
Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

426

ISSN: 0974-5823 Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

Task Scheduling Scheme using Resource Allocation

for Edge Computing Model

 S.Premkumar and AN.Sigappi

Department of Computer Science & Engineering,

Faculty of Engineering & Technology,

Annamalai University, Tamilnadu, India

Abstract - IoT has seen rapid development over the past decade in many applications that consume considerable memory,

energy, computing resources and mainly impose strict time requirements. This can be fulfilled by the concept of edge

computing by bringing the intelligence nearer to the data source itself for task computation and other necessary

executions. The requirement of smart control and decision at each level depends on the time sensitivity of the IoT

application. There is a need of mechanism in task and device management for assigning, offloading and scheduling the

task among the edges. This paper proposes a scheme of computation offloading termed as Task scheduling with CPU

allocation offloading Scheme (TSCAOS) and formulated for providing all-inclusive processes to derive the optimal

computation offloading decision for tasks between the edge nodes and edge servers. In this work, primarily, tasks are

partially offloaded with the calculation of the energy consumption by the task from the edge node to edge servers. Edge

server’s tasks scheduling algorithm is developed in which tasks received from the edge nodes are scheduled according to

the priority level of tasks arranged in the queue with high, low and medium levels. Finally, the processes are combined

with the resource allocation scheme where after the task arrangement, edge CPU utilization is calculated and servers are

arranged with their utilization power. Then the resources are allocated according to CPU levels and task priorities to

complete the computation. Here the proposed scheme is experimented using virtual reality application in EdgeCloudSim

simulator comparing with three other existing offloading algorithms. The evaluation and analysis show that TSCAOS

performs better in terms of response time, processing delay, low failed task rate and execution time.

Index Terms - Edge computing, Edge server, IoT, Offloading computation, Partial offloading, Resource allocation, Task

scheduling.

INTRODUCTION

The huge expansion of Internet-of-Things (IoT) devices has increased the demands for effective processing of low latency

stream data generated near the edge of the network. By 2030, IHS Market has predicted that the number of IoT devices will

proliferate to more than 125 billion [1]. The general fact is that applications developed using IoT put forth severe demands for low

latency computations. For instance, Virtual Reality (VR) applications utilize head tracked systems which needs latencies less than

16 ms for achieving perceptual stableness [2]. Vehicle applications that are connected autonomously with features like traffic

efficiency, warning of collisions, autonomous driving etc. possess latency requirements ranging from 10ms to 100ms [3]. This

requirement of low latency computing is facilitated by edge computing with an efficient infrastructure for the IoT based

applications by moving the computation near the end devices including smart home hubs (for instance., Amazon, Amazon Echo,

Google Home), micro datacenters and road side units [4], [5] deployed at the edge of the network near the IoT devices. Edge

computing [2] provides computations and storage devices at the edge of the network by utilizing edge servers close to users like

Cloudlet and MEC. Moreover, it has some unique features like high bandwidth, low latency and security when compared to cloud

computing mode whereas the problem lies in the way of making offloading decision influenced by several factors like the

characteristics of tasks, network conditions and differences in platform. The potential gains from offloading are diminished by the

complexity and versatility of the task is an instance of this. Also, the offloading benefits are affected by the instability in network

and if the offloading decision fails to take account of variations in these factors, poor performance results. Therefore, the ways to

make offloading decision in accordance with different factors and their unpredictable variations for achieving the desired

objectives is still under research.

The process of computation offloading deals with offloading the computation tasks to Edge Computing using certain

procedures for transmission, remote execution and sending back the results. The scheme of offloading involves the following key

components – i) Task partition, ii) Placement of tasks, iii) Resource allocation. (i)Task partition: If a task can be divided, then it is

divided optimally before the process of offloading commences. If not, then the entire task needs to be offloaded to an EC server.

(ii) Task placement (offloading decision): Here, the process of deciding which EC server is to be executing the whole or divided

task and it is also to be noted that the task can also be executed locally. (iii) Resource allocation: It deals with determining the

number of resources (computing, communication and energy) required to be allocated to tasks. These key components have a key

role in the modeling of computation offloading process. The purpose of offloading modeling lies in finding an optimal solution for

these components (the way of partitioning the task, the type of decision, and the number of resources to be allocated) so as to

optimize the offloading performance.

