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Abstract – Spike plays a key role in information processing a neuorn.In temporal information encoding scheme, information has 

been encoded in consecutive spikes time duration. Probability distribution of these consecutive spikes duration is defined as inter-

spike-interval distribution (ISI distribution).  LIF neuron model in DDF (distributed delay framework) is investigated with the 

refractory time period. A number of different kernel functions like exponential, gamma and hypo-exponential distributed is used 

in the present study. Parameter values for which the ISI distribution does’t show qualitative changes is observed. 

Keywords –First Passage Time Problem, Distributed Delay Framework, ISI Distribution, LIF model, Neuronal Information 
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I.  INTRODUCTION 

Information encoding by a neuron is carried out in term of spike and spike sequences [1]. The spike sequence contains neuronal 

information which transmits across the neuronal system [9, 10]. A neuron receives information from other neurons and external 

environment in term of various ions and molecules which increases the potential of the neuron. After a certain value of membrane 

potential, an epoch is generated which is known as the spike. The membrane potential of neuron immediately reduces to reset 

value (the minimum value). A neuron does not start processing information immediately after emitting a spike [13, 18]. The time 

duration between a spike generation and starting the information processing for other spike is termed as refractory time 

period.Depending on the neuronal internal, external environment and neuron types, the refractory time period varies across the 

neurons. Kobayashi et. al. [22] has investigated the responses of olfactory receptor neurons in moth with the help of adaptive 

integrate-and-fire neuron model. In simulation based study, Kobayashi et. al. [22] has taken the refractory time period value as 3 

milliseconds. Destexhe et. al. [8] have investigated the effect of refractoriness on information encoding mechanism into 

stereotypical short-term spike and suggested that refractoriness is useful for ending information for variable cortical states and 

also suggested the average value of refractory time period which is noticed as approximate 10 milliseconds. Teeter at. al. [23]has 

applied a number of refractory time period (rtp) values to classify the neuron in GLIF neuron model.   

A neuron uses two information encoding techniques, namely, temporal encoding scheme and rate encoding scheme, to encode 

information in form of spike trains [14, 15, 18, 19]. Temporal information encoding scheme uses time duration between two 

spikes to encode neuronal information. This time durations are also defined as inter-spike-intervals. The probability distribution of 

this time interval is known asinter-spike-interval distribution (ISI distribution). The first passage time problem is useful to 

mathematically study the temporal information encoding scheme. FPT problem formulation can be given as [7, 15, 24, 26]. 

0inf{ : 0, ( ) , (0) }threshold thresholdT V V V V V                    (1) 

 

Karmeshu et. al. [24] havestudied the membrane potential evolution dynamics in LIF neuron under the influence of past values of 

membrane potential and have suggested a distributed delay framework (DDF). Karmeshu et al. [24] have applied the temporal 

encoding scheme for neuronal information processing.  Choudhary et al. [4, 5, 6, 7] have applied rate encoding mechanism for 

investigating the information processing in the LIFmodel in DDF. They have analyzed the information processing under presence 

of exponentially distributed kernel, gamma and hypo-exponentially distributed kernel functions.The information processing in LIF 

neuron model in DDF is studied in influence of the refractory time period.  A number of kernel functions like exponentially 

distributed, gamma distributed and hypo-exponentially distributed kernel functions is analyzed and findings are compared with 

LIF model with stochastic input. The neuronal information encoding scheme is studied by applying temporal encoding scheme. 

Inclusion of refractory time period 
ref modifies the FPT problem as [2, 3, 17, 26] 

0inf{ : 0, ( ) , (0) }ref threshold thresholdT V V V V V                      (2) 

The article is structured in 6 sections. Section 1 contains a brief introduction about information processing and first passage time 

problem in neuronal models. Section 2 explains themathematical formulation of LIF model. DDF for neuron model is described in 

section 3. This section contains the dealing with formulation of LIF neuron model in DDF with three delay kernel functions viz. 



