
DOI : https://doi.org/10.56452/226

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

1656

ISSN: 0974-5823 Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

Robust Stability Analysis using Polynomial B-

spline Approach

Deepak Gawali

Systems & Control Engineering Department, Indian Institute Technology, Bombay

ddgawali2002@gmail.com

Abstract:

The robust stability analysis problems can be reduced to constrained global optimization of

strict inequalities (or equations) involving multivariate polynomials. We propose algorithms

based on polynomial B-spline form for constrained global optimization of multivariate

function. The proposed algorithms are based on a branch-and-bound framework. We tested the

proposed basic constrained global optimization algorithms by considering the robust stability

analysis problem. The obtained results agree with those reported in literature.

Keywords: Polynomial B-spline, Stability analysis, Constrained optimization.

I. INTRODUCTION

It is well known that the roots of the closed loop characteristic equation determine the stability

of the closed loop system. The characteristic equation with parameter uncertainties can be written

as a polynomial equation, and the uncertainty bounds can be considered as constraints for the

system. In linear system, robust stability analysis means finding the region of parameter

uncertainties for which controller stabilize any disturbance in the system [1]. Generally the robust

stability analysis problems reduces to constrained global optimization of nonlinear programming

problems (NLP) is the study of how to find the best (optimum) solution to a problem. The

constrained global optimization of NLPs is stated as follows:

 0

,

2

1

 min ()

s.t. () , 2,...,

 () 0, 1, ,...,

x

i

j

f x

g x i p

h x j q



 

 

x

 (1)

 Branch-and-bound framework is commonly used for solving constrained global

DOI : https://doi.org/10.56452/226

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

1657

optimization problems [2]. For instance, several interval methods [3][4] use this framework to

find the global minimum of a given NLP. In this work, we propose B-spline based algorithms for

solving nonconvex nonlinear multivariate polynomial programming problems in systems and

control, where the objective function f and constraints (&)i jg h are limited to being polynomial

functions. The polynomial objective function and constraints in power form are transformed into

the polynomial B-spline form [5][6]. Then, the B-spline coefficients provide a bound on the

range of the objective function and constraints.

 In this paper, we investigate three applications of the basic constrained global

optimization algorithm: the robust stability analysis problem, the minimum distance problem, and

the domain of attraction problem. These problems are reduced to strict inequalities (or equations)

involving multivariate polynomials and solved using the proposed algorithm for constrained

global optimization.

The merits of the proposed approach are: (i) it avoids evaluation of the objective function and

constraints; (ii) an initial guess to start optimization is not required; only an initial search box

bounding the region of interest; (iii) it guarantees that the global minimum is found to a user-

specified accuracy, and (iv) prior knowledge of stationary points is not required.

II. BACKGROUND: POLYNOMIAL B-SPLINE FORM

Firstly, we present brief review of B-spline form, which is used as inclusion function to bound

the range of multivariate polynomial in power from. The B-spline form is then used as basis of

main zero finding algorithm in section 3.

We follow the procedure given in [7],[6] for B-spline expansion. Let 1(,)lt t be a

multivariate polynomial in l real variables with highest degree  1 ,lm m (2).

1

1

1

1

1 1

0 0

(,) .
l

l

l

l

mm
ss

l s s l

s s

t t a t t
 

  (2)

2.1 Univariate polynomial

Lets consider univariate polynomial case first, (3)

  
0

() , , ,
m

s

s

s

t a t t p q


  (3)

for degree d (i.e. order d+1) B-spline expansion where ,d m on compact interval I=[p,q].

