International Journal of Mechanical Engineering

DECOMPOSITION OF $(R\alpha * - H, \lambda) - CONTINUITY$

HB. Sudhir ¹ and Dr. S. Subramanian ²

1 Research Scholar, Department of Mathematics Prist University

Tanjaavur, Tamil Nadu, India.

2 Dean of Arts and Science, Prist University Tanjaavur, Tamil Nadu, India.

Abstract:

In this paper we introduce and study the notions of $R\pi * - H$ -open sets, $R\sigma * - H$ -open sets, $R\alpha * - H$ -open sets, $R\beta * - H$ -open sets in hereditary generalized topological spaces. Also we obtained decompositions of $(R\alpha * - H, \lambda)$ -continuity.

1 Introduction

In the year 2002, Csaszar [1] introduced very usefull notions of generalized topology (G.T.) and generalized continuity. A subset *A* of a space (Z, μ) is $\mu - \alpha - open[2]$ (resp. $\mu - \sigma - open[2], \mu - \pi - open[2], \mu - \beta - open[2]$), if $A \subset i_{\mu}c_{\mu}i_{\mu}(A)$ (resp. $A \subset c_{\mu}i_{\mu}c_{\mu}(A)$). A subset *A* of *X* is said to be μ -regular open, if $A = i_{\mu}c_{\mu}(A)$ [4]. A space *X* is called a C_0 -space [17], if $C_0 = Z$, where C_0 is the set of all representative elements of sets of μ . A nonempty family H of subsets of *Z* is said to be a *hereditary class* [3], if $A \in H$ and $M \subset A$, then $M \in H$. A *G.T.S.* (*Z*, μ) with a hereditary class H is hereditary generalized topological space (*H.G.T.S.*) and denoted by (*Z*, μ , H). For each $A \subseteq X$, $A^*(H, \mu) = \{z \in X : A \cap M \in /H \text{ for every } M \in \mu \text{ such that } z \in M \}$ [3]. For $A \subset Z$, define $c^*\mu(A) = A \cup A^*(H, \mu)$ and $\mu^* = \{A \subset Z : Z - A = c^*\mu(Z - A)\}$. Let *A* be a subset of *H.G.T.S.* (*Z*, μ , H) is $\alpha - H$ -open [3](resp. $\sigma - H$ -open [3],

 π - H -open [3], β - H -open [3]), if $A \subseteq i_{\mu}c^*\mu i_{\mu}(A)$ (resp. $A \subseteq c^*\mu i_{\mu}(A)$, $A \subseteq i_{\mu}c^*\mu(A)$, $A \subseteq c_{\mu}i_{\mu}c^*\mu(A)$.)

2 $R\pi * - H$ -open sets

Definition 2.1. *Finite union of* μ *-regular open sets in* (*X*, μ) *is*

called R_{π} -open in (X, μ) . The complement of R_{π} -open in (X, μ) is R_{π} -closed in (X, μ) .

Definition 2.2. Let A be a subset of a hereditary generalized topological space(X, μ , H). Then $A^{*\pi}(H, \mu) = \{x \in X : A \cap U define c^{*\pi}(A) = A \cup A^{*\pi}$.

 \in / H, $\forall U \in R_{\pi}(\mu)$ }. For $A \subset X$

Definition 2.3. Let (X, μ, H) be a hereditary generalized topological space. A subset

A of X is said to be $R\pi^*$ - H -open set, if $A \subseteq i_{\mu}c^{*\pi}(A)$.

Theorem 2.4. Let (X, μ, H) be a hereditary generalized topological space. Then

1. Every μ -open is $R\pi * - H$ -open set

2. Every π - H -open is $R\pi$ * - H -open set

Proof. (1). Let a subset A of a hereditary generalized topological space (X, μ, H) is μ -open. Then $A = i_{\mu}(A)$. Now $A \subset i_{\mu}(A) \subset i_{\mu}c^{*\pi}(A)$. Hence A is $R\pi^*$ - H -open set.

(2) Let a subset A of a hereditary generalized topological space (X, μ, H) is $\pi - H$ - open. Then $A \subset i_{\mu}c\mu * (A)$. Now $A \subset i_{\mu}c^*\mu(A) \subset i_{\mu}c^{*\pi}(A)$. Hence A is $R\pi * - H$ - open set.

