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Abstract: 

The robust stability analysis problems can be reduced to constrained global optimization of 

strict inequalities (or equations) involving multivariate polynomials. We propose algorithms 

based on polynomial B-spline form for constrained global optimization of multivariate 

function. The proposed algorithms are based on a branch-and-bound framework. We tested the 

proposed basic constrained global optimization algorithms by considering the robust stability 

analysis problem. The obtained results agree with those reported in literature. 
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I. INTRODUCTION 

It is well known that the roots of the closed loop characteristic equation determine the stability 

of the closed loop system. The characteristic equation with parameter uncertainties can be written 

as a polynomial equation, and the uncertainty bounds can be considered as constraints for the 

system. In linear system, robust stability analysis means finding the region of parameter 

uncertainties for which controller stabilize any disturbance in the system [1]. Generally the robust 

stability analysis problems reduces to constrained global optimization of nonlinear programming 

problems (NLP) is the study of how to find the best (optimum) solution to a problem. The 

constrained global optimization of NLPs is stated as follows: 
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     Branch-and-bound framework is commonly used for solving constrained global 
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optimization problems [2]. For instance, several interval methods [3][4] use this framework to 

find the global minimum of a given NLP. In this work, we propose B-spline based algorithms for 

solving nonconvex nonlinear multivariate polynomial programming problems in systems and 

control, where the objective function f and constraints ( & )i jg h are limited to being  polynomial 

functions. The polynomial objective function and constraints in power form are transformed into 

the polynomial B-spline form [5][6].  Then, the B-spline coefficients provide a bound on the 

range of the objective function and constraints.  

        In this paper, we investigate three applications of the basic constrained global 

optimization algorithm: the robust stability analysis problem, the minimum distance problem, and 

the domain of attraction problem. These problems are reduced to strict inequalities (or equations) 

involving multivariate polynomials and solved using the  proposed algorithm for constrained 

global optimization. 

The merits of the proposed approach are: (i) it avoids evaluation of the objective function and 

constraints; (ii) an initial guess to start optimization is not required; only an initial search box 

bounding the region of interest; (iii) it guarantees that the global minimum is found to a user-

specified accuracy, and (iv) prior knowledge of stationary points is not required. 

 

II. BACKGROUND: POLYNOMIAL B-SPLINE FORM  

 

Firstly, we present brief review of B-spline form, which is used as inclusion function to bound 

the range of multivariate polynomial in power from. The B-spline form is then used as basis of 

main zero finding algorithm in section 3.     

We follow the procedure given in [7],[6] for B-spline expansion. Let 1( , )lt t  be a 

multivariate polynomial in l  real variables with highest degree  1 ,lm m (2). 
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2.1 Univariate polynomial  

 

Lets consider univariate polynomial case first, (3) 
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for degree d  (i.e. order d+1) B-spline expansion where ,d m  on compact interval I=[p,q].  

We use  ,d I u  to represent the space of splines of degree d on the uniform grid partition known 

as Periodic or Closed  knot vector, u :  
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                                                0 1 1: ,k kt t t t    u  (4) 

 

Where : ,it p iy  0 ,i k  k  denotes B-spline segments and  : / .y q p k   

Let dP  reflects the space of degree d  splines. We then denote the space of degree d  splines 

with 1dC   continuous on [ , ]p q  and defined on u as 

 

   1

1, u : { ( ) : | [ , ] P ,  0, , 1}.d

d i i dI C I t t i k  

      (5) 

 

Since  , ud I is ( )k d  dimension linear space [8]. Therefore to construct basis of splines 

supported locally for  , u ,d I  we use few extra knots 1dt t p    and 1k k dq t t     at the 

ends in knot vector. These types of knot vectors are known as Open or Clamped knot vectors, (6)

. Since knot vector u  is uniform grid partition, we choose :  it p iy  for 

   , , 1 1, , ,i d k k d       

 

 1 0 1 1 1: { }.d k k k k dt t p t t t q t t t                u  (6) 

 

The B-spline basis   
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of  , ud I  is defined in terms of divided differences: 
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where  .
d


 represent the truncated power of degree .d  This can be easily proven that 
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     1 1: [ , ,, , ] .
dd

i i d i i i i dB t t t t t t t    
    is the polynomial B-spline of the degree .d  The B-spline 

basis can be computed by a recursive relationship that is known as Cox-deBoor  recursion 

formula 
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where  
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The set of spline basis   
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 satisfies following interesting properties: 

1. Each  d

iB t  is positive on its support 1[ , ]i i dt t   . 

