International Journal of Mechanical Engineering

# Suicide in India: A Time Series Analysis

## Pinky Roy<sup>1</sup>, Bidyut Bikash Boruah<sup>2</sup>, Kabir Barhoi<sup>3</sup> and Kuki Kalpita Mahanta<sup>4</sup>

<sup>1</sup>Research Scholar, Department of Statistics, Dibrugarh University-786004, India

<sup>2</sup>Department of Statistics, Dibrugarh University-786004, India

<sup>3</sup>Department of Mathematics, Dibrugarh University-786004, India

<sup>4</sup>Asst. Professor, Department of Statistics, Dibrugarh University-786004, India

*Abstract:* Suicide is a very complex and multifactorial act of intentionally causing harm to own. As compared to younger people suicide occurs more often in older, also in late childhood and adolescence. Suicide results in direct loss of lives, along with bad psychological and socio – economic effects. The factors which are responsible for suicide are – mental disorders, specific personality characteristics, stress, depression, genetic loading, exposure to inspiring models and availability of means of committing suicide. In the study, we examine the trend and structural breakpoints of suicide in India for 53 years from 1967 to 2019 and forecast it for next 15 years using ARIMA (Autoregressive integrated Moving Average) model. Forecasting is a valuable one to take necessary actions to prevent and make necessary actions for this type of activities.

Key words: Suicide, Trend, Breakpoints, ARIMA, Forecast.

#### **I. Introduction**

The word suicide comes from the Latin word Sucidium, means "to kill oneself". Literally, suicide is the act of intentionally causing one's own death (1). In the world, more than 800000 people die due to suicide each year. In the year 2015 mortality rate due to suicide was 10.7 per 100000. 1.4% of total deaths caused due to suicide globally (2,3). As compared to woman, many more men are died due to suicide and are higher in richer countries (4). Attempt of suicide are much more frequent than actual suicide. It is to be estimated that 2.5% of the population make at least one suicide attempt during lifetime (6,7).

Suicide rates vary from region to region. Most of the suicide occurs in low to middle income groups (8). Worldwide, rates of suicide are higher among older than the younger generation (9). Suicidal behavior among personalities in India becomes one of the most important issues because its incidence manifests a rising trend day by day (10). The rates of suicide increase day by day, so it's a matter of concern among the scientist and for policy makers. Everyone agrees that various factors contribute to suicide; ultimately each suicide is caused by highly unique, dynamic and complex interplay of biological, genetic, psychological and social factors (11). The risk factors which are associated with suicide are like stress, depression, failure in examination, alcohol use disorder, financial problems, relational break up etc. (12-15). A groundbreaking treatise of the phenomenon of suicide from a socio – cultural perspective was authored by Emile Dukheim in 1897 (16).

A sequence of numerical data, that occurs at uniform intervals over period of times are considered as time series data. the time series analysis is mainly used for seeing the past trend and for future forecasting (Monfared et al.2013(17)). ARIMA (Autoregressive Integrated Moving Average) is the most effective measure for analyzing time series data. The forecasting of suicide rates or numbers of deaths due to suicide may be very important to taking different precautional measures. It will help scientists and policy makers to take necessary actions to decrease the rate of that.

In this paper we examine the trend of suicide rates in India for 53 years from 1967-2019. Appropriate models are also being used to forecast the suicide rates for next 15 years. These analyses are done for data dataset of India as a whole and also gender wise.

#### **II. Data source and methods**

Data used in this paper are secondary in nature and collected from NCRB (National Crime Record Bureau), India. NCRB is a nodal agency that functions under the Ministry of Home Affairs, Government of India and publishes data on suicide and accidental deaths yearly basis. We collected data on suicide from 1967 to 2019 of 53 years, which are freely available.

The ARIMA (AutoregressiveIntegrated Moving Average) has been used here for forecasting. This is an advanced model, that requires long term data to predict the future occurrences. This model decomposes the past data into an Autoregressive (AR) process, which taking care of the past values, an Integrated (I) process, which is used for making the data stationary and a Moving average (MA) process, which accounts for previous error terms making it easier to forecast.

Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)

## **III. Data Analysis:**

In this study we consider the numbers of death by committing suicide in India for 53 years from 1967 to 2019. These 53 years data are collected from the report published by National Crime Records Bureau, Ministry of Home Affairs, Government of India in the year 2020. In table -1 we show the basic descriptive statistics obtained from the data.

| Measures                 | sures Observations |           |          |
|--------------------------|--------------------|-----------|----------|
|                          | Male               | Feale     | Total    |
| Minimum                  | 22637 (year =1967) | 15237     | 38217    |
| Maximum                  | 97613 (year=2019)  | 47746     | 139123   |
| 1 <sup>st</sup> Quartile | 26923 (year=1980)  | 18212     | 44732    |
| 3 <sup>rd</sup> Quartile | 75702(year=2006)   | 42192     | 118112   |
| Mean                     | 52787.53           | 31443     | 84232    |
| Median                   | 49851              | 34393     | 84244    |
| SE Mean                  | 3522.23            | 16122     | 5072.995 |
| LCL Mean                 | 3522.252           | 282077.1  | 74052.35 |
| UCL Mean                 | 59855.44           | 34678.29  | 94411.77 |
| Standard Deviation       | 25642.39           | 11737.61  | 36931.96 |
| Skewness                 | 0.269744           | -0.159530 | 93236.00 |
| Kurtosis                 | -1.520194          | -1.71385  | -1.65193 |

Table 1: Basic Descriptive Statistics of the Suicide data (year 1967-2019)

Test for Normality Check of the Suicide Data:

The Jarque-Bera Test is performed to test the normality of the data with the help of the R software and the results are shown in Table -2.

Table 2: Jarque Bera test to check normality

| Hypothesis                                      | Category   | Jarque Bera Test<br>Statistic | Degrees of<br>freedom | p- value |
|-------------------------------------------------|------------|-------------------------------|-----------------------|----------|
|                                                 | For male   | 5.4054                        | 2                     | 0.16702  |
| $H_0$ : the dataset is normally distributed     | For female | 6.352                         | 2                     | 0.14175  |
| $H_0$ : the dataset is not normally distributed | For total  | 5.7317                        | 2                     | 0.15693  |

Since p - values are greater than 0.05, so we have to accept the hull hypothesis that the data are normally distributed. The time series plot of the death by Suicide in Fig – 1, shows an upward stochastic trend.

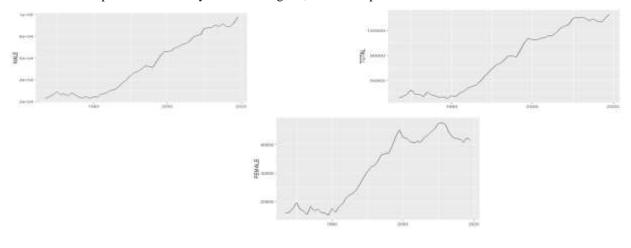



Fig1: Time series plot of death by suicide of male, female and total from the year 1967-2019 Test for detection of structural break points:

Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)

To detect the structural break points in the datasets, here we perform the F- test with the help of R software and the results are shown in Table 3,

Table 3 : F-test for detection of structural breakpoints for male

| Hypothesis                                                                                | Test Statistic | p- value          |
|-------------------------------------------------------------------------------------------|----------------|-------------------|
| $H_0$ : Absence of structural break points                                                | F = 241.63     | p-value < 2.2e-16 |
| $H_0$ : Absence of structural break points<br>$H_1$ : Presence of structural break points | F = 374.26     | p-value < 2.2e-16 |
| min resence of surceased of each points                                                   | F = 262.34     | p-value < 2.2e-16 |

From table 3, the p- values are less than 0.05, therefore, we may reject the null hypothesis indicating some structural break points in the dataset. According to R software, the structural break points for male, female and total suicide cases are shown in table 4, 5 and 6 respectively.