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

427

In our proposed work, for decreasing the total cost of the whole system with respect to energy consumption and network

latency, an effective computation offloading model is constructed as an integer optimization problem for a Virtual reality (VR)

based multi-level multi-player multi-task edge-cloud computing system. Additionally, the environment has concerned a single

cloud computing connected with the multi edge computing server through an intelligent core network. And it is based on Software

Defined Networking (SDN) technology for providing more resources if the number of VR devices expands and the resources of

edge server becomes insufficient. An effective algorithm termed as Task scheduling with CPU allocation offloading Scheme

(TSCAOS) is formulated for providing all-inclusive processes for deriving the optimal offloading decision in computation. This

scheme is detailed in the upcoming sections. The proposed scheme is developed and implemented in VR application scenario that

is simulated in Edgecloudsim and evaluated with edge metrices.

RELATED WORKS

Several existing works have focused on task scheduling, computation offloading problem and overloaded CPU in the edge

computing environment with multi user or multi IoT devices combined in edge computing scenarios. The major problem of edge

computing lies in the way offloading decisions are made and it is influenced by several factors like characteristics of task, network

conditions and platform differences. A review on the offloading policies, task scheduling approaches and CPU allocation with

energy, priority and server service availability constraints is given.

FIGURE 1

THE PROPOSED ALGORITHM WORKING ON THE EDGE COMPUTING SCENARIO.

 Offloading Approaches: Different locations such as IoT devices, edge server or cloud can be used for computation tasks.

The offloading destination relies on the exchange between various objectives and impact factors [6]. The most crucial step in

the offloading process is to find whether to offload. The offloading decision is influenced by various transient factors like the

devices, network, services and user which tend to change often. The edge servers like Fog nodes [5], Cloudlets [7] or MEC

servers are used by the IoT devices to offload the computation tasks and that gets further processing and hence, cost and

latency can be reduced effectively. The authors in [8] utilized generic edge servers like MEC or cloudlets for offloading Deep

Neural Network (DNN) computation tasks from IoT devices. Machine Learning (ML) algorithms are used by the embedded

devices in offloading scenarios for the further improvement of the app performance. Two categories of processing such as

parallel processing and program partitioning are capable of improving the offloading performance. However, some tasks

cannot be partitioned into multiple tasks for the parallel execution as some programs would be highly interconnected or

comparatively small. Therefore, local device is preferred for such execution or it is offloaded as a whole in the server. to sum

up with, the offloading strategies can be categorized as full offloading and partial offloading.

Partial offloading deals with partitioning the program into several tasks and offloading them to the server. The strategies

involved in partial offloading is classified as single and multiple users. Authors in [9] introduced wireless parameter and

utilized component dependency graphs (CDG) for optimizing the task scheduling and offloading decisions by proposing

mobile application based joint scheduling and computation offloading (JSCO). This method completely reduced the time

taken for execution by acquiring the benefits of mobile and cloud parallel processing. [10] described a general offloading

scheduling problem for video applications in real time based on energy saving methodology. An adaptive scheduling method

is proposed based on the dynamic wireless network conditions. [12] explained about single Edge and an Edge computing

server and the edge decides on whether to offload a partial computation task to the EC server.[13], [14] extended the above

mentioned scenario to multiple users computation offloading in the multi-channel wireless contention scenario.[11] and [14]

discussed offloading with parallel components. where, an edge divides the task and offloads part of the components to an EC

server. λ(0 ≤ λ ≤ 1) was defined as the proportion of locally executed amount of bits to the total input data bits, i.e., (1 − λ) is

the ratio of offloaded bits to the total bits. Complete granularity is assumed in data partition for simplifying the analysis [16]

and the task is divided into components of any size. The important factor to optimize the offloading performance is to

determine the optimal λ.[17] performed offloading based on complete granularity in partitioning of data and simultaneous

execution of components. Through this survey, it is concluded that energy consumption with task management has to be

considered for the partial offloading in edge nodes to edge server level architecture.

 Task Scheduling in Edge computing: Internet services has attained a rapidity in its growth that led to versatility in

computation intensive applications like virtual reality. There is a need for the users to decide about offloading their

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

428

applications to central/ edge clouds as high computing costs results when the applications are executed in end devices and

high transmission cost incurs when the applications are executed in central/edge clouds. Task offloading involves mapping

the users’ tasks to appropriate resources in the form of Virtual Machines (VMs) for execution. In Cloud Computing (CC),

users alone are considered to decide whether to offload their tasks or not as there is only one data center usually whereas in

Edge Computing (EC), users have an option to consider where to offload their tasks as many edge clouds are present. For

improving QoS in CC and EC, task scheduling becomes a critical issue [18].

