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Abstract 

Ground Penetrating Data is a remote geophysical sensory system that has been used intensively and researched. GPR uses radar 

pulses to image the subsurface and is used to find underground threats and objects. Existing model detectors use specific models 

or handcrafted features.  

To improve on them, algorithms are being evolved to predict the presence of such threats. Through this paper, we propose using 

vast and authentic GPR data collections and methods driven by discrimination algorithms for BTD's that capitalize on deep 

convolutional neural networks by combining CNNs and RNNs to investigate two-dimensional ground-penetrating data (GPR) 

scans in thex-axis and y-axis cartesian directions as well as 3-dimensional GPR volumes.  

The data utilizes a vast collection of BEO's including various shapes, metallic substances, and underground internment 

profundities. We also provide a quantitative analysis that compares the different results found using the algorithms and models on 

CNN's and conventional learning methods. 

In this paper, we compare our proposed method to further the research done on GPR and BEO's by capitalizing on recurrent 

neural networks and convolutional neural networks to analyze two-dimensional Ground Penetrating Radar B-scans in the x and y 

axis respectively. We will also analyze three dimensional volumes of Ground Penetrating Radar data.  

Keywords:  Deep Learning, Ground penetrating radar (GPR), Underground Threat Detection, Combinatory Neural Networks 

 

Introduction 

Landmines are instruments capable of massive destruction in slow motion. They do not know the difference between civilians and 

combatants and contravene international humanitarian law. In recent times, de-mining has received attention and funding 

worldwide, yet there is no long-term approach to this humanitarian assistance. Every month, eight hundred people are murdered 

and one thousand and two hundred maimed by land mines. Due to the toy-like shapes and colours, oftentimes, the victims are 

children. It is estimated that a mishap occurs every twenty minutes. 

Machine learning algorithms have been studied for detecting BEO in sensor data for the last two decades. Several of these 

techniques were refined and integratedfor this particular application. 

The ground-penetrating radar is a widely used sensor for detecting buried threats. Its ability to detect objects of interest is very 

effective for buried threat detection (BTD).  

The necessary tools required for early detection of these are still not readily available in most populations globally. GPR uses 

electromagnetic waves in the microwave band (frequency from 1 to 1000 MHz). GPR requires two main components- a receiving 

antenna and a transmitter. GPR emits a pulse into the ground and records the results (using echoes, as it is a radar) from 

subsurface objects due to anomalies of dielectric nature (example, an object buried underground). As a result, GPRs detect non-

metal objects on the basis of their dielectric contrast with the soil. The GPR system has software that translates these signals into 

images of objects from the subsystem. 

Traditionally, underground threat detection mechanisms follow a multi-step process.  

Step one is to compute the flow of data from the GPR and identify areas of possible threats that correspond to points with unique 

signatures. For this, we use a detector programmed to detect the earlier defined anomalies.  

Following that, we use an algorithm based on machine learning (referred to as a classifier) to assign a value telling us with 

confidence about the unique threat detected is legitimate or a false positive. 
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Fig 1: (a) Front View (b) Top View 

Sample raw GPR data 
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Literature Survey 

1) D. Reichman, L.M Collins et al. [1] have put forth the concept of the GPR (Ground Penetrating Radar) Framework which is 

programmed to detect unique locations of the hidden danger. The radar radio wires have been mounted on the facade of the 

vehicle, wherein the GPR gathers the information while the vehicle moves ahead.  The modernized calculations were used to 

process the information received. An energy-based pre-screener named F1V4 was specifically employed to collect shape data that 

prompts the presence of covered danger. Initially, Histogram of Oriented Gradients (HOG) descriptor was used, which exercises 

both energy and shape data for pre-screening which provided indifferent results.  

 

2) The crude information received from the GPR is re-arranged to measure commotion, surface harshness, certain dirt particles. 

The aim was to: 

i) Identify the subset highlights that influence the objectivesof the given classifier and, 

ii)The GPR sensor mounted on the vehicle extracts distinct highlights from foundation districts, the research also includes relapse 

calculations to acquaint with the model that predicts the PD objectives for a given path (A. Manandhar, L.M. Collins, P.A. 

Torrione et al.) The consent for our outcomes is done by utilizing distinctive cross-approval strategies. 

 

2) J. M. Malof suggested that the computations for a customized area using GPR assessments can distinguish the hazard. GPR 

is a well-known, efficient modality to detect Buried Threat Detection (BTD), therefore scrutinizing GPR-based BTD calculations 

can lead to the advancement of the GPR BTD algorithm framework. Likewise, these also report consequences of assessing 

calculations obtained from large trial information which sums up to 123,000m squared of GPR information utilizing surface 

region, from 15 vivid paths across 2 test terminals located in the United States of America. 

 

3)  Incorporating Convolutional Neural Network (CNNs) with GPR infiltrating pictures to scan a covered landmine location 

was proposed by S. Lameri, F. Lombardi, P. Bestagini et al. [4]. The given calculation algorithm is well equipped to provide a B-

Scan Profile that hints at the covered landmines through liable GPR acquisitions. Accordingly, 95% of identification precision is 

quite an attainable result through the stated landmine acquisition profile. 

 

4) L. E. Beesaw and P. J. Stimac [5] communicated that the progress of symmetric and asymmetric buried unsafe hazards 

(BEHs) still poses a valid threat on the front line. However, the evolution of machine learning furnishes a greater potential for 

automated threat detection. Recent breakthroughs in artificial neural networks have indicated high performances in pattern 

recognition tasks, therefore ensuring deep scanning of uncovered danger. 

