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Abstract: 

Engineering applications such as computer-aided design, robotics, and electrical network 

requires an efficient computational technique of finding all roots of a system of nonlinear 

polynomial equations in s variables which lie within an s dimensional box. We are proposing 

an algorithm to obtain the roots of the polynomial system, it is based on the following technique: 

 1) transformation of the original nonlinear algebraic equations into polynomial B-spline 

form; 2) includes a pruning step using B-spline Hansen-Sengupta operator.  

 We compare the performance of the proposed B-spline Hansen-Sengupta operator with 

that of Interval Hansen-Sengupta operator using numerical examples, providing the superiority 

of the proposed approach. 

 

Keywords:  Polynomial B-spline form, Polynomial systems, Hansen-Sengupta operator. 

 

 

I. INTRODUCTION 

In [1][2]the authors proposed several root-finding algorithms for Finding solutions to the 

system of polynomial equations. In [3][4][5][6][7] the authors use interval methods to solve 

algebraic nonlinear equations. Methods addressing intervals approach provides interval 
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enclosures with all roots of the polynomial systems using interval branch and bound strategy. 

Unfortunately, these methods also involves regular evaluation of polynomial functions and time-

consuming [7]. 

To reduce the number of iterations operators like Newton, Krawczyk and Hansen-Sengupta 

are used for pruning the search space. Whereas to obtain interval enclosures for these pruning 

operators involves computation of derivatives [7]. Finding polynomial system derivatives using 

interval methods is similarly a time-consuming process. Again, to solve polynomial systems in 

[7][8] the authors combine Krawczyk operator and subdivision in B-spline and Bernstein basis 

respectively. 

An algorithm was proposed based on B-spline expansion approach in combination with B-

spline Hansen-Sengupta contractor to obtain the zeros of a polynomial systems i.e. roots of 

polynomials. The B-spline coefficient computation algorithm was suggested in [9] for global 

optimization. We are considering a new algorithm to solve a system of nonlinear polynomial 

equations by combining the B-spline Hansen-Sengupta algorithm, and the B-spline coefficient 

computation algorithm given in [9]. The idea behind B-spline expansion is to obtain polynomial 

B-spline form representation of given power form polynomial to obtain the bound on its range 

[9][10][11]. 

This paper is organized as follows: In the next section we give a brief introduction about the 

B-spline expansion of multivariate power form polynomial along range enclosure property and 

subdivision procedure. The interval Hansen-Sengupta operator is presented in section 3. In 

section 4, we present main zero finding algorithm to solve the system of the polynomial equation 

and use the B-spline Hansen-Sengupta operator algorithm for pruning the bounds. In section 5, 

we demonstrate the use of the suggested algorithm to solve a system of nonlinear polynomial 

equations by considering two numerical examples. The performance of proposed zero finding 

algorithm is compared with solver based on the INTLAB software. Finally, in the last section, we 

conclude. 

 

II. BACKGROUND: POLYNOMIAL B-SPLINE FORM  

 

Firstly, we present brief review of B-spline form, which is used as inclusion function to bound 

the range of multivariate polynomial in power from. The B-spline form is then used as basis of 



DOI : https://doi.org/10.56452/227 

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021) 

International Journal of Mechanical Engineering 

1669 

main zero finding algorithm in section 3.     

We follow the procedure given in [12][13] for B-spline expansion. Let 1( , )lt t  be a 

multivariate polynomial in l  real variables with highest degree  1 ,lm m (1). 
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2.1 Univariate polynomial  

 

Lets consider univariate polynomial case first, (2) 
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for degree d  (i.e. order d+1) B-spline expansion where ,d m  on compact interval I=[p,q].  

We use  ,d I u  to represent the space of splines of degree d on the uniform grid partition known 

as Periodic or Closed  knot vector, u :  

                                                0 1 1: ,k kt t t t    u  (3) 

Where : ,it p iy  0 ,i k  k  denotes B-spline segments and  : / .y q p k   

Let dP  reflects the space of degree d  splines. We then denote the space of degree d  splines 

with 1dC   continuous on [ , ]p q  and defined on u as 

   1

1, u : { ( ) : | [ , ] P ,  0, , 1}.d

d i i dI C I t t i k  

      (4) 

Since  , ud I is ( )k d  dimension linear space [14]. Therefore to construct basis of splines 

supported locally for  , u ,d I  we use few extra knots 1dt t p    and 1k k dq t t     at the 

ends in knot vector. These types of knot vectors are known as Open or Clamped knot vectors, (5)

. Since knot vector u  is uniform grid partition, we choose :  it p iy  for 

   , , 1 1, , ,i d k k d       

 1 0 1 1 1: { }.d k k k k dt t p t t t q t t t                u  (5) 