Authors in [19] proposed a Genetic Algorithm (GA) oriented computation task offloading methodology for Mobile Cloud

Computing (MCC). Energy consumption and execution time are optimized for arriving at robust offloading in mobile

devices. The proposed approach produces near optimal solutions which is demonstrated by numerical results with near linear

algorithmic complexity. GA based methodology was framed in [19] for reducing the communication and computation energy

for elastic applications by determining the optimum offloading solution through augmented execution of mobile applications.

The authors devised an optimization problem by lessening the cost function which is the combination of communication and

computation energy. [20] states a GA for the placement of service in FC and surveyed about mapping data streams over fog

nodes and given an optimized model. An extensible heuristic over GA is applied for tackling this model. The stability and

performance of the proposed heuristic approach was verified using the experimental results. [21] satisfied the constraints in

completion time and minimized the energy consumption by suggesting a task caching and migration mechanism in MEC

based on GA. A fine-grained task partitioning migration model was applied for transforming the users’ tasks into directed

graphs with multiple subtasks. Further, the task caching is performed for reducing the energy consumption and delay. From

the above survey, it is evident that the proposed methodology should be efficient specifically in dealing with task processing

delay and energy consumption.

 CPU Service Allocation: The impact of computation offloading majorly relies in selecting the edge server nodes for

providing service to process the tasks [22]. The edge server nodes could be edge servers or IoT based edge servers in the

vicinity of cloud server [23]. A task is offloaded to any server node for execution where Edge device considers server nodes’

computing capacity, available resources, distance and access technologies before arriving at the offloading decision. Authors

in [24] studied reinforcement learning (RL) for allocating resources autonomously in CC, where proper initialization is

framed at the early stages and convergence speedups are also applied in the learning stages. Authors [25] have chosen fog

radio access networks by proposing a RL associated resource allocation algorithm. They framed the resource allocation

problem as an Markov decision process (MDP) in two alternative formulations: infinite and finite-horizon MDP. Authors [26]

infused greedy Q-learning for allocating the resources by proposing a RL approach in EC. Authors in [27] developed a GA

for scheduling tasks in CC by distributing the loads among VMs efficiently for optimizing the complete response time using

greedy based methods and First Come First Served approach. Authors [28] created a job scheduling model in CC based on

multi objective GA for minimizing the consumption of energy and maximizing the profit of service.

 Task management Edge computing Architecture: The architecture has mobile edge nodes and edge servers as shown in

Figure 1. The architecture considers many mobile edge nodes and edge servers which is connected in same wireless network

with a task exchange. Each end device is the source generator of task and connected to the closer edge nodes where the task

data is collected and processed, further offloaded to the edge server network for the task execution. If the task needs more

computational power, then further sent to cloud for the execution of the task. This architecture can be considered as 4 tier

architecture with end node layer, edge node layer, edge server layer and cloud server layer. Applications having computation

intensive and time sensitive tasks can be handled well by four-tier architecture where the cloud and edge manage the former

and latter respectively. The interface between the edge node and edge server and assigning of tasks are more focused in

designing the four-tier architecture (i.e., assigning which tasks are executed at the edge node and at the edge server). The task

allocation and offloading methodology between this layer is described in next section.

TASK SCHEDULING WITH CPU ALLOCATION OFFLOADING SCHEME (TSCAOS)

The Edge computing system’s structure is depicted in Figure 1. The edge server is considered as a mini data center installed at a

wireless access station and several edge node devices communicate with edge server. Edge node is appended to edge server that is

closer and with the help of wireless channel, edge node sends the tasks. A similar MEC architecture was described by methods in

[29]. Here in this working edge servers are benefited with improved computation performance and reduced energy consumption

in edge devices using task offloading.

The proposed model possesses two layers: Mobile edge nodes and edge servers. Here, several task allocation methods are

provided along with the specifications of how and where to handle tasks. Two models for allocation of tasks are framed and

combined together in the proposed TSCAOS edge-based architecture that are (i) Partial offload process (ii) task allocation iii)

CPU utilization server allocation. Scheduling and allocations in task management with respect to edge computing are discussed

further in the following sections.

The decision for optimal offloading fraction of tasks for each mobile edge node is the crucial problem drawn up from an energy

efficiency optimizing problem under the edge-based system. The partial offloading formula is formulated from the equation of

 that is called as fraction of task offloading and it is detailed and derived in [29]. The derivation is based on the energy

consumption of each mobile edge node with local execution and partial offloading decision mechanism. It is further optimized by

the lambert function and adapted as a result which is called as optimal fraction task offloading and it is derived in [29] to

compute the optimal partial offloading equation whose equation is defined in Eq. (1) and its variable are detailed in the Table I.