We use  ,d I u to represent the space of splines of degree d on the uniform grid partition known

as Periodic or Closed knot vector, u :

DOI : https://doi.org/10.56452/226

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

1658

  0 1 1: ,k kt t t t    u (4)

Where : ,it p iy  0 ,i k  k denotes B-spline segments and  : / .y q p k 

Let dP reflects the space of degree d splines. We then denote the space of degree d splines

with 1dC  continuous on [,]p q and defined on u as

   1

1, u : { () : | [,] P , 0, , 1}.d

d i i dI C I t t i k  

     (5)

Since  , ud I is ()k d dimension linear space [8]. Therefore to construct basis of splines

supported locally for  , u ,d I we use few extra knots 1dt t p    and 1k k dq t t    at the

ends in knot vector. These types of knot vectors are known as Open or Clamped knot vectors, (6)

. Since knot vector u is uniform grid partition, we choose : it p iy  for

   , , 1 1, , ,i d k k d     

 1 0 1 1 1: { }.d k k k k dt t p t t t q t t t                u (6)

The B-spline basis   
1

1

k
d

i
i

B t



of  , ud I is defined in terms of divided differences:

      1 1: [, ,, ,] .
dd

i i d i i i i dB t t t t t t t    
   (7)

where  .
d


 represent the truncated power of degree .d This can be easily proven that

   : , 1,d

i d

t a
B t i d i k

h

 
       

 
 (8)

where

      
1

0

11
: 1 ,

!

d
i d

d

i

d
t t l

ld






 
    

 
 (9)

     1 1: [, ,, ,] .
dd

i i d i i i i dB t t t t t t t    
   is the polynomial B-spline of the degree .d The B-spline

basis can be computed by a recursive relationship that is known as Cox-deBoor recursion

formula

           1 1

, 1, 1: 1 , 1,d d d

i i d i i d iB t t B t t B t d  

     (10)

DOI : https://doi.org/10.56452/226

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

1659

where

 ,

, if ,
()

0, otherwise,

i

i i d

i d ii d

t t
t t

t tt







 



 (11)

and

 10
1, if [,),

() :
0, otherwise.

i i

i

t t t
B t


 


 (12)

The set of spline basis   
1

1

k
d

i
i

B t



 satisfies following interesting properties:

1. Each  d

iB t is positive on its support 1[,]i i dt t   .

2. Set of spline basis   
1

1

k
d

i
i

B t



 exhibits a partition of unity, i.e.  

1

1

1.
k

d

i

i

B t






 The power basis functions  
0

m
r

r
t


 in power form polynomial (3) can be represented in term

of B-spline using following relation

    
1

: , 0, , ,
k

ss d

v v

v d

t B t s d




  (13)

and the symmetric polynomial  s

v defined as

    Sym 1, ,
: , 0, , .

s s

v

s

v v d
s d

d
k

s


 

 
 
 
 

 (14)

Then by substituting (13) in (3) we get B-spline extension of power form polynomial (3) as

follows:

          
1 1 1

0 0

() : = = ,
m k k m k

s sd d d

s v v s v v v v

s v d v d s v d

t a B t a B t d B t  
  

    

 
  

 
     (15)

where

  

0

: .
m

s

v s v

s

d a 


 (16)

DOI : https://doi.org/10.56452/226

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

1660

2.2 Multivariate polynomial case

Lets consider next multivariate power form polynomial (17) for B-spline expansion

1

1

1

1

1 1

0 0

(,) : ,
l

l

l

l

kk
ss

l s s l

s s

t t a t t a t
  

    k

s

s k

 (17)

 where  1: , , ls ss and  1: , , .lk kk By substituting (13) for each st , (17) can be written

as

          
1 1

1 1

1 1 1

1 1 1

11

1 2 ... 1

0 0

, ,..., ,
l l

l l

l l l

s l l

m km k
ss dd

l s s v v v v l

s s v d v d

t t t a B t B t  


   

   

        
1 1

1 1

1 1 1

1 1 1

11

... 1

0 0

... ,
s l

l l

l l l

l l l

k mk m
ss dd

s s v v v v l

v d v d s s

a B t B t 


   

 
   

 
    (18)

    
1

1

1 1

1 1

11

... 1... ... ,
l

l

l l

l l

kk
dd

v v v v l

v d v d

d B t B t


 

  

 we can write (18) as

    k

v v

v k

: .t d B t


 (19)

 where  1v : , , lv v and vd is B-spline coefficient given as

    
1

1

1 1 1

1

... ...