Example 2.5. Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}$, X} and $H = \{\emptyset, \{a\}\}$. Then $A = \{a, b, c\}$ is $R\pi * - H$ -open but not μ -open. **Example 2.6.** Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{a, b\}, \{b, c, d\}$,

Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)

X} and $H = \{\emptyset, \{a\}, \{b\}\}$. Then $A = \{b\}$ is $R\pi * - H$ -open but not $\pi - H$ -open.

Theorem 2.7. If $H = \emptyset$, then every $R\pi * - H$ -open set is μ -open.

Proof. Let a subset A of X is $R\pi * - H$ -open set and $H = \emptyset$. Now $A \subset i_{\mu}c^{*\pi}(A) =$

 $i_{\mu}(A)$, which implies $A \subset i_{\mu}(A)$. Hence A is μ -open.

Theorem 2.8. If H = P(X), then every $R\pi * - H$ -open set is μ -open.

Proof. Let a subset A of X is $R\pi * - H$ -open set and H = P(X). Now $A \subset$

 $i_{\mu}c^{*\pi}(A) = i_{\mu}(A)$, which implies $A \subset i_{\mu}(A)$. Hence A is μ -open.

Theorem 2.9. If $R_{\pi}(\mu) = \mu$, then every $R\pi * - H$ -open set is π - H -open.

Proof. Let a subset A of X is $R\pi * - H$ -open set and $R_{\pi}(\mu) = \mu$. Now $A \subset i_{\mu}c^{*\pi}(A) = i_{\mu}(A \cup A^{*\pi}) = i_{\mu}(A \cup A^{*}) = i_{\mu}c^{*}\mu(A)$, which implies $A \subset i_{\mu}c^{*}\mu(A)$. Hence A is π - H -open set.

Theorem 2.10. Let (X, μ, H) be a hereditary generalized topological space and X is a C_0 -space. If A is $R\pi * - H$ -open set and U is a μ -open. Then $A \cap U$ is $R\pi * - H$ -open set.

Proof. Let A be a $R\pi^*$ - H -open set and U is a μ -open. Then $A \subset i_{\mu}c^{*\pi}(A)$ and

 $U = i_{\mu}(U). \text{ Now, } A \cap U \subset i_{\mu}c^{*\pi}(A) \cap i_{\mu}(U) \subset i_{\mu}(c^{*\pi}(A) \cap U) \subset i_{\mu}((A \cup A^{*\pi}) \cap U)$ $\subset i_{\mu}((A \cap U) \cup (A^{*\pi} \cap U)) \subset i_{\mu}((A \cap U) \cup (A \cap U)^{*\pi}) \subset i_{\mu}((A \cap U) \cup (A \cap U)^{*\pi})$

 $\subset i_{\mu}c^{*\pi}(A \cap U).$

Hence $A \cap U$ is $R\pi * - H$ -open set.

3 $R\sigma * - H$ -open sets

Definition 3.1. Let (X, μ, H) be a hereditary generalized topological space. A subset

A of X is said to be $R\sigma^*$ - H -open set, if $A \subseteq c^{*\pi}i_{\mu}(A)$.

Theorem 3.2. Let (X, μ, H) be a hereditary generalized topological space. Then

1. Every μ -open is $R\sigma * - H$ -open set

2. Every σ - H -open is $R\sigma *$ - H -open set

Proof. (1). Let a subset A of a hereditary generalized topological space (X, μ, H) is μ -open. Then $A = i_{\mu}(A)$. Now $A \subset i_{\mu}(A) \Rightarrow c^{*\pi}(A) \subset c^{*\pi}i_{\mu}(A) \Rightarrow A \subset c^{*\pi}i_{\mu}(A)$. Hence A is $R\sigma^* - H$ -open set.

(2) Let a subset A of a hereditary generalized topological space (X, μ, H) is $\sigma - H$ - open. Then $A \subset c\mu * i_{\mu}(A)$. Now $A \subset c^*\mu i_{\mu}(A) \subset c^{*\pi}i_{\mu}(A)$. Hence A is $R\pi * - H$ - open set.

Example 3.3. Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}$,

X} and $H = \{\emptyset, \{a\}\}$. Then $A = \{b, d\}$ is $R\sigma * - H$ -open but not μ -open.

Theorem 3.4. If $R_{\pi}(\mu) = \mu$, then every $R\sigma * - H$ -open set is $\sigma - H$ -open.