2. Set of spline basis   
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 in power form polynomial (3) can be represented in term 

of B-spline using following relation 
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and the symmetric polynomial  s

v  defined as 
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Then by substituting (13) in (3) we get B-spline extension of power form polynomial (3) as 

follows: 
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2.2 Multivariate polynomial case 

 

Lets consider next multivariate power form polynomial (17)  for B-spline expansion 
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      where  1: , , ls ss and  1: , , .lk kk  By substituting (13) for each st , (17) can be written 

as 
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     we can write (18) as 
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     where  1v : , , lv v and vd is B-spline coefficient given as 
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          The B-spline expansion of  (17) is given by (18). The derivative of polynomial can be 

found in a particular direction using the values of vd i.e. B-spline coefficients of original 

polynomial for ,Iy the derivative of a polynomial  t with respect to rt  in polynomial B-spline 

form is (21), 
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         where u is a knot vector. The partial derivative ( )r


y now includes range enclosure for 

derivative of  on .y  Lin and Rokne proposed (14) for symmetric polynomial and used closed 

or periodic knot vector (4).  Due to change in knot vector from (4) to (6) we propose new form 

of (14) as follows, 
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2.3 B-spline range enclosure property  
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    Let (23) be a B-spline expansion of polynomial ( )q t in power form and ( )q y denotes the 

range of the power form polynomial on subbox .y  The B-spline coefficients are collected in an 

array ( ) : ( ( ))i iD d y y where : {1, , }.m   Then for ( )D y it holds 

 

                                          ( ) ( ) [min ( ),max ( )].q D D D y y y y  (24) 

 

          The range of the minimum and the maximum value of B-spline coefficients of 

multivariate polynomial B-spline expansion provides an range enclosure of the multivariate 

polynomial q on .y  

 

 

2.4 Subdivision procedure 

 

  We can improve the range enclosure obtained by B-spline expansion using subdivision of 

subbox .y  Let  
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represent the box to be subdivided in the r th direction (1 ).r l   Then two subboxes Ay and 

By are generated as follows 
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                                    1 1: , ( ), , ,r r l lm       
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III. BASIC B-SPLINE CONSTRAINED GLOBAL OPTIMIZATION ALGORITHM 

SUMMARY 

The basic B-spline algorithm for constrained global optimization of multivariate nonlinear 

polynomials, is similar to the one described in [9]. The algorithm can be summarized as 

follows. 

Step 1: The basic algorithm uses the polynomial coefficients array of the objective 

function, oA , the inequality constraints, 
igA   and the equality constraints, 

jhA . These coefficient 

arrays are stored in a cell structure cA . 

Step 2:  A cell structure cN contains degree vectors N , 
igN and  

jhN , 0, ,i p  , 0, ,j q 

, where these degree vector represents the degree of each variable occurring in objective 

function, the inequality constraints and the equality constraints respectively. 

Step 3: The vector degree is used to compute the B-spline segment number, as the B-spline 

is constructed with the number of segments equal to order of the B-spline plus one. The vectors 

oK , 
igK , and 

jhK are computed using degree vectors N , 
igN and 

jhN as  N 2K   and stored in 

a cell structure cK . 

Step 4: Then we compute the B-spline coefficients of the objective, inequality and equality 

constraint polynomials on the initial search box x . We store them in arrays ( )oD x , ( )
igD x and 

( )
jhD x , respectively.  

Step 5: We initialize the current minimum estimate p to the maximum B-spline coefficient 

of the objective function on x , i.e. max ( )op D x . 

Step 6: Next, we initialize a flag vector $F$ with each component to zero as 

1 1: ( , , , , , )p p p qF F F F F    (0, ,0).  The flag vector F is used to make the algorithm more 

efficient. Consider, thi inequality constraint is satisfied for x in a the box b , i.e. ( ) 0ig x  for  

xb . Then there is no need to check again ( ) 0ig x  for any subbox 0 b b . The same holds true 

for ( )jh x . To handle this information, we use flag vector 
1( , , ,pF F F  , 

1, , )p p qF F  where the 

components
fF , takes the value 0 or 1, as follows 

a) 1fF  if the thf inequality or equality constraint is satisfied for the box. 

b) 0fF  if the $ thf  inequality or equality constraint has not yet been verified for the box. 

Step 7: Initialize a working list L with the item { , ( ), ( ), ( ), }
i jo g hD D D F x x x xL , and a solution 
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list solL to the empty list. 

Step 8: Sort the list L in descending order of (min ( )).oD x  

Step 9: Start iteration. If L is empty go to Step 14. Otherwise pick the last item from L , 

denote it as{ , ( ), ( ), ( ), }
i jo g hD D D Fb b b b , and delete this item entry from L . 

Step 10: Perform the cut-off test. As mentioned in Lemma 2, the minimum and maximum 

B-spline coefficients provide the range enclosure of the function. Let p be the current 

minimum estimate, and { , ( )}Db b be the current item for processing, for which min ( )p D b . 

Then, this item surely cannot contain the global minimizer and can be discarded. Discard the 

item { , ( ), ( ), ( ), }
i jo g hD D D Fy y y y if min ( )oD py and return to Step 9. 