0 0

...
l

l

l l l

l

mm
ss

v v s s v v

s s

d a  
 

  (20)

 The B-spline expansion of (17) is given by (18). The derivative of polynomial can be

found in a particular direction using the values of vd i.e. B-spline coefficients of original

polynomial for ,Iy the derivative of a polynomial  t with respect to rt in polynomial B-spline

form is (21),

      
,1 , 1

, 1

,

1 1

() ,1 , ,
r r

rr

r

r

Im

m
d d B t r l t







  

      
 

 s s m s

ms s

y y y y
u u

 (21)

DOI : https://doi.org/10.56452/226

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

1661

 where u is a knot vector. The partial derivative ()r


y now includes range enclosure for

derivative of  on .y Lin and Rokne proposed (14) for symmetric polynomial and used closed

or periodic knot vector (4). Due to change in knot vector from (4) to (6) we propose new form

of (14) as follows,

    Sym 1, ,
: .

s s

v

v v d

d

s


 


 
 
 

 (22)

2.3 B-spline range enclosure property

  
1

: (), .
m

d

i i

i

t d B t t


  y (23)

 Let (23) be a B-spline expansion of polynomial ()q t in power form and ()q y denotes the

range of the power form polynomial on subbox .y The B-spline coefficients are collected in an

array () : (())i iD d y y where : {1, , }.m  Then for ()D y it holds

 () () [min (),max ()].q D D D y y y y (24)

 The range of the minimum and the maximum value of B-spline coefficients of

multivariate polynomial B-spline expansion provides an range enclosure of the multivariate

polynomial q on .y

2.4 Subdivision procedure

 We can improve the range enclosure obtained by B-spline expansion using subdivision of

subbox .y Let

 1 1: , , , ,r r l l
         
     

y y y y y y y

represent the box to be subdivided in the r th direction (1).r l  Then two subboxes Ay and

By are generated as follows

 1 1: , , () , ,r r l lm         
     A

y y y y y y y

DOI : https://doi.org/10.56452/226

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

1662

  1 1: , (), , ,r r l lm       
   B

y y y y y y y

where)(rm y is a midpoint of [,].rr
y y

III. BASIC B-SPLINE CONSTRAINED GLOBAL OPTIMIZATION ALGORITHM

SUMMARY

The basic B-spline algorithm for constrained global optimization of multivariate nonlinear

polynomials, is similar to the one described in [9]. The algorithm can be summarized as

follows.

Step 1: The basic algorithm uses the polynomial coefficients array of the objective

function, oA , the inequality constraints,
igA and the equality constraints,

jhA . These coefficient

arrays are stored in a cell structure cA .

Step 2: A cell structure cN contains degree vectors N ,
igN and

jhN , 0, ,i p  , 0, ,j q 

, where these degree vector represents the degree of each variable occurring in objective

function, the inequality constraints and the equality constraints respectively.

Step 3: The vector degree is used to compute the B-spline segment number, as the B-spline

is constructed with the number of segments equal to order of the B-spline plus one. The vectors

oK ,
igK , and

jhK are computed using degree vectors N ,
igN and

jhN as N 2K   and stored in

a cell structure cK .

Step 4: Then we compute the B-spline coefficients of the objective, inequality and equality

constraint polynomials on the initial search box x . We store them in arrays ()oD x , ()
igD x and

()
jhD x , respectively.

Step 5: We initialize the current minimum estimate p to the maximum B-spline coefficient

of the objective function on x , i.e. max ()op D x .