The B-spline basis   
1

1

k
d

i
i

B t



of  , ud I  is defined in terms of divided differences: 

      1 1: [ , ,, , ] .
dd

i i d i i i i dB t t t t t t t    
    (6) 

where  .
d


 represent the truncated power of degree .d  This can be easily proven that 
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     1 1: [ , ,, , ] .
dd

i i d i i i i dB t t t t t t t    
    is the polynomial B-spline of the degree .d  The B-spline 

basis can be computed by a recursive relationship that is known as Cox-deBoor  recursion 

formula 

                                       1 1

, 1, 1: 1 ,  1,d d d

i i d i i d iB t t B t t B t d  

      (9) 

where  
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The set of spline basis   
1

1

k
d

i
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B t



 satisfies following interesting properties: 

1. Each  d

iB t  is positive on its support 1[ , ]i i dt t   . 

2. Set of spline basis   
1

1
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B t



 exhibits a partition of unity, i.e.  
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 The power basis functions  
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 in power form polynomial (2) can be represented in term 

of B-spline using following relation 
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and the symmetric polynomial  s

v  defined as 

                                          Sym 1, ,
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Then by substituting (12) in (2) we get B-spline extension of power form polynomial (2) as 

follows: 



DOI : https://doi.org/10.56452/227 

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021) 

International Journal of Mechanical Engineering 

1671 

                               
1 1 1

0 0

( ) : = = ,
m k k m k

s sd d d

s v v s v v v v

s v d v d s v d

t a B t a B t d B t  
  

    

 
  

 
      (14) 

where   
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2.2 Multivariate polynomial case 

 

Lets consider next multivariate power form polynomial (16)  for B-spline expansion 
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      where  1: , , ls ss and  1: , , .lk kk  By substituting (12) for each st , (16) can be written 

as 
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     we can write (17) as 

                                                          k
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     where  1v : , , lv v and vd is B-spline coefficient given as 
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          The B-spline expansion of  (16) is given by (17). The derivative of polynomial can be 

found in a particular direction using the values of vd i.e. B-spline coefficients of original 

polynomial for ,Iy the derivative of a polynomial  t with respect to rt  in polynomial B-spline 

form is (20), 
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         where u is a knot vector. The partial derivative ( )r


y now includes range enclosure for 
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derivative of  on .y  Lin and Rokne proposed (13) for symmetric polynomial and used closed 

or periodic knot vector (3).  Due to change in knot vector from (3) to (5) we propose new form 

of (13) as follows, 

                                               Sym 1, ,
: .

s s

v

v v d

d

s


 


 
 
 

 (21) 

2.3 B-spline range enclosure property  

                                                  
1

: ( ), .
m

d

i i

i

t d B t t


  y  (22) 

    Let (22) be a B-spline expansion of polynomial ( )q t in power form and ( )q y denotes the 

range of the power form polynomial on subbox .y  The B-spline coefficients are collected in an 

array ( ) : ( ( ))i iD d y y where : {1, , }.m   Then for ( )D y it holds 

                                          ( ) ( ) [min ( ),max ( )].q D D D y y y y  (23) 

          The range of the minimum and the maximum value of B-spline coefficients of 

multivariate polynomial B-spline expansion provides an range enclosure of the multivariate 

polynomial q on .y  

 

2.4 Subdivision procedure 

 

  We can improve the range enclosure obtained by B-spline expansion using subdivision of 

subbox .y  Let  

                                   1 1: , , , ,r r l l
         
     

y y y y y y y  

represent the box to be subdivided in the r th direction (1 ).r l   Then two subboxes Ay and 

By are generated as follows 

                                   1 1: , , ( ) , ,r r l lm         
     A

y y y y y y y   

                                    1 1: , ( ), , ,r r l lm       
   B

y y y y y y y  

where )( rm y is a midpoint of [ , ].rr
y y  

 

 



DOI : https://doi.org/10.56452/227 

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021) 

International Journal of Mechanical Engineering 

1673 

III.  B-SPLINE HANSEN-SENGUPTA OPERATOR ALGORITHM 

 

The interval Newton operator is given in [15] as 

                                                        
( )

, , .
( )

p y
y y


  

  
 

N p y
p y

                                          (24) 

Let : [ , ]p y y y  be a continuously differentiable multivariate polynomial on ,y  let that 

there exists *y y  such that  * 0,p y   and suppose that .y


 y  Then, since the mean value 

theorem implies  

   * *0 ,p y p y p y y
    

      
   

 

therefore 
 

*

p y

y y
p 





 
 
 

 


 for some .  y  If  p y  is any interval extension of the derivative 

of p  over ,y  then 

                                                           
 

*  ,   .

p y

y y y



 

 
 
 

  


y
p y

                                            (25) 

Because of (25), any solution of ( ) 0p y   that are in y  must also be in N , , y
 

 





p y  and 

therefore (25)  is the basis of the  univariate Newton method (24).  