 (1)

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

429

TABLE I

PARAMETERS USED IN OFFLOAD PROCESS MODEL

Variables Description

Task

End edge node

Task modeled by each edge node

CPU cycle per bit of task

Task data size

Deadline requirement

Task Priority value

Task offloading fraction

Collection of task t by edge node m

Edge node offloading data size calculated using

Edge node power consumption

Optimal fraction task offloading

Edge server computing capability

Transmission range of edge node

Edge node computing capability

The variables in Equation (1) are briefly explained in Table I. From the above discussion, it can be inferred that optimal

computation offloading fraction is closely related to the task’s data size and latency requirement.

The TSCAOS mechanism is composed of three modules: Module I in mobile edge node layer for partial offloading, Module II in

edge layer with task allocation and Module III in edge layer with resource allocation The optimal offloading decision model

calculates the offloading fraction with each node generating its task randomly within the mobile edge device as explained in the

pseudo code for Module I. Initially, the optimal computation offloading fractions are calculated by the mobile edge devices for

each batch of task in Module I. Fraction and of tasks are offloaded to the edge server and executed in local edge

node within this step respectively.
TABLE II

PARAMETERS USED IN SCHEDULING ALGORITHM

Variables Description

High priority queue

Medium priority queue

 Low priority queue

Threshold 1

Threshold 2

Waiting time for each task x

Task x

 Latency requirement

Current time

 Formula for waiting time for
each task

Estimated service time for task

Subscribed priority catalog

value, Level High = 1 , Level
Medium = 2, Level Low = 3

Pseudocode for Module I: Mobile Edge Node Layer –

Task offloading Algorithm

1: for each edge node m

2: for each

3: Calculate ;

4: Offload task to edge server;

5: Execute task at local node

6: end for

7: end for

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

430

The existing priority-based scheduling algorithm in edge server layer is enhanced as offloading tasks from mobile users with

varying latency needs that required to be satisfied with respect to research in [30]. Table II presents the parameters and the

formulas used in prioritized scheduling model. In Module II (edge server layer), all the offloading tasks from mobile edge node

are processed and ordered by edge server in a priority queue depending on the subscription catalogues, latency requirement and

priority levels.

With respect to latency requirement and subscription catalogues, task is placed in one of three queues. Thresholds are used for

rearranging the tasks in accordance to their latency requirements and subscribed priority levels. Based on the experiments, the

threshold values and are set such that is less than .Therefore, the maximum waiting time, is used to

check against estimated service time , and . The tasks having severe latency requirement and loose latency

requirement will be inserted into high priority and medium or low priority queues respectively. Therefore, tasks having high

priority are processed first.

Module II is executed for those tasks offloading to edge server. All offloading requests from mobile edge devices are processed

here with maximum waiting time and compared against estimated execution time . If is less than or equal to,

the task is placed in to highest priority queue irrespective of subscription catalogues. The value of withis added

threshold value and individually. And if the value of lies between them, then the task is placed into the queue

based on its subscription catalogues. Finally, plus is checked with threshold valueIf the corresponding queue .

has space, the task is placed in its original subscription catalogue, or else, downgrade one queue level. This model ensures that

high priority tasks are executed first by the application of this algorithm.

Module III is final execution of the whole TSCAOS system where the CPU allocation according to the task of major concern. In

this process module I and module II are executed at the step 3 and 4 with the calculation of the partial offloading that is executed

for the task priority calculation. The tasks are placed in the , according to the priorities of the tasks categories.

After the sorting of tasks in the edge server pool, edgesi CPU utilization is calculated. Each edgesi CPU utilization is divided into

high and low utilization and if it is having same utilization then the steps of the partial offloading is repeated till the value

changes. From the task queue the 3 categorical tasks are assigned where is assigned to the low utilization CPU edgesi, is

assigned to CPU edgesi – 1, is assigned to CPU edgesi – 2. In this way the task is assigned to the edge server where the tasks

are computed efficiently. Through this task failure is reduced, the processing speed increases and the overall delay performance is

reduced.