Copyrights @Kalahari Journals Vol. 6 (Special Issue, Nov.-Dec. 2021) 

International Journal of Mechanical Engineering 

772 

exponentially distributed, gamma and hypo-exponentially distributed kernel functions. Simulation strategy for the considered 

neuron models are explained in Section 4.Simulation results and detailed study are given in Section 5.Finally, section 6 contains 

conclusions and future scope for the study. 

II. LEAKY INTEGRATE-AND-FIRE NEURON MODEL 

LIF model is the extension of integrate-and-fire (IF) neuron model [1]. LIF model is equivalent to the electrical RC-circuit [1, 11, 

12]. This model is widely used for analytically investigating the neuronal activities due to its mathematical simplicity. 

Mathematically, the simplest form of LIF model may be formulated as [1, 2, 3, 8] 

 

( , )
dV

f V t I
dt

            (3) 

 

Here ( , )f V t is a function describing the membrane potential function and I is the applied input stimulus. Different variants of 

LIF model can obtained from Eq. (3) by choosing a suitable value of ( , )f V t  and I. The choice of ( , )f V t  as V results into 

leaky integrate-and-fire neuron model where it’s value equal to zero results into integrate-and-fire neuron model. LIF model 

driven stochastic input stimulus can be described as: 

( ) ( )
dV

V t t
dt

                (4) 

Here   and ( )t  are known as membrane decay constant and the stochastic input.   and ( )t are mean value of the input 

stimulus and white noise. 

 

III. LIF NEURON MODEL IN DDF 

Karmeshu et. al. [24] have investigated the impact of past values of potential on its current development. They suggested that 

neuronal information processing depends on applied input stimulus and past values of membrane potential. Karmeshu et. al. [24] 

have suggested the distributed delay framework (DDF). Here, a kernel is applied to include previous membrane potential values in 

the model. This kernel function may also be termed as delayor memoryfunction. Let ( )K t is a memory kernel function then LIF 

model takes the form in DDF as 

0

( )
( ) ( ) ( )

t
dV t

K t V t d t
dt

        
       (5) 

Choice of ( )K t  results into variants of LIF model in DDF. Inclusion of kernel function into the LIF transforms the development 

process into a non-Markovian process. It is a challenging task to get an analytical solution or perform a numerical simulation 

based study for such kind of the problem. For performingthe numerical simulation based study for such kind of problems, a linear 

chain trick has been suggested in literature, so that a non-Markovian may be transformed into a Markovian process. 

 

III (A). LIF MODEL WITH EXPONENTIAL DELAY (EDD) 

Karmeshu et. al. [24] have studied model given as in Eq. (5) with exponentially distributed kernel function. This kernel function 

has the following form.   

; 0

0;( ) {
te t

otherwiseK t
          (6) 

Substitution of K(t) as exponential distributed kernel function, LIF model in DDF takes the following form  

( )

0

( ) ( )

t

tdV
e V d t

dt

          
               (7) 

Here   is the delay parameter. Incorporation of memory kernel in Eq. (7) has resulted membrane potential development process 

{ ( ); 0}V t t  into a non-Markovian process. Substitution of ( )

0

( ) ( )

t

tU t e V d       into Eq. (7) results as  

( ) ( )

( )
{ ( ) ( )}

dV
U t t

dt

dU t
U t V t

dt

  

 

   

  

                (8)  
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Given[ ( ) 0V t  and ( ) 0U t   at 0]t  . 

III (B). LIF MODEL WITH GAMMA DELAY (GDD) 

Sharma and Karmeshu [25] have studied the LIF model as given in Eq. (5) with gamma distributed kernel function. This function 

has the following form. 

1

( ; , )
!

m m tt e
K t m

m




 

                  (9) 

For shape parameter 0m  Eq. (9) results into exponential distributed kernel function. Substitution K(t) as gamma distributed 

kernel function into Eq. (5), results the following equation. 