Table 4 : Structural break points (for male suicide)

| Observation number | Year | Male suicide |
|--------------------|------|--------------|
| 17                 | 1983 | 85577        |
| 24                 | 1990 | 117932       |
| 31                 | 1997 | 164876       |
| 39                 | 2005 | 224806       |
| 46                 | 2012 | 306061       |

From the table 4, there are five structural breakpoints for male.

Table3.5: Structural break points (for female suicide).

| Observation number | Year | Female suicide |
|--------------------|------|----------------|
| 16                 | 1982 | 43016          |
| 23                 | 1989 | 54113          |
| 30                 | 1996 | 63988          |

Table 5 indicates that, there are only three structural breakpoints in case of female suicide in 53 years.

## Table3.6: Structural break points (for total suicide).

| Observation number | Year | Suicide in India |
|--------------------|------|------------------|
| 17                 | 1983 | 128576           |
| 24                 | 1990 | 174401           |
| 31                 | 1997 | 233903           |
| 40                 | 2006 | 314704           |

Table 6 shows that, there are four structural breakpoints for suicide in India from 1953 to 2019.

## **Testing of stationary:**

We have to plot the Auto Correlation Function (ACF) and Partial Auto Correlation Function(PACF) to test the stationary of the collected datasets with R-software and are shown in Fig-2 and Fig-3 and Fig-4

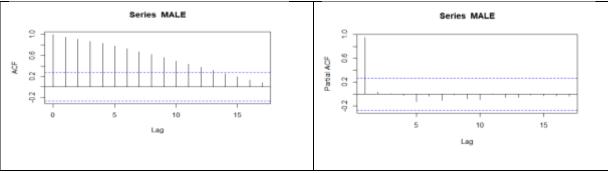



Fig 2: ACF and PACF for male suicide

Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)

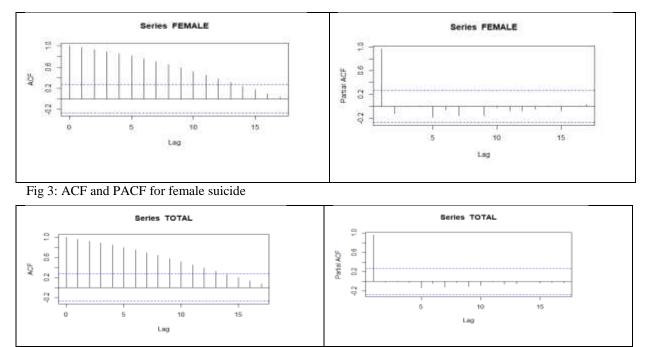


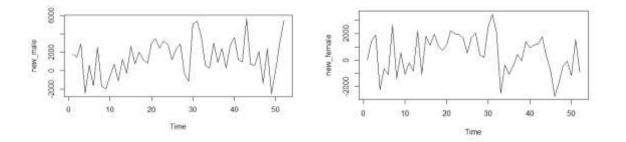

Fig 4: ACF and PACF for suicide in India

From Fig -2, Fig- 3 and Fig -4 it is seen that, for ACF most of the bars crosses the upper limits and also for PACF one bar cross the upper limit, so according to the criteria of ACF and PACF our dataset of nos. of deaths by suicide is not stationary.

Now, with the help of R software the Augmented Dickey – Fuller test can be used to test it statistically and the results are shown in table 9.

Table 7: Augmented Dickey - Fuller Test

| Hypothesis                          |              | Test Statistic | Lag order | p- value |
|-------------------------------------|--------------|----------------|-----------|----------|
| $H_0$ : Data is not stationary      | Male Death   | -3.2414        | 3         | 0.0902   |
| $H_1$ : Data is stationary          | Female Death | -1.3226        | 3         | 0.8471   |
| m <sub>1</sub> . Data is stationary | Total Death  | -2.9684        | 3         | 0.1847   |


From table 7, it is seen that p - values are greater than 0.05, so null hypothesis should be accepted (data sets are not stationary)

## Process of making data stationary:

The stochastic trend from the dataset should be removed to make the dataset stationary. To do that, we take the double difference i.e.