Pseudocode for Module II: Edge Layer - Priority offloading

Algorithm

1: for each task in edge server queue
2: Task manager in edge server check maximum waiting time

 by (2);

3: if ≤ ,then

4: Place task x in ;

5: else if .,then

6: if ==1, then

7: Place task x in ;

8: if ==2, then

9: Place task x in ;

10: if ==3, then

11: Place task x in ;

12: else if .,then

13: if ==1, and is not full, then

14: Place in ;

15: else

16: Place in ;

17: else if ==2, and is not full, then

18: Place in ;

19: else

20: Place in ;

21: else if ==3, then

22: Place in ;

23: end if

24: end for

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

431

TABLE III
COMPARISON OF DIFFERENT SCHEMES WITH PROPOSED SCHEME

Model used for

Comparison

Schemes applied at

Edge nodes

Schemes

applied at Edge

servers
All local processed First Come First

Served (FCFS)

Not Applicable

All Edge processed Not Applicable Earliest Deadline
First (EDF)

Partial offload with Task

allocation (POTA)

Partial offloading

Scheme

Task Scheduling

Scheme
TSCAOS Partial offloading

Scheme

Task Scheduling

Scheme + CPU

allocation
Scheme

PERFORMANCE & EVALUATION

Edge computing has stepped into different applications like Virtual/Augmented Reality (VR/AR), online videos and games. In

Cloud computing and Edge computing, metrics like privacy and security, cost, latency, throughput, resource utilization, energy

consumption need to be evaluated for proving the effectiveness of the system and to provide Quality of Service (QoS). These

metrics can be enhanced by considering issues like allocation of tasks, scheduling of jobs and offloading of tasks. For instance,

designing of effective task offloading and accurate resource allocation improves privacy, security and energy consumption,

latency respectively [31], [32]. Additionally, appropriate task offloading approaches enable the optimality in consumption of

energy and latency [21], [33]. However, TSCAOS is proposed for increasing the efficiency of task completion and fulfilling the

edge computing purpose that to compute the task near the edge nodes itself. In this work, four models as shown in Table III are

developed in the simulator to check the efficiency of the proposed scheme between the edge servers.

The EdgeCloudSim simulator is used for the experimental purpose to implement the four models and check the efficiency of the

model. Although, EdgeCloudSim simulator simulates the mobility of devices and thereby investigates the failure rate of tasks,

Pseudo code for Module III: Task Allocation through

edge server CPU utilization

1: for each task in edge server queue, where

2: Calculate by eq (1);

3: Partial_offload (); by module 1

4: Task_assignment (); by module 2

5: end for

6: Update & store task information;

7: for all edgesi in edge server pool where si = {1, 2…n}

8: calculate edgesi CPU utilization;

9: Find high edgesn & low edgesn CPU utilization;

10: if the edgesi with same CPU utilization

11: goto step 2;

12: else

13: for each task in edge server

queue;

14: if task arrives

15: Find the edgesi with low CPU

utilization;

16: Assign in edgesi;

17: else if task arrives

18: Find the (edgesi – 1) with low CPU

utilization;

19: Assign in edgesi;

20: else if task arrives;

21: Find the (edgesi – 2) with low CPU

utilization;

22: Assign in edgesi;

23: end if

24: end for

25: end if

26: end for

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

432

virtual machine (VM) migration methods are not supported by it. Also, it considers the impact of network load and delays in

transmission over the delay of service requests. The load generator facilitates the task generation dynamically with individual data

size and length. For experimental purpose, the models are considered as shown in Table III that are (i) All local processed model

runs locally between the edge nodes where the computation of task is locally processed and executed near the source itself and

uses FCFS scheme in the edge nodes. (ii) All edge processed model, in which every task generated from the source of edge node

is sent to the edge server network and executed in the edge server with the help of Earliest Deadline First (EDF) scheme. (iii)

Partial offload with task allocation (POTA) model offloads the task partially from edge nodes to the edge servers. And these tasks

are again scheduled based on priority using priority scheduling algorithm. (iv)TSCAOS is the proposed scheme which is

developed by extending POTA model using CPU utilization scheme at the edge server network. Here, the task execution occurs in

edge server network according to the CPU usage and availability. These four models are framed with the experimental parameters

as shown in Table III where the scenarios are created accordingly with some application framework working with task execution.

 A virtual reality game application is modeled with some random simulation parameters in the EdgeCloudSim. The four models

listed in Table III are deployed and evaluated through performance metrices such as response time, processing delay, total task

failure rate and execution time.