Proof. Let a subset A of X is $R\sigma * - H$ -open set and $R_{\pi}(\mu) = \mu$. Now $A \subset c^{*\pi}i_{\mu}(A) = (i_{\mu}(A)) \cup ((i_{\mu}(A))^{*\pi}) = (i_{\mu}(A)) \cup ((i_{\mu}(A))^{*\pi}) = (i_{\mu}(A)) \cup ((i_{\mu}(A))^{*\pi}) = c^{*}\mu(i_{\mu}(A))$, which implies $A \subset c^{*}\mu i_{\mu}(A)$. Hence A is σ - H -open set.

Theorem 3.5. A subset A of a hereditary generalized topological space (X, μ, H) is $R\sigma^* - H$ -open set if and only if $c^{*\pi}(A) = c^{*\pi}i_{\mu}(A)$.

Proof. Let $A \subset X$ is $R\sigma^* - H$ open set. Then $A \subset c^{*\pi}i_{\mu}(A)$, which implies $c^{*\pi}(A) \subset c^{*\pi}c^{*\pi}i_{\mu}(A) = c^{*\pi}i_{\mu}(A)$. Therefore $c^{*\pi}(A) \subset c^{*\pi}i_{\mu}(A)$. For any $A \subseteq X$, $c^{*\pi}i_{\mu}(A) \subset c^{*\pi}(A)$. Hence $c^{*\pi}(A) = c^{*\pi}i_{\mu}(A)$.

Converse part: Assume that $c^{*\pi}i_{\mu}(A) = c^{*\pi}(A)$. Clearly $A \subset c^{*\pi}(A) = c^{*\pi}i_{\mu}(A)$,

which implies $A \subset c^{*\pi}i_{\mu}(A)$. Hence A is $R\sigma^*$ - H -open set.

Theorem 3.6. subset A of a hereditary generalized topological space (X, μ, H) is

 $R\sigma^*$ - H -open set if and only if there exist a μ -open set such that $U \subseteq A \subseteq c^{*\pi}(U)$.

Proof. Let subset A of a hereditary generalized topological space

 (X, μ, H) is $R\sigma * - H$ -open set. Then $A \subset c^{*\pi}i_{\mu}(A)$. Now we consider the μ -open set $U = i_{\mu}(A)$, which implies $U \subseteq A \subseteq c^{*\pi}(U)$.

Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)

Converse part: Let U be μ -open set such that $U \subseteq A \subseteq c^{*\pi}(U)$. Now, $U \subseteq i_{\mu}(U) \subseteq i_{\mu}(A)$, which implies $c^{*\pi}(U) \subseteq c^{*\pi}i_{\mu}(A)$. Hence $A \subseteq c^{*\pi}i_{\mu}(A)$. Therefore A is $R\sigma^*$ - H -open set.

Theorem 3.7. A subset A of a hereditary generalized topological

space (X, μ, H) $R\sigma * - H$ -open set and if $A \subseteq B$, then B is $R\sigma * - H$ -open set.

Proof. A subset A of a hereditary generalized topological space

 (X, μ, H) $R\sigma * - H$ -open set and $A \subseteq B$. Then $U \subseteq A \subseteq B \subseteq c^{*\pi}(A) \subseteq c^{*\pi}c^{*\pi}(U) =$

 $c^{*\pi}(U)$ by Theorem 5.2.4. Hence B is $R\sigma^*$ - H -open set by Theorem 5.2.4.

Theorem 3.8. Let (X, μ, H) be a hereditary generalized topological spaces such that if $U_i \in R\sigma * HO(X)$ for each $i \in \Delta$, then $\{U_i : i \in \Delta\} \in R\sigma * HO(X)$.

Proof. Let $U_i \in R\sigma * HO(X)$ for each $i \in \Delta$. Then $U_i \subset c^{*\pi}i_{\mu}(U_i)$. Now

$$i_{\Delta}(U_i) \subseteq i_{\Delta}(c^{*\pi}(i_{\mu}(U_i))) \subseteq i_{\Delta}((i_{\mu}(U_i))^{*\pi}) \cup i_{\Delta}((i_{\mu}(U_i))) \subseteq i_{\Delta}(i_{\mu}(U_i))$$

 $(i \ \Delta((i_{\mu}(U_{i}))))^{*\pi} \cup (i \ \Delta((i_{\mu}(U_{i})))) = c^{*\pi}(i_{\mu}(i \ \Delta U_{i})).$

Hence $\{U_i : i \in \Delta\} \in R\sigma * HO(X)$. \in

Theorem 3.9. Let (X, μ, H) be a hereditary generalized topological space and X is a C_0 -space. If A is $R\sigma * - H$ -open set and U is a μ -open. Then $A \cap U$ is $R\pi * - H$ -open set.