New\_male =  $\Delta Y_t - \Delta Y_{t-1}$ 

After taking the double differences the data follows the pattern shown in Fig 5



Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)

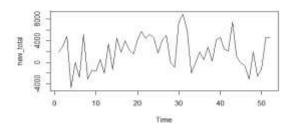



Fig 5: Time series plot of new \_ male, new \_ female and new \_ death data after taking the log differences

For checking the stationary of the datasets after taking the double differences, we graphically plot the ACF and PACF with the help of R software and are shown them in following figures Fig 6

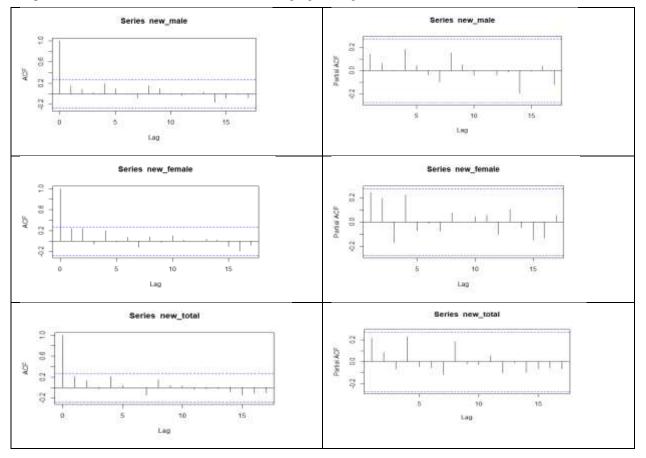



Fig 6: ACF and PACF of suicide data after taking the double differences

From Fig 6, it is seen that for all three datasets most of the bars are within the limits, so now the data becomes stationary on the basis of the criteria of ACF and PACF. Here we use Augmented Dickey Fuller test to test the stationarity of the dataset statistically. The results are shown in the Table 8.

| Hypothesis                     |              | Test Statistic | Lag order | P - value |
|--------------------------------|--------------|----------------|-----------|-----------|
| $H_0$ : Data is not stationary | Male Death   | -5.4756        | 3         | 0.01834   |
| $H_1$ : Data is stationary     | Female Death | -6.0269        | 3         | 0.01293   |
|                                | Total Death  | -5.8442        | 3         | 0.01511   |

Table 8: Augmented Dickey Fuller test

From the table 8, it is seen that p – values for all are less than 0.05, so we reject our null hypothesis that data is not stationary.

## **ARIMA Model Fitting:**

The datasets are become stationary after taking the log differences. Therefore, in case of fitting the ARIMA(p, d, q) model, the order of d is identified as 2. For identification of best fitted models for the datasets we propose five different ARIMA(p, d, q) models keeping d = 2 as constant. Here the best model to be chosen on the basis of AIC and Log – likelihood criteria.

## Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)

The estimated models for considering the dataset of male suicide over the years

The estimated models for considering the dataset of suicide rate in India over the years

Model 1 = ARIMA(1,2,0) =  $-0.4418y_{t-1} + e_t$ 

Model 2 = ARIMA(0,2,1) =  $-0.8321e_{t-1} + e_t$ 

Model 3 = ARIMA(1,2,1) =  $0.1771y_{t-1} - 0.9134e_{t-1} + e_t$ 

Model 4 = ARIMA(1,2,2) =  $0.7194y_{t-1} - 1.5205e_{t-1} + 0.5128e_{t-2} + e_t$ 

Model 5 = ARIMA(2,2,1) =  $0.2172y_{t-1} + 0.1102y_{t-2} - .870e_{t-1} + e_t$ 

Table 9: AIC and Log – Likelihood of the fitted ARIMA model(Male)