2
5

0

3
2

0

3
1

5

2
1

6

4
2

5 6
1

9

5
9

8

3
9

9

7
2

6

9
5

4

9
2

6

6
1

6

1
2

1
3

1
1

7
4

1
1

9
6

7
9

3

1
1

9
8

1
5

6
6

1
4

8
6

9
7

7

All Local(FCFS) All Edge(EDF) POTA TSCAOS

0

200

400

600

800

1000

1200

1400

1600

U
p
lo

a
d
in

g
 t
im

e
 (

m
s
)

 5 mbps

 10 mbps

 15 mbps

 20 mbps

 25 mbps

All Algorithm uploading time

(A)

1
0

0

6
5

5
7

4
6

2
0

1

1
2

8

9
9

8
7

2
8

3

1
8

7

1
7

3

1
4

1

3
8

6

2
4

3

1
9

7

1
6

3

4
8

9

3
2

4

2
1

1

1
9

3

All Local(FCFS) All Edge(EDF) POTA TSCAOS

0

100

200

300

400

500

600

700

800

All Algorithm uploading time

P
ro

c
e
s
s
in

g
 t

im
e
 (

m
s
)

 5 mbps

 10 mbps

 15 mbps

 20 mbps

 25 mbps

(B)

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

433

5
0

2
0

0

1
7

0

1
0

9

8
0

3
8

5

3
2

9

2
0

5

1
4

7

5
8

9

5
0

8

3
2

0

1
7

0

7
8

6

6
1

9

3
7

1

2
6

0

9
8

6

8
2

4

4
9

6

All Local(FCFS) All Edge(EDF) POTA TSCAOS

0

200

400

600

800

1000

1200

D
o
w

n
lo

a
d
in

g
 t
im

e
 (

m
s
)

 5 mbps

 10 mbps

 15 mbps

 20 mbps

 25 mbps

(C)

FIGURE 2

(A) UPLOADING, (B)PROCESSING, (C) DOWNLOADING TIME COMPARISON WITH DIFFERENT TASK SIZES.

FIGURE 3

 RESPONSE TIME AGAINST DATA USAGE UPLOADING

FIGURE 4

PROCESSING DELAY AGAINST DATA USAGE

The graphs given in Figure 2 (A), (B) and (C) shows the uploading time, processing time and downloading time respectively for

all algorithms with respect to task size. TSCAOS performs better with all the tasks sizes. In the Figure 3 the graph represents

comparison between the average response tie vs data usage of the algorithm’s performance. The response time is the addition of

the above parameters like uploading, processing and downloading in terms of milli second (ms) with the different data usage. In

this comparison TSCAOS takes 35.02 % less response time for completing the task then the other algorithms. In the Figure 4

shows the graph of processing delay with respect to data usage, here the TSCAOS reduces the delay by 30.86% compared to other

algorithms.

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

434

FIGURE 5

SIMULATION TIME INTERVALS FOR PROCESSING TIME FOR EACH TASK EXECUTION

FIGURE 6

SIMULATION TIME INTERVALS FOR FAILED TASK RATE % OF EACH TASK EXECUTION

Here the TSCAOS algorithm is evaluated against different algorithms listed in Table III by means of failed task rate and

processing time against the different simulation times. The simulation time is measured at increasing period of 20 min time

interval for each task in EdgeCloudSim simulator. The five simulation tasks taken for experimental execution in above time

intervals are 10, 20, 30, 40 and 50 Mbps sizes. The processing time against execution time (simulation time) for above mentioned

tasks using different algorithms is depicted in Figure 5. In the same manner, task failure rate is also measured against execution

time (simulation time) which is depicted in Figure 6. TSCAOS reduces the task failure rate and processing time by 48.49% and

36.11% respectively when compared to other methods.

CONCLUSION

IoT computation demands are increasing rapidly and therefore relies on edge computation mechanisms to complete the task

executions. This paper proposes task scheduling with CPU allocation offloading Scheme that is TSCAOS implemented in edge

server network and compared with the existing offloading schemes. From the analysis, the other offloading schemes are

developed using the partial offloading and task scheduling schemes by combining both or individual implementation. The major

shortcoming is not considering the CPU utilization. In this work, a novel scheme termed TSCAOS is proposed where task

scheduling and partial offloading are performed from node to edge servers by considering the utilization of CPU. A virtual reality

application is used for the simulation in EdgeCloudSim simulator. Based on the simulation results comparisons are done for FCFS

in local node layer, EDF in edge node layer, POTA in edge node and edge server layer and TSCAOS in edge node to edge server

layer from which TSCAOS outperforms in means of response time and processing delay. In this comparison TSCAOS takes 35.02

% less response time, reduces the delay by 30.86% compared to other algorithms. TSCAOS also reduces the task failure rate by

48.49% and execution time by 36.11% comparatively. In future, more applications can be evaluated using this algorithm and by

increasing the task sizes and resource allocation levels. The proposed scheme can be further explored with more resource

parameters which influence the efficiency of task accomplishment.