∈

 \in

F

 \in

μ

∈

Proof. Let A be a $R\sigma^*$ - H -open set and U is a μ -open. Then $A \subset c^{*\pi}i_{\mu}(A)$ and

 $U = i_{\mu}(U)$. Now, $A \cap U \subset c^{*\pi}i_{\mu}(A) \cap i_{\mu}(U) \subset (i^{*\pi}(A) \cup i_{\mu}(A)) \cap i_{\mu}(U) \subset (i^{*\pi}(A) \cap i_{\mu}(A))$

 $i_{\mu}(U)) \cup (i_{\mu}(A) \cap i_{\mu}(U)) \subset (i^{*\pi}(A) \cap U) \cup (i_{\mu}(A \cap U)) \subset (i_{\mu}(A \cap U))^{*\pi} \cap (i_{\mu}(A \cap U)) \subset (i_{\mu}(A \cap U)) \cap (i_{\mu}(A \cap U)$

 $c^{*\pi}i_{\mu}(A \cap U)$. Hence $A \cap U$ is $R\sigma^{*}$ - H -open set.

4 $R\alpha * - H$ -open sets

Definition 4.1. Let (X, μ, H) be a hereditary generalized topological space. A subset

A of X is said to be $R\alpha * - H$ -open set, if $A \subseteq i_{\mu}c^{*\pi}i_{\mu}(A)$.

Theorem 4.2. Let (X, μ, H) be a hereditary generalized topological space. Then

- 1. Every μ -open is Ra* H -open set
- 2. Every a H -open is Ra* H -open set
- 3. Every $R\alpha * H$ -open set is $R\pi * H$ -open set
- 4. Every $R\alpha * H$ -open set is $R\sigma * H$ -open set

Proof. (1). Let a subset A of a hereditary generalized topological space (X, μ, H) is μ -open. Then $A = i_{\mu}(A)$. Now $A \subset i_{\mu}(A) \Rightarrow c^{*\pi}(A) \subset c^{*\pi}i_{\mu}(A) \subset c^{*\pi}i_{\mu}(A) \subset i_{\mu}c^{*\pi}i_{\mu}(A)$. Hence A is $R\alpha^* - H$ -open set.

(2) Let a subset A of a hereditary generalized topological space (X, μ, H) is α - H -open. Then $A \subset i_{\mu}c^{*}\mu i_{\mu}(A)$. Now $A \subset i_{\mu}c^{*}\mu i_{\mu}(A) \subset i_{\mu}c^{*\pi}i_{\mu}(A)$. Hence A is $R\alpha^{*}$ - H -open set.

(3)Let a subset A of a hereditary generalized topological space (X, μ, H) is $R\alpha * -$

H -open set. Then $A \subseteq i_{\mu}c^{*\pi}i_{\mu}(A) \subset i_{\mu}c^{*\pi}(A)$. Hence A is $R\pi^*$ - H -open set.

(4)Let a subset A of a hereditary generalized topological space (X, μ, H) is $R\alpha * -$

H -open set. Then $A \subseteq i_{\mu}c^{*\pi}(A)i_{\mu}(A) \subset c^{*\pi}i_{\mu}(A)$. Hence A is $R\sigma^*$ - H -open set.

Example 4.3. Let $X = \{a, b, c, d, e\}, \mu = \{\emptyset, \{a\}, \{a, e\}, \{a, b, c\}, \{a,$

 $\{a, b, c, d\}, \{a, b, c, e\}, X\}$ and $H = \{\emptyset, \{a\}\}$. Then $A = \{a, c\}$ is $R\alpha * - H$ -open set but not μ -open and $B = \{a, c, d, e\}$ is $R\alpha * - H$ -open set but not α - H-open.

Example 4.4. Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}$,

X} and $H = \{\emptyset, \{a\}\}$. Then $A = \{b, d\}$ is $R\sigma * - H$ -open but not $R\alpha * - H$ -open.