The  univariate Newton method (24) can be extended as a Multivariate Newton method 

which execute an iteration equation similar to equation (24). 

Suppose now that sy  and ( ) nf y   (continuously differentiable nonlinear) polynomial 

equations in s  unknowns, and let that .Sy


  Then a basic formula for multivariate Newton 

method is 

                                                         , , ,f y y
  

  
 

N y w                                                    (26) 

where w  is a vector of interval bounding all zeros w  of system ,Aw f y
 

   
 

 as   ,A f y

such that  f y  is the Jacobi matrix f  interval extension over .y   
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 As interval Newton operator given by (26), we can write as follows: 

                                            , , .x x f x
      

       
    

f x N f x                                              (27) 

 Preconditioning equation (27) withY , as midpoint inverse of an interval extension of the 

Jacobi matrix ( )f x , i.e.   
1

mid Y


 f x gives 

    * *0 ,p y p y p y y
    

      
   

 

therefore 
 

*

p y

y y
p 





 
 
 

 


 for some .  y  If  p y  is any interval extension of the derivative 

of p  over ,y  then 

                                    
 

*  ,   .

p y

y y y



 

 
 
 

  


y
p y

                                                       (28) 

Because of (28), any solution of ( ) 0p y   that are in y  must also be in N , , y
 

 





p y  and 

therefore (28) is the basis of the  univariate Newton method (24).  

The  univariate Newton method (24) can be extended as a Multivariate Newton method 

which execute an iteration equation similar to equation (24). 

Suppose now that sy  and ( ) nf y   (continuously differentiable nonlinear) polynomial 

equations in s  unknowns, and let that .Sy


  Then a basic formula for multivariate Newton 

method is 

                                                    , , ,f y y
  

  
 

N y w                                               (29) 

where w  is a vector of interval bounding all zeros w  of system ,Aw f y
 

   
 

 as   ,A f y

such that  f y  is the Jacobi matrix f  interval extension over .y   

We can write (29) as follows: 

                                  , , .x x f x
      

       
    

f x N f x                                         (30) 
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Preconditioning equation (30)  withY , as midpoint inverse of an interval extension of the 

Jacobi matrix ( )f x , i.e.   
1

mid Y


 f x gives 

                                      , , .Y x x Yf x
      

       
    

f x N f x                                         (31) 

Changing the notation , , x
 

 
 

N f x to , , x
 

 
 

H f x and defining, 

  , ,M Y b Yf x
 

   
 

f x  

the interval Gauss-Seidel procedure proceeds component by component to give the 

iteration 

                   

1 11
1 1

1 1
, , ,

k ki n
k k

i ij ijk k
j j ik

i

iii

b Y x Y x

x x
Y

 

 

 
 

  

   
      

     
  

 

 x x

H f x                  (32) 

                                      1 , , ,
k

k k k

i i

i

x



 

  
 

x H f x x                                           (33) 

for 0,1, ,k n and .
k

kx


x  

In this iteration after the ith component of , ,
k

k x
 

 
 

H f x  is computed using (32), the 

intersection (33) is performed. The result is then used to calculate subsequent component of

, ,
k

k x
 

 
 

H f x . 

We now present the algorithm for bounding zeros of polynomial systems similar to [16], 
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Algorithm 3.1: Subdivision Algorithm for Solving a Polynomial Systems 

 Input    : 

 

 

 

Output : 

Here cA  is a cell structure containing the coefficients array Ia  of the polynomials 

in the power form. cN  is a cell structure, containing degree vector, IN  which 

contains degree of each variable in polynomial function. Initial bound x  of each 

variable and tolerance limit .ò  

The zero(s) of f in x or   as no solution exists in .x  

     Begin Algorithm 

1 

 

 

{Compute the B-spline coefficients} 

Compute the B-spline coefficients ( )iD x  of given n  polynomials on the initial box ,x  

where 1,2, , .i n ( Use algorithms given in [9]) 

2 {Initialize iteration number} 

Set 0,k   0
.x x  

3 

 

{Compute ( )f x


} 

Choose ( )mid( )kx


 x and obtain the value of ( )f x


directly from the B-spline coefficient 

value at the vertex of ( )mid( )k
x . 

