSE TIME AGAINST DATA USAGE UPLOADING 

 

FIGURE 4  

PROCESSING DELAY AGAINST DATA USAGE 

The graphs given in Figure 2 (A), (B) and (C) shows the uploading time, processing time and downloading time respectively for 

all algorithms with respect to task size. TSCAOS performs better with all the tasks sizes. In the Figure 3 the graph represents 

comparison between the average response tie vs data usage of the algorithm’s performance. The response time is the addition of 

the above parameters like uploading, processing and downloading in terms of milli second (ms) with the different data usage. In 

this comparison TSCAOS takes 35.02 % less response time for completing the task then the other algorithms. In the Figure 4 

shows the graph of processing delay with respect to data usage, here the TSCAOS reduces the delay by 30.86% compared to other 

algorithms. 
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FIGURE 5  

SIMULATION TIME INTERVALS FOR PROCESSING TIME FOR EACH TASK EXECUTION 

 
FIGURE 6  

SIMULATION TIME INTERVALS FOR FAILED TASK RATE %  OF EACH TASK EXECUTION 

Here the TSCAOS algorithm is evaluated against different algorithms listed in Table III by means of failed task rate and 

processing time against the different simulation times. The simulation time is measured at increasing period of 20 min time 

interval for each task in EdgeCloudSim simulator. The five simulation tasks taken for experimental execution in above time 

intervals are 10, 20, 30, 40 and 50 Mbps sizes. The processing time against execution time (simulation time) for above mentioned 

tasks using different algorithms is depicted in Figure 5. In the same manner, task failure rate is also measured against execution 

time (simulation time) which is depicted in Figure 6. TSCAOS reduces the task failure rate and processing time by 48.49% and 

36.11% respectively when compared to other methods. 

 

CONCLUSION 

IoT computation demands are increasing rapidly and therefore relies on edge computation mechanisms to complete the task 

executions. This paper proposes task scheduling with CPU allocation offloading Scheme that is TSCAOS implemented in edge 

server network and compared with the existing offloading schemes. From the analysis, the other offloading schemes are 

developed using   the partial offloading and task scheduling schemes by combining both or individual implementation. The major 

shortcoming is not considering the CPU utilization. In this work, a novel scheme termed TSCAOS is proposed where task 

scheduling and partial offloading are performed from node to edge servers by considering the utilization of CPU.  A virtual reality 

application is used for the simulation in EdgeCloudSim simulator. Based on the simulation results comparisons are done for FCFS 

in local node layer, EDF in edge node layer, POTA in edge node and edge server layer and TSCAOS in edge node to edge server 

layer from which TSCAOS outperforms in means of response time and processing delay. In this comparison TSCAOS takes 35.02 

% less response time, reduces the delay by 30.86% compared to other algorithms. TSCAOS also reduces the task failure rate by 

48.49% and execution time by 36.11% comparatively. In future, more applications can be evaluated using this algorithm and by 

increasing the task sizes and resource allocation levels. The proposed scheme can be further explored with more resource 

parameters which influence the efficiency of task accomplishment. 
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