Example 4.5. Let $X = \{a, b, c, d\}, \mu = \{\emptyset, \{a\}, \{a, b\}, \{b, c, d\}, X\}$ and $H = \{\emptyset, \{a, b\}, \{b, c, d\}, X\}$

 $\{\emptyset, \{a\}, \{b\}\}$. Then $A = \{b\}$ is $R\pi * - H$ -open but not $R\alpha * - H$ -open.

Theorem 4.6. Let (X, μ, H) be a hereditary generalized topological spaces such that if $U_i \in Ra * HO(X)$ for each $i \in \Delta$, then $\{U_i : i \in \Delta\} \in Ra * HO(X)$.

Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)

Proof. Let $U_i \in R\alpha * HO(X)$ for each $i \in \Delta$. Then $U_i \subset i_{\mu}c^{*\pi}i_{\mu}(U_i)$. Now, $i \Delta(U_i) \subseteq {}_{i \Delta(i_{\mu}c^{*\pi}(i_{\mu}(U_i))) \subseteq i_{\mu}(c^{*\pi}(i_{\mu}(U_i))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i))^{*\pi}) \cup i_{\mu}\Delta((i_{\mu}(U_i)))) \subseteq i_{\mu}((i \Delta((i_{\mu}(U_i))))) \subseteq i_{\mu}((i \Delta((i_{\mu}(U_i))))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i))))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i)))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i)))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i))))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i)))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i))))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i)))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i)))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i)))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i)))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i)))) \subseteq i_{\mu}(i \Delta((i_{\mu}(U_i))) \subseteq i_{\mu}(i \Delta(($

Theorem 4.7. Let (X, μ, H) be a hereditary genralized topological space. If $A \in R\alpha * HO(X)$ and $B \in R\sigma * HO(X)$. Then $A \cap B \in R\sigma * HO(X)$.

Proof. Let $A \in R\alpha * HO(X)$ and $B \in R\sigma * HO(X)$. Then $A \subseteq i_{\mu}c^{*\pi}i_{\mu}(A)$ and $B \subseteq c^{*\pi}i_{\mu}(B)$. Now, $A \cap B \subseteq i_{\mu}c^{*\pi}i_{\mu}(A) \cap c^{*\pi}i_{\mu}(B) \subseteq c^{*\pi}i_{\mu}(A) \cap c^{*\pi}i_{\mu}(B) \subseteq c^{*\pi}(i_{\mu}(A) \cap i_{\mu}(B)) \subseteq c^{*\pi}(i_{\mu}(A \cap B))$. Therefore $A \cap B \subseteq c^{*\pi}(i_{\mu}(A \cap B))$. Hence $A \cap B \in R\sigma * HO(X)$.

Theorem 4.8. Let (X, μ, H) be a hereditary genralized topological space. If $A \in R\alpha * HO(X)$ and $B \in R\pi * HO(X)$. Then $A \cap B \in R\pi * HO(X)$.

Proof. Let $A \in R\alpha * HO(X)$ and $B \in R\sigma * HO(X)$. Then $A \subseteq i_{\mu}c^{*\pi}i_{\mu}(A)$ and $B \subseteq i_{\mu}c^{*\pi}(B)$. Now, $A \cap B \subseteq i_{\mu}(c^{*\pi}i_{\mu}(A) \cap c^{*\pi}(B)) \subseteq i_{\mu}(c^{*\pi}(A \cap B))$. Therefore $A \cap B \subseteq i_{\mu}c^{*\pi}(A \cap B)$. Hence $A \cap B \in R\pi * HO(X)$.

Theorem 4.9. Let (X, μ, H) be a hereditary genralized topological space. If $A \in R\alpha * HO(X)$ and $B \in R\pi * HO(X)$. Then

 $A \cap B \in R\pi * \operatorname{HO}(X).$

Proof. Let $A \in R\alpha * HO(X)$ and $B \in \mu$ Then $A \subseteq i_{\mu}c^{*\pi}i_{\mu}(A)$ and $B \subseteq i_{\mu}c^{*\pi}(B)$. Now, $A \cap B \subseteq i_{\mu}(c^{*\pi}i_{\mu}(A) \cap c^{*\pi}(B)) \subseteq i_{\mu}(c^{*\pi}(A) \cap C^{*\pi}(B)) \subseteq i_{\mu}(c^{*\pi}(A \cap B))$. Therefore $A \cap B \subseteq i_{\mu}c^{*\pi}(A \cap B)$. Hence $A \cap B \in R\pi * HO(X)$.