| Model   | ARIMA order  | AIC    | Log Likelihood |
|---------|--------------|--------|----------------|
| Model 1 | ARIMA(1,2,0) | 983.32 | -489.66        |
| Model 2 | ARIMA(0,2,1) | 971.51 | -483.75        |
| Model 3 | ARIMA(1,2,1) | 945.11 | -469.55        |
| Model 4 | ARIMA(1,2,2) | 921.13 | -456.56        |
| Model 5 | ARIMA(2,2,1) | 937.73 | -464.86        |

From the table 9, it is seen that AIC value is minimum and Log - likelihood is maximum for ARIMA(1,2,2) model. So it considered as the best model and is used for forecasting future deaths.

| Table 10: AIC and Log - | - Likelihood of the | fitted ARIMA model(Female) |
|-------------------------|---------------------|----------------------------|
|-------------------------|---------------------|----------------------------|

| Model   | ARIMA order  | AIC    | Log Likelihood |
|---------|--------------|--------|----------------|
| Model 1 | ARIMA(1,2,0) | 931.68 | -463.84        |
| Model 2 | ARIMA(0,2,1) | 934.67 | -465.33        |
| Model 3 | ARIMA(1,2,1) | 901.81 | -447.9         |
| Model 4 | ARIMA(1,2,2) | 882.73 | -437.36        |
| Model 5 | ARIMA(2,2,1) | 901.84 | -446.92        |

Here also for the dataset of female deaths AIC value is minimum for ARIMA (1,2,2) model, so we use this model for forecasting.

Table 11: AIC and Log - Likelihood of the fitted ARIMA model(Total)

| Model   | ARIMA order  | AIC    | Log Likelihood |
|---------|--------------|--------|----------------|
| Model 1 | ARIMA(1,2,0) | 931.68 | -463.84        |
| Model 2 | ARIMA(0,2,1) | 934.67 | -465.33        |
| Model 3 | ARIMA(1,2,1) | 901.81 | -447.9         |
| Model 4 | ARIMA(1,2,2) | 882.73 | -437.36        |
| Model 5 | ARIMA(2,2,1) | 901.84 | -446.92        |

From the table 13 it is seen that for the data of total deaths due to suicide in India, ARIMA(1,2,2) model shows best by comparing the values of AIC and log likelihood.

Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)

## **Diagnostic checking of ARIMA**(1,2,2) models:

To get an idea about the significance of the AR and MA coefficients, we perform the Z-test with the help of R software and the results are shown in table

| Table 12: Z - | - test of the | AR and MA | coefficients(male)_ |
|---------------|---------------|-----------|---------------------|
|---------------|---------------|-----------|---------------------|

| Coefficients | Estimate  | Std. Error | Z value  | <b>Pr</b> (>  <b>z</b>  ) |
|--------------|-----------|------------|----------|---------------------------|
| AR1          | -0.423946 | 0.127796   | -3.3174  | 0.0009087 ***             |
| MA1          | -1.966820 | 0.087544   | -22.4666 | < 2.2e-16 ***             |
| MA2          | 0.999987  | 0.087841   | 11.3841  | < 2.2e-16 ***             |

Table 13: Z – test of the AR and MA coefficients(female)

| Coefficients | Estimate  | Std. Error | Z value  | <b>Pr</b> (>  <b>z</b>  ) |
|--------------|-----------|------------|----------|---------------------------|
| AR1          | -0.463973 | 0.127522   | -3.6384  | 0.0002744 ***             |
| MA1          | -1.991897 | 0.083484   | -23.8596 | < 2.2e-16 ***             |
| MA2          | 0.999963  | 0.083299   | 12.0045  | < 2.2e-16 ***             |

Table 14: Z - test of the AR and MA coefficients(total)

| Coefficients | Estimate  | Std. Error | Z value  | <b>Pr</b> (>  <b>z</b>  ) |
|--------------|-----------|------------|----------|---------------------------|
| AR1          | -0.463973 | 0.127522   | -3.6384  | 0.0002744 ***             |
| MA1          | -1.991897 | 0.083484   | -23.8596 | < 2.2e-16 ***             |
| MA2          | 0.999963  | 0.083299   | 12.0045  | < 2.2e-16 ***             |

In table 12, 13 and 14 all the p- values are less than 0.01, so it is said that AR and MA coefficients are significant for ARIMA(1,2,2).