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

435

REFERENCES

[1] The internet of things: A movement, not a market. [Online]. Available: https://cdn.ihs.com/www/pdf/IoT_ebook.pdf

[2] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer, vol. 50, no. 1, pp. 30–39, Jan. 2017, doi:

10.1109/MC.2017.9.

[3] Z. Amjad, A. Sikora, B. Hilt, and J.-P. Lauffenburger, “Low Latency V2X Applications and Network Requirements:

Performance Evaluation,” in 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, Jun. 2018, pp. 220–225. doi:

10.1109/IVS.2018.8500531.

[4] S.-I. Sou and O. K. Tonguz, “Enhancing VANET Connectivity Through Roadside Units on Highways,” IEEE Trans. Veh.

Technol., vol. 60, no. 8, pp. 3586–3602, Oct. 2011, doi: 10.1109/TVT.2011.2165739.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of things,” in Proceedings of the

first edition of the MCC workshop on Mobile cloud computing - MCC ’12, Helsinki, Finland, 2012, p. 13. doi:

10.1145/2342509.2342513.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and Challenges,” IEEE Internet Things J., vol. 3, no.

5, pp. 637–646, Oct. 2016, doi: 10.1109/JIOT.2016.2579198.

[7] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for VM-Based Cloudlets in Mobile Computing,” IEEE

Pervasive Comput., vol. 8, no. 4, pp. 14–23, Oct. 2009, doi: 10.1109/MPRV.2009.82.

[8] H.-J. Jeong, I. Jeong, H.-J. Lee, and S.-M. Moon, “Computation Offloading for Machine Learning Web Apps in the Edge

Server Environment,” in 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), Vienna,

Jul. 2018, pp. 1492–1499. doi: 10.1109/ICDCS.2018.00154.

[9] S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi, “Optimal Joint Scheduling and Cloud Offloading for Mobile

Applications,” IEEE Trans. Cloud Comput., vol. 7, no. 2, pp. 301–313, Apr. 2019, doi: 10.1109/TCC.2016.2560808.

[10] L. Zhang, D. Fu, J. Liu, E. C.-H. Ngai, and W. Zhu, “On Energy-Efficient Offloading in Mobile Cloud for Real-Time Video

Applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 1, pp. 170–181, Jan. 2017, doi:

10.1109/TCSVT.2016.2539690.

[11] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation task scheduling for mobile-edge computing

systems,” in 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, Jul. 2016, pp. 1451–

1455. doi: 10.1109/ISIT.2016.7541539.

[12] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-Edge Computing: Partial Computation Offloading Using

Dynamic Voltage Scaling,” IEEE Trans. Commun., pp. 1–1, 2016, doi: 10.1109/TCOMM.2016.2599530.

[13] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing,”

IEEE/ACM Trans. Networking, vol. 24, no. 5, pp. 2795–2808, Oct. 2016, doi: 10.1109/TNET.2015.2487344.

[14] G. Zhang, Y. Chen, Z. Shen, and L. Wang, “Energy Management for Multi-User Mobile-Edge Computing Systems with

Energy Harvesting Devices and QoS Constraints,” in 2018 27th International Conference on Computer Communication and

Networks (ICCCN), Hangzhou, Jul. 2018, pp. 1–6. doi: 10.1109/ICCCN.2018.8487435.

[15] J. Ren, G. Yu, Y. Cai, Y. He, and F. Qu, “Partial Offloading for Latency Minimization in Mobile-Edge Computing,” in

GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore, Dec. 2017, pp. 1–6. doi:

10.1109/GLOCOM.2017.8254550.

[16] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of Radio and Computational Resources for Energy Efficiency in

Latency-Constrained Application Offloading,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4738–4755, Oct. 2015, doi:

10.1109/TVT.2014.2372852.

[17] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-Efficient Resource Allocation for Mobile-Edge Computation

Offloading,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017, doi: 10.1109/TWC.2016.2633522.

[18] M. Asim, Y. Wang, K. Wang, and P.-Q. Huang, “A Review on Computational Intelligence Techniques in Cloud and Edge

Computing,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 6, pp. 742–763, Dec. 2020, doi:

10.1109/TETCI.2020.3007905.

[19] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, “Computation Offloading for Service Workflow in Mobile Cloud

Computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp. 3317–3329, Dec. 2015, doi:

10.1109/TPDS.2014.2381640.