1 ( )

0

( )
( ) ( )

!

t m m tdV t e
V d t

dt m

  
    

  
   

            (10) 

The substitution of 
1 ( )

0

( )
( ) ( )

!

t m m t

m

t e
U t V d

m

  
 

  
 

 into Eq. (10) and further computation of Eq. (10) results a system of 

coupled linear stochastic differential equation which can be written as  

1

0
0

( ) ( )

( )
{ ( ) ( )}

( )
{ ( ) ( )}

m

i
i i

dV
U t t

dt

dU t
U t U t

dt

dU t
U t V t

dt

  



 



   

  

  

              (11) 

For {1,2,..., }i m , with [ ( ) 0V t  and ( ) 0 {0,1,2,..., }jU t j m    at 0]t  . Sharma and Karmeshu [25] have investigated the 

above system for 1i   . This assumption simplifies Eq. (11) as given below

1

1
1 0

0
0

( ) ( )

( )
{ ( ) ( )}

( )
{ ( ) ( )}

dV
U t t

dt

dU t
U t U t

dt

dU t
U t V t

dt

  



 

   

  

  

   

           (12) 

Sharma and Karmeshu [25] have used numerical simulation techniques for investigating the information processing mechanism of 

this model and noticed that the ISI distribution for such type of  model exhibits the long tail behavior.   

 

III (C). LIF MODEL WITH HYPO-EXPONENTIAL DELAY (HEDD) 

Choudhary et. al. [4, 6]have considered the arrival of excitatory and inhibitory input as two separate entities which are affecting 

the evolution of membrane potential. These entities are modeled in term of hypo-exponentially distributed kernel function as 

given below [11, 14] 

( ) .( )E Ix xE I

E I

f x e e  

 

   


         

 (13) 

Substitution of Eq. (13) into the Eq. (5) results into a variant of LIF model as given below [11, 14] 

( ) ( )

0
( ) ( ) ( )E I

t
t tE I

E I

dV
e e V d t

dt

    
   

 

       
             (14) 

Here, ( )V t at 0t  .Substitution of ( )

1
0

( ) ( )E
t

tU t e V d       and ( )

2
0

( ) ( )I
t

tU t e V d       into Eq. (14) results a new model 

in extended space as [4, 6] 

1 2

1
1

2
2

( ) ( )

( )

( )

E I

I E

E

I

dV
U U t

dt

dU t
U V

dt

dU t
U V

dt

 
 

 





    


  

  

             (15) 

with
1 2( ) ( ) ( ) 0V t U t U t   at 0t  . 
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IV. SIMULATION STUDY 

LIF neuron model and its variants as given in Eq. (4), Eq. (8), Eq. (12) and Eq. (15) are investigated with the simulation based 

study.These neuron model forms the system of coupled SDEs. Simulation based techniques are helpful for investigating such kind 

of problems [12]. EM numerical simulation methodis applied to study the models in distributed delay framework.  

Following Euler-Maruyama scheme [12], Let [0, ]t is the time interval of evolution of membrane potential then divide this 

interval into n subinterval 1 1 2 1[0, ],[ , ],...,[ , ]n nt t t t t of equal length.Let iV is potential at time it t for neuron model defined in 

Eq. (15), then the potential at next time  1it t  takes the form as  

1

1

1

( )

( )

( )

E I
i i i i i

I E

i i E i i

i i I i i

V V X Y h h

X X X V h

Y Y Y V h

 
  

 











 
     

 

  

  

      (16) 

With 0 00, 0V X  and 0 0Y  .Similar simulation strategy has been applied to study the spiking behavior of simple LIF 

neuron with noisy input, LIF neuron with exponentially and gamma distributed kernel functions. We consider the temporal 

information processing in neuron and calculate inter-spike-intervals. A time duration, assumed as a refractory time, is added to the 

isi time. RTP is a time duration, in which a neurons do notinvolve ininformation processing activities.  LIF model with stochastic 

input, LIF neuron with EDD, LIF neuron with GDD and LIF neuron with HEDD are investigated in three modes (i) without 

refractory time (ii) refractory time period with uniform distributionand (iii) refractory time period with Gaussian distribution [20, 