## Measure of accuracy:

Table 15: Error Measures for male ARIMA(1,2,2)

| Error    | ME      | RMSE       | MAE        | MPE      | MAPE    | MASE      | ACF1       |
|----------|---------|------------|------------|----------|---------|-----------|------------|
| measures |         |            |            |          |         |           |            |
|          | -0.0021 | 0.04637728 | 0.03587609 | 174.2142 | 270.299 | 0.4005469 | 0.05937517 |

# Table 16: Error Measures for female ARIMA(1,2,2)

| Error<br>measures | ME      | RMSE     | MAE        | MPE      | MAPE     | MASE      | ACF1       |
|-------------------|---------|----------|------------|----------|----------|-----------|------------|
|                   | -0.0007 | -0.00071 | 0.04106328 | 94.26261 | 156.3559 | 0.4061925 | 0.09318845 |

# Table 17: Error Measures for total ARIMA(1,2,2)

| Error    | ME      | RMSE       | MAE        | MPE      | MAPE     | MASE      | ACF1      |
|----------|---------|------------|------------|----------|----------|-----------|-----------|
| measures |         |            |            |          |          |           |           |
|          | -0.0016 | 0.04603487 | 0.03492619 | 63.38916 | 196.9121 | 0.3980652 | 0.0802338 |

## Forecasting with the help of ARIMA(1,2,2) Model for deaths by committing suicide:

The forecasted deaths (point forecast) of males, females and also for the total population along with 80% and 95% upper and lower confidence intervals for the next 15 years based on ARIMA(1,2,2) model as constructed using R software and are shown in table

 Table 18: forecasted values and confidence intervals for males

| Year | Point Forecast | 80% CI(Lower<br>Limit) | 80% CI(Upper<br>Limit) | 95% CI(Lower<br>Limit) | 95% CI(Upper<br>Limit) |
|------|----------------|------------------------|------------------------|------------------------|------------------------|
| 2020 | 99392.4        | 9 6811                 | 101973                 | 95445                  | 103339                 |
| 2021 | 101137         | 97217                  | 105058                 | 95141                  | 107134                 |
| 2022 | 102852         | 97732                  | 107973                 | 95021                  | 110683                 |

Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)

| 2023 | 104540 | 98275  | 110805 | 94958 | 114121 |
|------|--------|--------|--------|-------|--------|
| 2024 | 106202 | 98821  | 113584 | 94914 | 117491 |
| 2025 | 107843 | 99362  | 116323 | 94873 | 120813 |
| 2026 | 109463 | 99896  | 119031 | 94831 | 124095 |
| 2027 | 111066 | 100421 | 121710 | 94786 | 127345 |
| 2028 | 112652 | 100939 | 124364 | 94739 | 130564 |
| 2029 | 114223 | 101451 | 126995 | 94690 | 133756 |
| 2030 | 115781 | 101958 | 129604 | 94641 | 136921 |
| 2031 | 117328 | 102462 | 132193 | 94593 | 140062 |
| 2032 | 118863 | 102963 | 134763 | 94546 | 143180 |
| 2033 | 120389 | 103463 | 137315 | 94503 | 146276 |
| 2034 | 121907 | 103963 | 139851 | 94464 | 149350 |

From table 18 and fig 7 it is observed that rate of suicide for males gradually increase in future.