Theorem 4.10. Let A be a hereditary genralized topological space

(X, μ , H). Then the following are equivalent.

1. A is $R\alpha * - H$ -open set

2. A is $R\sigma * - H$ -open set and $R\pi * - H$ -open set

Proof. (1) \Rightarrow (2). Let a subset *A* of hereditary genralized topological space (*X*, μ , H) is $R\alpha * - H$ -open set. Then its both $R\sigma * - H$ -open set and $R\pi * - H$ -open set by Theorem 5.3.1.

(2) \Rightarrow (1). Let a subset *A* of hereditary genralized topological space (*X*, μ , H) is both $R\sigma^*$ - H -open set and $R\pi^*$ - H -open set. Then $A \subset c^{*\pi}i_{\mu}(A)$ and $A \subset i_{\mu}c^{*\pi}(A)$. Now $A \subset i_{\mu}c^{*\pi}(A) \subset i_{\mu}c^{*\pi}i_{\mu}(A) \subset i_{\mu}c^{*\pi}i_{\mu}(A)$. Therefore $A \subset i_{\mu}c^{*\pi}i_{\mu}(A)$. Hence *A* is $R\alpha^*$ - H -open set.

Remark 4.11. The notions of $R\sigma * - H$ -open set and $R\pi * - H$ -open set are independent.

Example 4.12. Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}$,

X} and $H = \{\emptyset, \{a\}\}$. Then $A = \{b, d\}$ is $R\sigma * - H$ -open but not $R\pi * - H$ -open.

Example 4.13. Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{a, b\}, \{b, c, d\}, X\}$ and H =

 $\{\emptyset, \{a\}, \{b\}\}$. Then $A = \{b\}$ is $R\pi * - H$ -open set but not $R\sigma * - H$ -open set.

5 $R\beta * - H$ -open sets

Definition 5.1. Let (X, μ, H) be a hereditary generalized topological space. A subset

A of X is said to be $R\beta * - H$ -open set, if $A \subseteq c_{\mu}i_{\mu}c^{*\pi}(A)$.

Theorem 5.2. Let (X, μ, H) be a hereditary generalized topological space. Then

1. Every μ -open is $R\beta * - H$ -open set

2. Every β - H -open is $R\beta$ * - H -open set

3. Every $R\sigma * - H$ -open set is $R\beta * - H$ -open set

4. Every $R\pi^*$ - H -open set is $R\beta^*$ - H -open set

5. Every Ra* - H -open set is R\beta* - H -open set

Proof. (1). Let a subset A of a hereditary generalized topological space (X, μ, H) is μ -open. Then $A = i_{\mu}(A)$. Now $A \subset i_{\mu}(A) \subset c_{\mu}i_{\mu}c^{*\pi}(A)$. Hence A is $R\beta^*$ - H - open set.

(2) Let a subset A of a hereditary generalized topological space (X, μ, H) is $\pi - H$ -open. Then $A \subset c_{\mu}i_{\mu}c^*\mu(A)$. Now $A \subset c_{\mu}i_{\mu}c^*\mu(A) \subset c_{\mu}i_{\mu}c^{*\pi}(A)$. Hence A is $R\beta^* - H$ -open set.

(3)Let a subset A of a hereditary generalized topological space (X, μ, H) is *Copyrights @Kalahari Journals*

Vol. 6 (Special Issue, Nov.-Dec. 2021)

 $R\sigma^*$ - H -open set. Then $A \subset c^{*\pi}i_{\mu}(A) \subset c^{*\pi}i_{\mu}c^{*\pi}(A) \subset c_{\mu}i_{\mu}c^{*\pi}(A)$. Therefore $A \subset c_{\mu}i_{\mu}c^{*\pi}(A)$. Hence A is R^* - H -open set. (4)Let a subset A of a hereditary generalized topological space (X, μ, H) is $R\pi^*$ -H -open set. Then $A \subset i_{\mu}c^{*\pi}(A) \subset c_{\mu}i_{\mu}c^{*\pi}(A)$. Therefore $A \subset c_{\mu}i_{\mu}c^{*\pi}(A)$. Hence μ μ A is $R\beta^*$ - H -open set.