4 {Compute ( )f x } 

Use the B-spline coefficients of f on  
,

k
x to compute the B-spline coefficients of all the 

first partial derivatives of f on  k
x via (21). From the minimum and maximum B-spline 

coefficients of the first derivative, construct their range enclosure interval, and form the 

interval Jacobian matrix ( ).f x  

5 {Compute the precondition matrix Y } 

Compute the preconditioning matrix Y as 

   
1

= mid  .kY


f x  
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       6 { B-spline Hansen-Sengupta operator} 

Compute the value of B-spline Hansen-Sengupta operator H and update the solution, 

Set  M Y   f x , b Y f x
 

   
 

and .n s  

     for i=1 to n do 

     if i == 1 then 

 

 

   
       

 

     

ˇ

( ) ( )

, 2 : 2 : 2 :

,
,

,k k

b i M i n n x n

H i x i
M i i

i H i i



 
   

 
 

 

x

x x  

else 

 

   
 

 

     

     

     

ˇ

( ) ( )

,
,

where

,1: 1 : 1 : 1

and

, 1: , 1: , 1: ,

,k k

b i
H i x i

M i i

M i i i i x i i

M i i n i i n x i i n

i H i i

 









 
 

 
      

 

 
      

 

 

x

x

x x

 

  end 
 

   end 
 

7 {Return   } 

If  
0,

k
x then return   as solution and exit algorithm. 

8 {Termination} 

If  
,

k
x ò then return  1k 

x  as solution and exit algorithm. 

9 Set 1k k  and go to step 3. 

      End Algorithm 
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IV. NUMERICAL RESULTS 

We consider the two problems to test and compare the performance of B-spline Hansen-

Sengupta operator (BHSO) over the interval Hansen-Sengupta operator (IHSO). The 

performance metrics are taken as the number of iterations and computational time (in seconds). 

Our MATLAB source code implementation of interval Hansen-Sengupta operator based on 

INTLAB. 

 

  Example 1: This example is taken from [17].  This is a problem with 4 variables. The 

polynomial systems is given by 

 

1 2 3 4

1 1 2 2 3 3 4 4

1 2 1 2 3 2 3 4 3 4 1 4

1 2 3 1 2 3 4 2 3 4 3 4 1 1 2 4

1 0,

0,

0,

0.

x x x x

x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

    

    

    

    
 

 

and the bounds on the variables are  

 

1 2 3 4[0.95,1.05],  [0.95,1.05],  [ 2.65, 2.6],  [ 0.4, 0.37].x x x x         

 

The results of algorithm are tabulated in Table 1. 

Table 1:  Roots of Example 1.                   Table 2: Comparison of performance   

                                                                         between BHSO and IHSO. 

 

Roots 

1x  1 

2x  1 

3x  -2.6180 

4x  -0.3819 

 

 

Number 

of 

Iterations 

Computation 

Time (Sec.) 

BHSO 15 3.77 

IHSO 4 3.06 

Example 2: This example is taken from [17].  This is a problem with 5 variables. The 
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polynomial systems is given by 

 

1 2 3 4 5

1 1 2 2 3 3 4 4 5 5

1 2 1 2 3 2 3 4 3 4 5 4 5 1 5

1 2 3 1 2 3 4 2 3 4 5 3 4 5 1 4 5 1 2 5

1 2 3 4 1 2 3 4 5 2 3 4 5 3 4 5 1 1 2 4 5 1 2 3 5

1 0,

0,

0,

0.

0.

x x x x x

x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x

     

     

     

     

       

 

and the bounds on the variables are 

 

1 2 3 4 5[0.95,1.05],  [ 3.75, 3.70],  [ 0.28, 0.25],  [0.95,1.01],  [0.95,1.01].x x x x x          

 

     From Table 3 we observe that the existing interval Newton operator require 4 iterations 

to bound the roots of the polynomial systems with the accuracy of 
06.10ò  The proposed B-

spline Newton operator algorithm computes the result in 7 iterations within the same accuracy. 

The computational time required for the proposed B-spline Newton operator is 1.23 seconds, 

whereas the interval Newton operator method requires computational time 1.44 seconds. The 

results of algorithm are tabulated in Table 3. 

Table 3:  Roots of Example 2.                               Table 4: Comparison of performance between 

                                                                                               BHSO and IHSO. 

 

Roots 

1x  1 

2x  -3.7320 

3x  -0.2679 

4x  1 

5x  1 

 

 

 

 

Number 

of 

Iterations 

Computation 

Time (Sec.) 

BHSO 14 6.01 

IHSO 4 3.83 
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V. CONCLUSION 

 

In this paper we presented an algorithm for contracting the search domain using B-spline 

Hansen-Sengupta. The computational examples demonstrate that the algorithm suggested quite 

effectively solves the polynomial system but requires more number of iterations due to over 

estimation in range enclosure of the first partial derivatives of the original polynomial. 
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