Table 19: Forecasted values and confidence intervals for females

| Year | Point Forecast | 80% CI(Lower | 80% CI(Upper | 95% CI(Lower | 95% CI(Upper |
|------|----------------|--------------|--------------|--------------|--------------|
|      |                | Limit)       | Limit)       | Limit)       | Limit)       |
| 2020 | 41613          | 39807        | 43420        | 38851        | 44376        |
| 2021 | 41828          | 38932        | 44723        | 37399        | 46256        |
| 2022 | 42110          | 38211        | 46009        | 36147        | 48073        |
| 2023 | 42441          | 37594        | 47288        | 35028        | 49854.       |
| 2024 | 42808          | 37060        | 48556        | 34018        | 51598        |
| 2025 | 43201          | 36595        | 49808        | 33097        | 53305        |
| 2026 | 43613          | 36186        | 51040        | 32254        | 54972        |
| 2027 | 44039          | 35825        | 52253        | 31477        | 56601        |
| 2028 | 44475          | 35505        | 53445        | 30757        | 58193        |
| 2029 | 44918          | 35219        | 54617        | 30085        | 59751        |
| 2030 | 45366          | 34962        | 55770        | 29455        | 61278        |
| 2031 | 45819          | 34731        | 56906        | 28862        | 62775        |
| 2032 | 46274          | 34521        | 58026        | 28300        | 64247        |
| 2033 | 46731          | 34330        | 59131        | 27766        | 65695        |
| 2034 | 47189          | 34156        | 60222        | 27256        | 67122        |

Table 20: Forecasted values and confidence intervals for total nos. of suicide in India

| Year | Point forecast | 80% CI(lower<br>limit) | 80% CI (upper limit) | 95% CI (lower limit) | 95% CI(upper<br>limit) |
|------|----------------|------------------------|----------------------|----------------------|------------------------|
| 2020 | 141539.5       | 137603                 | 145475               | 135519               | 147559                 |
| 2021 | 143827.5       | 137628                 | 150026               | 134347               | 153308                 |
| 2022 | 146023         | 137779                 | 154267               | 133415               | 158631                 |
| 2023 | 148152         | 137996                 | 158308               | 132620               | 163684                 |
| 2024 | 150233         | 138271                 | 162195               | 131939               | 168527                 |
| 2025 | 152280         | 138603                 | 165956               | 131363               | 173196                 |
| 2026 | 154302         | 138990                 | 169613               | 130885               | 177719                 |
| 2027 | 156306         | 139430                 | 173182               | 130496               | 182116                 |

Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)

| 2028 | 158297 | 139918 | 176677 | 130189 | 186406 |
|------|--------|--------|--------|--------|--------|
| 2029 | 160280 | 140452 | 180108 | 129955 | 190604 |
| 2030 | 162255 | 141026 | 183484 | 129788 | 194722 |
| 2031 | 164226 | 141638 | 186814 | 129681 | 198771 |
| 2032 | 166193 | 142284 | 190102 | 129627 | 202759 |
| 2033 | 168158 | 142960 | 193356 | 129621 | 206695 |
| 2034 | 170121 | 143664 | 196579 | 129658 | 210584 |

The following fig. shows the forecast of female suicide

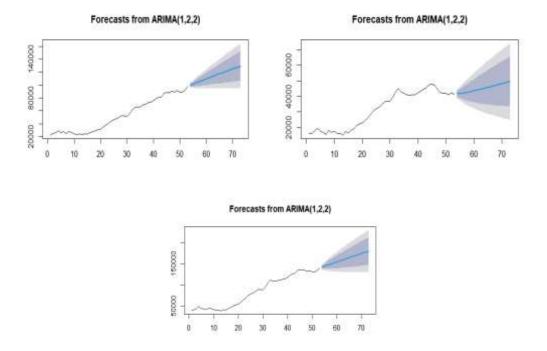



Fig 7 : Forecasted plot of male death by committing suicide Fig 8: forecasted plot of female suicide Fig 9: Forecasted plot of rate of suicide in India

From table 19 and fig 8, we observed that rate of suicide for females increase in future but its lower than the male increase rate. From table 20 and fig 9 observed that rate of suicide is gradually increase in India as a whole.