Step 6: Next, we initialize a flag vector F with each component to zero as

1 1: (, , , , ,)p p p qF F F F F    (0, ,0).  The flag vector F is used to make the algorithm more

efficient. Consider, thi inequality constraint is satisfied for x in a the box b , i.e. () 0ig x  for

xb . Then there is no need to check again () 0ig x  for any subbox 0 b b . The same holds true

for ()jh x . To handle this information, we use flag vector
1(, , ,pF F F  ,

1, ,)p p qF F  where the

components
fF , takes the value 0 or 1, as follows

a) 1fF  if the thf inequality or equality constraint is satisfied for the box.

b) 0fF  if the $ thf inequality or equality constraint has not yet been verified for the box.

Step 7: Initialize a working list L with the item { , (), (), (), }
i jo g hD D D F x x x xL , and a solution

DOI : https://doi.org/10.56452/226

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

1663

list solL to the empty list.

Step 8: Sort the list L in descending order of (min ()).oD x

Step 9: Start iteration. If L is empty go to Step 14. Otherwise pick the last item from L ,

denote it as{ , (), (), (), }
i jo g hD D D Fb b b b , and delete this item entry from L .

Step 10: Perform the cut-off test. As mentioned in Lemma 2, the minimum and maximum

B-spline coefficients provide the range enclosure of the function. Let p be the current

minimum estimate, and { , ()}Db b be the current item for processing, for which min ()p D b .

Then, this item surely cannot contain the global minimizer and can be discarded. Discard the

item { , (), (), (), }
i jo g hD D D Fy y y y if min ()oD py and return to Step 9.

Step 11: Subdivision decision. If

 wid (max () min ())and o oD D b b b ò

then add the item 0{ , min ()}Db b to solL and go to step 9. Else go to Step 12. Here ò is a

tolerance number.

Step 12: Generate two sub boxes. Choose the subdivision direction along the longest

direction of b and the subdivision point as the midpoint. Subdivide b into two subboxes 1b and

2b such that 1 2 b b b .

Step 13: For 1,2r 

1. Set 1 1: (, , , , ,)r r r r r

p p p qF F F F F F    

2. Compute the B-spline coefficient arrays of objective and constraints polynomial on the

box rb and compute corresponding B-spline range enclosure (), ()
io r g rb bD D ,and ()

jh rbD for

objective and constraints polynomial.

3. Set min(())local o rp  bD .

4. If localp p go to sub Step 9.

5. for 1, ,i p  if 0iF  then

a. If () 0
ig r bD then go to sub Step 6.

b. If () 0
ig r bD then set 1r

iF  .

6. for 1, ,j q  if 0p jF   then

a. If 0 ()
jh r bD then go to sub Step 9.

b. If () [,]
jh r zero zero bD ò ò then set 1r

p jF   .

7. If (1, ,1)rF   then set : min(, max(()))o rp p bD .

8. Enter { , (), (), (), }
i j

r

r o r g r h rD D D Fb b b b into the list L .

DOI : https://doi.org/10.56452/226

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

1664

9. End (of r-loop)

Step 14: Set the global minimum to the current minimum estimate, p̂ p .

Step 15: Find all those items in solL for which min ()oD pb . The first entries of these items

are the global minimizer(s)  i
z .

Step 16: Return the global minimum p̂ and all the global minimizers  i
z found above.

IV. NUMERICAL RESULTS

The computations are done on a PC Intel i3-370M 2.40 GHz processor, 6 GB RAM, while

the algorithms are implemented in MATLAB [10]. An accuracy 610ò is prescribed for

computing the global minimum and minimizer(s). The time in second required to solve the

problems is reported. Consider ()PG s and ()CG s are the transfer functions of the plant and

controller. The characteristic equation of the feedback system is

det(() ()) 0.P CI G s G s 

Now consider that there is parametric uncertainty, with q as the vector of uncertain

parameters. Then, the uncertain transfer functions for the plant and controller are (,)PG s q and