Step 11: Subdivision decision. If 

 wid (max ( ) min ( ))and o oD D b b b ò  

then add the item 0{ , min ( )}Db b to solL and go to step 9. Else go to Step 12. Here ò is a 

tolerance number. 

Step 12: Generate two sub boxes. Choose the subdivision direction along the longest 

direction of b and the subdivision point as the midpoint. Subdivide b into two subboxes 1b and 

2b such that 1 2 b b b . 

Step 13: For 1,2r   

1. Set 1 1: ( , , , , , )r r r r r

p p p qF F F F F F      

2. Compute the B-spline coefficient arrays of objective and constraints polynomial on the 

box rb and compute corresponding B-spline range enclosure ( ), ( )
io r g rb bD D ,and ( )

jh rbD for 

objective and constraints polynomial. 

3. Set min( ( ))local o rp  bD . 

4. If localp p go to sub Step 9. 

5. for 1, ,i p  if 0iF  then 

a. If ( ) 0
ig r bD then go to sub Step 6. 

b. If ( ) 0
ig r bD then set 1r

iF  . 

6. for 1, ,j q  if 0p jF   then 

a. If 0 ( )
jh r bD then go to sub Step 9. 

b. If ( ) [ , ]
jh r zero zero bD ò ò then set 1r

p jF   . 

7. If (1, ,1)rF   then set : min( , max( ( )))o rp p bD . 

8. Enter { , ( ), ( ), ( ), }
i j

r

r o r g r h rD D D Fb b b b into the list L . 
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9. End (of r-loop) 

Step 14: Set the global minimum to the current minimum estimate, p̂ p . 

Step 15: Find all those items in solL for which min ( )oD pb . The first entries of these items 

are the global minimizer(s)  i
z . 

Step 16: Return the global minimum p̂ and all the global minimizers  i
z found above. 

 

IV. NUMERICAL RESULTS 

 

The computations are done on a PC Intel i3-370M 2.40 GHz processor, 6 GB RAM, while 

the algorithms are implemented in MATLAB [10]. An accuracy 610ò is prescribed for 

computing the global minimum and minimizer(s). The time in second required to solve the 

problems is reported. Consider ( )PG s and ( )CG s are the transfer functions of the plant and 

controller. The characteristic equation of the feedback system is 

 

det( ( ) ( )) 0.P CI G s G s   

 

Now consider that there is parametric uncertainty, with q as the vector of uncertain 

parameters. Then, the uncertain transfer functions for the plant and controller are ( , )PG s q and 

( , )CG s q respectively. The characteristic equation with this uncertainties is given by 

 

det( ( , ) ( , )) 0.P CI G s G s q q  

 

This determinant can be expanded as a polynomial 

 
1

1 1 0( , ) ( ) ( ) ... ( ) ( ),n n

n nF s a s a s a s a

    q q q q q  

 

where the coefficients ( ), 0, ,ia i n q are typically multivariate polynomial functions. A 

stability margin mk can be defined as  

 

( ) inf{ : ( , ( )) 0,   }.mk j k F j k Q    q q  

 

        Robust stability margin is then guaranteed if and only if 1mk  . The problem of finding 

robust stability of a linear system with characteristic equation ( , )F j q , becomes the following 

constrained optimization problem 
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q
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where Nq is a stable nominal point for the uncertain parameters and ,i iq q  are the estimated 

bounds [1]. The above is a constrained optimization problem involving multivariate polynomial 

functions. In this problem, it 

is necessary to find the global minimum, otherwise the stability margin might be 

overestimated. An overestimate can lead to wrong conclusion that the given system is stable, 

when actually it is not [1]. Hence, it is necessary to use a proven global optimization technique 

to ensure that the global minimum of k is indeed found. We illustrate this ability via the following 

example. 

 

Example : We examine the l stability margin for a closed-loop system [1]. The global 

optimization problem is given by 

 

4 4 4 4

1 2 1 2 3

1

2

3

s.t. 0,

     1.4 0.25 1.4 0.25 ,

     1.5 0.20 1.5 0.20 ,

     0.8 0.20 0.8 0.20 .

               min k

q q q q q

k q k

k q k

k q k

  

   

   

   

 

 

The problem has 4 continuous variables 1 2 3, , ,q q q and k. There are one equality constraint 

and six inequality constraints. The basic algorithm for an accuracy of 610 , finds the global 

minimum as k = 1.0899 and the global minimizer as 

 

1 2 31.1275, 1.282, 1.018.q q q    

 

These results agree with those reported in [1]. The time required to solve this problem is 

58.85 seconds. 

 

 

V. CONCLUSION 

 

We proposed a constrained global optimization algorithm to solve the robust stability analysis 

problem using polynomial B-spline form as an inclusion function to bound the range of nonlinear 

multivariate polynomial function.  The algorithm does not need any linearization or relaxation 

techniques and solves the problem to specified accuracy. 
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