#### **Conclusion:**

In this paper, the yearly deaths due to suicide in India have been studied using time series models. On the basis of the Jarque-Bera test statistic, it is observed that data are normally distributed. Here the numbers of suicide show the upward stochastic trend. The datasets show structural breakpoints. Double differentiation has to be considered to make the data stationary for fitting of ARIMA models. The results of the estimation and diagnostics analysis revealed that used models are adequately fitted to the historical datasets, Augmented Dickey Fuller test is used here to check the adequacy. So we may concluded that, the model ARIMA (1,2,2) to be best fitted model for all the three datasets of numbers of suicide in India from 1967-2019. The forecasted numbers of deaths by suicide for next 15 years also show upward trend. Therefore, the forecasting will help the government and policy makers to take necessary actions to prevent these kind of activities, because unnaturaland unpredictable deaths create great loss to the family and for the community as whole.

## **REFERENCES:**

- 1. G. Turecki, D. Brent, Suicide and suicidal behavior, Lancet, Vol. 387, pp. 1227 1239, 2016.
- 2. WHO preventing suicide: A GLOBAL IMPERATIVE, Geneva: World Health Organization, 2014. http://www.who.int/mental\_health/suicide-preventation/world\_report\_2014/en/
- 3. WHO global health observatory. Geneva: World Health Organisation, 2017, http://www.who.int/gho.
- 4. K. Hawton, K. V. Heeringen, Suicide, Lancet, Vol. 373, pp.1372-1381, 2009.
- 5. D. De. Leo, Can we rely on suicide mortality data?, Crisis, Vol.36, pp-1-3, 2015.

## Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)

- 6. G. Borges, M. K. Nock et al., Twelve month prevalence of and risk factors for suicide attempts in the World Health Organisation World Mental Health Surveys, J. Clin Psychiatry, Vol. 71, pp. 1617-1628, 2010.
- M. K. Nock, G. Borges et al, Cross- national prevalence and risk factors for suicidal identification, plans and attempts, Br J Psychiatry, Vol. 192, pp. 98-105, 2008.
- 8. WHO Mental Health, World Health Organisation: Geneva, 2018.
- 9. P. Varnik, Suicide in the world, Int J Environ Res Public Health, Vol. 9, pp. 760-771, 2012.
- 10. M. K. Panday, C. Kaur, Investigating suicidal trend and its economic determinants: Evidance from India, Asarc wp. 2009.
- 11. K. H. Van, The suicidal process and related concepts, Understanding Suicidal Behaviour, John Wiley & Sons Ltd., pp.136-59, 2001.
- 12. A. V. Rao, Attempted suicide, Indian J Psychiatry, Vol. 7, pp.253-267, 1965.
- 13. A. V. Rao, Marriage, parenthood, sex and suicidal behavior, Indian J. Psychiatry, Vol. 16, pp. 92-104, 1974.
- 14. D. N. Nandi, S. P. Mukherjee et al, Is suicide preventable by restricting the availability of lethal agents, A rural survey of West Bengal? Indian J Psychitry, vol. 21, pp. 251-256, 1979.
- 15. A. F. Khan, B. Anand, G. M. Devi, Psychological autopsy of suicide : A cross sectional study, Indian J Psychiatry, Vol 47, pp. 73-81, 2005.
- 16.E. Durkheim, Suicide: A study in sociology, New York : Free Google Press, 1897.
- 17. A. B. Monfared et al, Prediction of fatal road traffic crashes in Iran using Box Jenkins time series model, J Asian Sci Res, vol. 3(4), pp.425-430, 2013.
- National Crime Record Bureau, Ministry of Home Affairs annual report on accidental deaths and sucides in India from 1967 to 2019.