(5)Let a subset *A* of a hereditary generalized topological space (X, μ, H) is $R\alpha * - H$ -open set. Then $A \subset i_{\mu}c^{*\pi}i_{\mu}(A) \subset i_{\mu}c^{*\pi}(A) \subset c_{\mu}i_{\mu}c^{*\pi}(A)$. Therefore $\mu \quad \mu$ $A \subset c_{\mu}i_{\mu}c^{*\pi}(A)$. Hence *A* is R^* - H -open set.

Example 5.3. Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}$,

X} and $H = \{\emptyset, \{a\}\}$. Then $A = \{a, d\}$ is $R\beta * - H$ -open but not μ -open (resp.

 $R\alpha * - H - open, R\sigma * - H - open, R\pi * - H - open).$

μ

Example 5.4. Let $X = \{a, b, c, d, e\}, \mu = \{\emptyset, \{a\}, \{a, e\}, \{a, b, c\}, \{a,$

 $\{a, b, c, d\}, \{a, b, c, e\}, X\}$ and $H = \{\emptyset, \{a\}\}$. Then $A = \{e\}$ is $R\beta * - H$ -open set but not β - H -open.

β

Theorem 5.5. If $H = \emptyset$, then every $R\beta * - H$ -open set is $\mu - \sigma$ -open.

Proof. Let a subset A of X is $R\beta * - H$ -open set and $H = \emptyset$. Now $A \subset c_{\mu}i_{\mu}c^{*\pi}(A) =$

 $c_{\mu}i_{\mu}(A)$, which implies $A \subset c_{\mu}i_{\mu}(A)$. Hence A is $\mu - \sigma$ -open.

Theorem 5.6. If H = P(X), then every $R\pi * - H$ -open set is $\mu - \sigma$ -open..

Proof. Let a subset A of X is $R\beta * - H$ -open set and $H = \emptyset$. Now $A \subset c_{\mu}i_{\mu}c^{*\pi}(A) =$

 $c_{\mu}i_{\mu}(A)$, which implies $A \subset c_{\mu}i_{\mu}(A)$. Hence A is $\mu - \sigma$ -open.

Theorem 5.7. If $R_{\beta}(\mu) = \mu$, then every $R\beta * - H$ -open set is

 β - H open.

Proof. Let a subset A of X is $R\beta^* - H$ open set and $R_\beta(\mu) = \mu$. Now $A \subset c_\mu i_\mu c^{*\pi}(A) = c_\mu i_\mu (A \cup A^{*\pi}) = c_\mu i_\mu (A \cup A^{*\pi}) = c_\mu i_\mu c^* \mu(A)$. Hence A is β - H open set.

Theorem 5.8. Let (X, μ, H) be a hereditary generalized topological space and X is a C_0 -space. If A is $R\beta * - H$ -open set and U is a μ -open. Then $A \cap U$ is $R\beta * - H$ -open set.

Proof. Let A be a $R\beta^*$ - H -open set and U is a μ -open. Then $A \subset c_\mu i_\mu c^{*\pi}(A)$ and $U = i_\mu(U)$. Now, $A \cap U \subset c_\mu i_\mu c^{*\pi}(A) \cap i_\mu(U) \cap C_\mu i_\mu(c^{*\pi}(A) \cap i_\mu(U))) \subset c_\mu i_\mu(c^{*\pi}(A) \cap U) \cap C_\mu i_\mu((A \cup A^{*\pi}) \cap U) \subset c_\mu i_\mu((A \cap U) \cup (A^{*\pi} \cap U))) \subset c_\mu i_\mu((A \cap U) \cup (A \cap U)^{*\pi}) \subset c_\mu i_\mu((A \cap U) \cup (A \cap U)^{*\pi}) \subset c_\mu i_\mu(A \cap U)$. Hence $A \cap U$ is $R\beta^*$ - H -open set.

6 Decomposition of $(R\alpha * - H, \lambda)$ -continuity

Definition 6.1. A function $f : (X, \mu, H) \rightarrow (Y, \lambda)$ is said to be $(R\alpha * - H, \lambda)$ - continuous (resp. $(R\pi * - H, \lambda)$ - continuous, $(R\sigma * - H, \lambda)$ - continuous, $(R\beta * - H, \lambda)$ - continuous) if $f^{-1}(V)$ is $R\alpha * - H$ - open set ($R\pi * - H$ - open set, $R\sigma * - H$ - ope

Propositon 6.2. Every $(R\alpha * - H, \lambda)$ -continuous is $(R\pi * - H, \lambda)$ -continuous but not conversely.