 

 

Fig 2:  Graph representing the ROCs for the Original HOG prescreener, Modified HOG prescreener and F1V4 prescreener 
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Background 

Deep Learning  

Deep learning is a subtype of machine learning that consists of three or more layers of a neural network. These neural networks 

aim to imitate the activity of the human brain by allowing it to "learn” from enormous amounts of data, albeit they fall far short of 

its capabilities.  

While a single layer neural network can still produce approximate predictions, additional hidden layers can assist optimize and 

tune for accuracy.Many artificial intelligence (AI) apps and services rely on deep learning to improve automation by executing 

analytical and physical activities without the need for human participation.  

Everyday products and services (such as digital assistants, voice-enabled TV remotes, and bank fraud detection) as well as 

upcoming innovations use deep learning technology (such as self-driving cars). 

 

Deep Learning for Buried Object Detection Using GPR 

CNNs have recently been applied to downward-looking GPR data, inspired by their state-of-the-art performance on a number of 

computer vision benchmark challenges. They've shown promise in terms of identifying landmines and other explosive devices, as 

well as underground holes and buried objects, as well as exploring the inside of pavements and shallow geological features. When 

using CNNs to detect BEO from GPR data, Reichman et al. presented best practises. 

The limited amount of available data necessary for training to avoid overfitting is a major challenge in most of these systems. 

To overcome this constraint, some researchers have adopted approaches from the CNN literature developed in the broader 

computer vision field, such as data augmentation, pretraining, and transfer learning to GPR data. Bralich et al., for example, 

demonstrated that pretraining the network with data from several domains can increase detection performance. However, some 

data collections and network arrangements can lead to performance degradation. 

 

BEO Detection Using Multiview 2-D CNNs 

Detecting BEOs in GPR data acquired with an array of antennae is a 3-D classification issue in and of itself. As a result, the most 

natural solution is to employ a 3-D CNN architecture. 

Many state-of-the-art imaging applications, including 3-D medical MRI images [55], [56], have successfully exploited 3-D CNNs 

for volumetric data analysis. These networks, however, are computationally more expensive than 2-D CNNs, have a larger 

number of parameters, and require significantly more training data. As an alternative, we consider multiview 2-D CNNs, which 

can benefit from both 2-D and 3-D frameworks at the same time. Individual B-scan slices are processed using a methodthat 

integrates partial information from orthogonal 2-D planes. 

 

Fig. 3 The suggested CNN2 DT network architecture for processing 2-D GPR data. 
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The goal is to figure out when a B-scan profile in either direction could mean a BEO is present.Figure 3 depicts the architecture of 

the first 2-D CNN. 

This network was created with the goal of extracting data from (depth, DT) B-scans. This network will be referred to as CNN2 

DT, with the superscript referring to the input data dimension (2-D) and the subscript referring to the DT view. To augment the 

training data and learn discriminative features from adjacent B-scans, from each training alarm, we extract Nc B-scans, one from 

each channel, and use them as independent training samples. 

The CNN2 DT architecture is made up of numerous blocks or layers that work together to analyse B-scans in a sequential manner. 

Convolution layers, max pooling layers, and fully connected (FC) layers are the most frequent layers utilised in most CNNs. The 

proposed network has two basic steps, similar to traditional CNNs: feature extraction and classification. Three convolution layers 

with an increasing number of kernels (N1 = 32, N2 = 64, and N3 = 128) and one max pooling layer are included in the feature 

extraction stage to reflect an increasing number of complicated concepts. Each convolution layer, I is made up of Ni 3 3 filters that 

are convolved with the B-scan picture as input. 

 

Results 

The ROCs of the CNN2 DT, CNN2 CT, and CNN2 DTCT, which combine the results of the DT and CT views using the 

geometric mean at each depth bin, are shown in Fig. A. 

The prescreener is also shown as a reference in Fig. 4. First, both CNN2 DT and CNN2 CT outperform the prescreener, implying 

that 2-D CNNs may extract meaningful characteristics that can distinguish between targets and clutter objects. 

Second, DT B-scans contain more discriminative information than CT B-scans, resulting in more precise discrimination. 

Finally, a simple geometric fusion of the CNN2 DT and CNN2 CT networks outperforms each network individually. This 

demonstratesthat combining data from two orthogonal perspectives can yield additional discriminative features. 

 

 

 

Fig. 4. ROCs obtained using the multiview 2-D CNNs 

 

In Figure 5, the CNN–RNN ROCs are shown.CNN2 DT-RNN, which extracts features from (depth, DT) B-scans and utilises the 

channel index as the temporal dimension, outperforms the dual CNN2 CTRNN for these architectures. 

More crucially, the depth-level fusion of the two networks improves each network significantly. 
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Fig. 5. ROCs obtained using a combination of CNN and RNN 

 

Conclusion 

BEO detection algorithms have largely relied on traditional machine learning that rely on hand-crafted features. Deep learning 

methods, on the other hand, have the ability to learn sophisticated features that optimise the entire system. These methods are the 

fastest growing trend in big data analysis and are increasingly being used in many application fields. 

 Our proposed BTD (buried threat detection) discrimination algorithms will use deep CNNs (convolutional neural networks) 

and RNNs used to assess two-dimensionalground penetrating radar scans in the cartesian x and y axis directions, as well as 

three-dimensional ground penetrating data radar volumes.  

 A chance to test new deep learning architects: For the classification issue, there are several structures or techniques available. 

We want to utilize MATLAB and Python because there is no foundation to start from in other languages. In the case of 

MATLAB and Python, we simply call the functions, adjust the input parameters, and run the tests. 

 Significantly decreased programming time: Integrated libraries and commands vastly reduce design and development time. 

We may build, create, and test various neural network designs using minimum mathematical models and deep learning 

approaches. 
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