(,)CG s q respectively. The characteristic equation with this uncertainties is given by

det((,) (,)) 0.P CI G s G s q q

This determinant can be expanded as a polynomial

1

1 1 0(,) () () ... () (),n n

n nF s a s a s a s a

    q q q q q

where the coefficients (), 0, ,ia i n q are typically multivariate polynomial functions. A

stability margin mk can be defined as

() inf{ : (, ()) 0, }.mk j k F j k Q    q q

 Robust stability margin is then guaranteed if and only if 1mk  . The problem of finding

robust stability of a linear system with characteristic equation (,)F j q , becomes the following

constrained optimization problem

DOI : https://doi.org/10.56452/226

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

1665

, 0, 0
min

s.t. [(,] 0,

 [(,] 0,

, 1,..., ,

i k

N N

i i i i i

k

F j

F j

q q k q q q k i n







 

 

 

 

    

q

q

q

where Nq is a stable nominal point for the uncertain parameters and ,i iq q  are the estimated

bounds [1]. The above is a constrained optimization problem involving multivariate polynomial

functions. In this problem, it

is necessary to find the global minimum, otherwise the stability margin might be

overestimated. An overestimate can lead to wrong conclusion that the given system is stable,

when actually it is not [1]. Hence, it is necessary to use a proven global optimization technique

to ensure that the global minimum of k is indeed found. We illustrate this ability via the following

example.

Example : We examine the l stability margin for a closed-loop system [1]. The global

optimization problem is given by

4 4 4 4

1 2 1 2 3

1

2

3

s.t. 0,

 1.4 0.25 1.4 0.25 ,

 1.5 0.20 1.5 0.20 ,

 0.8 0.20 0.8 0.20 .

 min k

q q q q q

k q k

k q k

k q k

  

   

   

   

The problem has 4 continuous variables 1 2 3, , ,q q q and k. There are one equality constraint

and six inequality constraints. The basic algorithm for an accuracy of 610 , finds the global

minimum as k = 1.0899 and the global minimizer as

1 2 31.1275, 1.282, 1.018.q q q  

These results agree with those reported in [1]. The time required to solve this problem is

58.85 seconds.

V. CONCLUSION

We proposed a constrained global optimization algorithm to solve the robust stability analysis

problem using polynomial B-spline form as an inclusion function to bound the range of nonlinear

multivariate polynomial function. The algorithm does not need any linearization or relaxation

techniques and solves the problem to specified accuracy.

DOI : https://doi.org/10.56452/226

Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021)

International Journal of Mechanical Engineering

1666

REFERENCES

 [1] Floudas CA, Pardalos PM. Handbook of Test Problems in Local and Global Optimization. Kluwer

Academic Publishers, Dordrecht, The Netherlands; 1999.

[2] Horst R, Pardalos PM. Handbook of Global Optimization. Kluwer Academic, Netherlands; 1995.

[3] Hansen E, Walster G. Global Optimization Using Interval Analysis: Revised and Expanded. Vol 264.

(2, ed.). Marcel Dekker, New York; 2004.

[4] Jaulin L. Applied Interval Analysis: with Examples in Parameter and State Estimation. Robust Control

Robot Springer. 2001

[5] Stahl V. Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear

Equations. PhD Thesis, Johannes Kepler University, Linz.; 1995.

[6] Lin Q, Rokne JG. Interval approximation of higher order to the ranges of functions. Comput Math with

Appl. 1996;31(7):101-109.

[7] Lin Q, Rokne JG. Methods for bounding the range of a polynomial. J Comput Appl Math. 1995;58:193-

199.

[8] DeVore RA, Lorentz GG. Constructive Approximation. Vol 303. Springer Science & Business Media,

Berlin; 1993.

[9] Patil B. V., Nataraj P. S. V., Bhartiya S. Global optimization of mixed-integer nonlinear (polynomial)

programming problems: the Bernstein polynomial approach. Computing. 2012;94(2-4):325-343.

[10] Mathworks Inc. MATLAB Version 8.0.0.783 (R 2012 B). Inc., Natick, Massachusetts, United States;

2012.