Proof. This is obvious from Theorem 4.2.

Propositon 6.3. Every $(Ra* - H, \lambda)$ -continuous is $(R\sigma* - H, \lambda)$ -continuous but not conversely.

Proof. This is obvious from Theorem 4.2.

Propositon 6.4. Every $(Ra* - H, \lambda)$ -continuous is $(R\beta* - H, \lambda)$ -continuous but not conversely.

Proof. This is obvious from Theorem 5.2.

Propositon 6.5. Every $(R\sigma * - H, \lambda)$ -continuous is $(R\beta * - H, \lambda)$ -continuous but not conversely.

Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)

μ

Proof. This is obvious from Theorem 5.2.

Propositon 6.6. Every $(R\pi * - H, \lambda)$ -continuous is $(R\beta * - H, \lambda)$ -continuous.

Proof. This is obvious from Theorem 5.2.

Theorem 6.7. For a function $f: (X, \mu, H) \rightarrow (Y, \lambda)$, the following are equivalent.

1. $(R\alpha * - H, \lambda)$ -continuous

2. $(R\sigma * - H, \lambda)$ -continuous and $(R\pi * - H, \lambda)$ -continuous

Proof. This is obvious from Theorem 4.10.

References

- [1] A. Csaszar, *Generalized topology, generalized continuity*. Acta Math. Hungar., **96**(2002), 351-357.
- [2] A. Csaszar, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(1-2)(2005), 53-66.
- [3] A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(2007), 29-36.
- [4] W. K. Min, Weak continuity on generalized topological spaces, Acta Math. Hungar., **124**(1-2)(2009), 73-81.
- [5] W. K. Min, Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hungar., **128**(4)(2010), 299-306.
- [6] T. Noiri, M. Rajamani and R. Ramesh, αg_{μ} -*Closed sets in generalized topological spaces*, Journal of Advanced Research in Applied Mathematics **3**(2013), 66-71.
- [7] M. Rajamani, V. Inthumathi and R. Ramesh, Some new generalized topologies via hereditary classes, Bol. Soc. Paran. Mat. 30 2(2012), 71-77.
- [8] M. Rajamani, V. Inthumathi and R. Ramesh, (ω_{μ}, λ) -continuity in generalized topological spaces, International Journal of Mathematical Archive, **3**(10)(2012), 3696-3703.
- [9] M. Rajamani, V. Inthumathi and R. Ramesh, A decomposition of (μ, λ) continuity in generalized topological spaces, Jordan Journal of Mathematics and Statistics, **6**(1)(2013), 15 27.
- [10] A. Al-Omari, M. Rajamani and R. Ramesh, A *Expansion continuous maps and* (A, B) -weakly continuous maps in hereditary generalized topological spaces, Scientific Studies and Research, **23**(2) (2013), 13-22.
- [11] R. Ramesh and R. Mariappan, Generalized open sets in hereditary generalized topological spaces, J. Math. Comput. Sci., 5(2) (2015), pp 149-159.
- [12] R. Ramesh, R. Suresh and S. Palaniammal, *Decompositions of* (μ_m, λ) *Continuity*, Global Journal of Pure and Applied Mathematics 14(4)(2018), 603-610.
- [13] R. Ramesh, R. Suresh and S. Palaniammal, *Decompositions of* (μ, λ) *Continuity*, Global Journal of Pure and Applied Mathematics **14**(4)(2018), 619-623.
- [14] R. Ramesh, R. Suresh and S. Palaniammal, *Decomposition of* (π, λ) *-continuity*, American International Journal of Research in Science, Technology Engineering and Mathematics, 246-249.
- [15] R. Ramesh, R. Uma and R. Mariappan, *Decomposition of* (μ^*, λ) *-continuity*, American International Journal of Research in Science, Technology Engineering and Mathematics, 250-255.
- [16] R. Ramesh, *Decomposition of* $(\kappa \mu^*, \lambda)$ *continuity*, Journal of Xi'an University of Architecture and Technology, **11**(VI), (2020), 2095-2101.
- [17] GE Xun and GE Ying, μ -Separations in generalized topological spaces, Appl. Math. J. Chinese Univ., 25(2)(2010), 243-252.

Copyrights @Kalahari Journals

Vol. 6 (Special Issue, Nov.-Dec. 2021)