[20] C. Canali and R. Lancellotti, “GASP: Genetic Algorithms for Service Placement in Fog Computing Systems,” Algorithms,

vol. 12, no. 10, p. 201, Sep. 2019, doi: 10.3390/a12100201.

[21] L. Tang, B. Tang, L. Kang, and L. Zhang, “A Novel Task Caching and Migration Strategy in Multi-Access Edge Computing

Based on the Genetic Algorithm,” Future Internet, vol. 11, no. 8, p. 181, Aug. 2019, doi: 10.3390/fi11080181.

[22] P. Zhao, H. Tian, C. Qin, and G. Nie, “Energy-Saving Offloading by Jointly Allocating Radio and Computational Resources

for Mobile Edge Computing,” IEEE Access, vol. 5, pp. 11255–11268, 2017, doi: 10.1109/ACCESS.2017.2710056.

[23] W. Wang, R. Lan, J. Gu, A. Huang, H. Shan, and Z. Zhang, “Edge Caching at Base Stations With Device-to-Device

Offloading,” IEEE Access, vol. 5, pp. 6399–6410, 2017, doi: 10.1109/ACCESS.2017.2679198.

[24] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre, and I. Truck, “Using Reinforcement Learning for

Autonomic Resource Allocation in Clouds: towards a fully automated workflow,” p. 9, 2011.

[25] A. T. Nassar and Y. Yilmaz, “Reinforcement Learning-based Resource Allocation in Fog RAN for IoT with Heterogeneous

Latency Requirements,” arXiv:1806.04582 [cs], Jan. 2019, Accessed: Dec. 30, 2021. [Online]. Available:

http://arxiv.org/abs/1806.04582

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

436

[26] X. Liu, Z. Qin, and Y. Gao, “Resource Allocation for Edge Computing in IoT Networks via Reinforcement Learning,”

arXiv:1903.01856 [eess], Mar. 2019, Accessed: Dec. 30, 2021. [Online]. Available: http://arxiv.org/abs/1903.01856

[27] M. Agarwal and G. M. S. Srivastava, “A genetic algorithm inspired task scheduling in cloud computing,” in 2016

International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, Apr. 2016, pp.

364–367. doi: 10.1109/CCAA.2016.7813746.

[28] J. Liu, X.-G. Luo, X.-M. Zhang, F. Zhang, and B.-N. Li, “Job Scheduling Model for Cloud Computing Based on Multi-

Objective Genetic Algorithm,” vol. 10, no. 1, p. 6, 2013.

[29] X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, “Performance Guaranteed Computation Offloading for Mobile-Edge Cloud

Computing,” IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 774–777, Dec. 2017, doi: 10.1109/LWC.2017.2740927.

[30] D. M. Dakshayini, “An Optimal Model for Priority based Service Scheduling Policy for Cloud Computing Environment,”

International Journal of Computer Applications, vol. 32, p. 8.

[31] Y. Chen, Y. Zhang, and S. Maharjan, “Deep Learning for Secure Mobile Edge Computing,” p. 7.

[32] Z. Luo, M. LiWang, Z. Lin, L. Huang, X. Du, and M. Guizani, “Energy-Efficient Caching for Mobile Edge Computing in

5G Networks,” Applied Sciences, vol. 7, no. 6, p. 557, May 2017, doi: 10.3390/app7060557.

[33] Z. Cheng, P. Li, J. Wang, and S. Guo, “Just-in-Time Code Offloading for Wearable Computing,” IEEE Trans. Emerg.

Topics Comput., vol. 3, no. 1, pp. 74–83, Mar. 2015, doi: 10.1109/TETC.2014.2387688.

AUTHOR INFORMATION

S. Premkumar, Research Scholar, Computer Science and Engineering, Annamalai University, India. He has finished Master of

Engineering (CSE) in Annamalai University. Currently he is also serving as a Project fellow (CSE) under UGC India granted

DST-PURSE scheme at Annamalai University. His interested areas are Artificial Intelligence, Internet of Things, Edge computing

and Cloud computing.

AN. Sigappi, Received her Ph.D in Computer Science and Engineering from Annamalai University in 2013. She did her Master

Degree in Computer science and engineering from Anna University. Currently she is serving as a Professor in the Department of

Computer Science and Engineering, Annamalai University, India. Her areas of interest include Image Processing, Machine

Learning, Data Analytics and Internet of things. She has published more than 25 research articles in international journals and

conferences.