21]. Inter-spike-interval distributions formultiple parameter values areshown in Fig. 1 to Fig. 12.Table 1 contains parameter values 

which are used during simulation study.In first mode, spiking activity and inter-spike-interval for considered neuron model is 

investigated without refractory time period.Fig 1, to Fig. 4. Fig. 5 to Fig. 8 contains ISI distribution patterns for considered neuron 

models with uniformly distributed rtp in between 3 ms to 5 ms time interval. In Gaussian distributed rtp, mean time is taken as 4 

ms with 1ms std. deviation and ISI distributions are shown in Fig. 9 to Fig. 12.    

Fig. No.     
1  2      

1, 5, 9 0.1 1 0.01 1 0.05 0.1 

2, 6, 10 0.2 0.5 0.2 0.5 0.1 0.2 

3, 7, 11 0.2 0.3 0.8 0.2 0.2 0.1 

4, 8, 12 0.3 0.5 0.5 1 0.2 0.5 

Table: 1 Set of parameter values used in simulation based study 

 

V. RESULT ANAYLYSIS 

Neuronal information processing and ISI distributions of LIF neuron in DDF with three different kind of delay kernel function viz. 

exponential, gamma and hypo-exponentially distributed kernel functionare investigated and obtained resultsare compared with 

LIF model with stochastic input stimulus.  

 

Fig. 1: ISI distribution with no rtp 
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Fig. 2: ISI distribution with no rtp 

 

Fig. 1 to Fig. 4 contains ISI distribution patterns for considered models without refractory time period. Fig. 1 illustrates ISI 

distribution pattern for small membrane decay constant (  = 0.1). A neuron reaches to the firing threshold quickly with small 

value of  and applied input stimulus. Here, LIF neuron with hypo-exponential distributed delay kernel is achieving the firing 

threshold more rapidly as compared to other models. This is occurring due to delay in excitatory and inhibitory potential. Fig. 2 

contains ISI distribution patterns for considered neuron models having increased membrane decay constant and applied input 

stimulus. Here, each neuron model shows the similar behavior and reaching to its firing threshold quickly. A small spread in ISI 

distribution pattern for simple LIF neuron model is occurring as simple LIF neuron model has no memory. Memory, considered in 

distributed delay forms help a neuron to reach its firing threshold more quickly. Thus, neuron model with distributed delay pattern 

acquires the firing threshold more quickly as compared with simple neuron model.   

 

Fig. 3: ISI distribution with no rtp 

 

 

Fig. 4: ISI distribution with no rtp 
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Fig. 5: ISI distribution with uniformly distributed rtp 

Fig. 3 illustrates the ISI distribution patterns for more membrane decay constant, input stimulus and increased delay parameters. 

Here noise in applied input stimulus is playing an important role in spiking activity showing long tail behavior in spiking activity. 

Fig. 4 represents similar ISI distribution patterns for each neuron model. This includes the set of various parameter values for 

which LIF neuron with distributed delay behaves similar with simple neuron model i.e. memory has no effect on spiking activity. 

Fig. 5 to Fig. 8 show the ISI distribution pattern with uniformly distributed refractory time period. It is noticed that a neuron has 3 

ms to 5 ms refractory time period in various experimental studies. Thus, the uniformly distributed time duration in 3 ms to 5ms 

time interval is considered. It is well noticed that a neuron does not participate in neuronal information processing during its 

refractory time period. Fig. 5 contains the ISI distribution pattern for small values of membrane decay constant and applied input 

stimulus. Comparison of ISI distribution pattern with Fig. 1 results a shift ISI distribution towards its right side i.e a neuron takes 

more time to reach its firing threshold as compared with no refractory time period. However, LIF neuron model with hypo-

exponentially distributed kernel is quicker as compared with other neuron models. Fig. 6 illustartes the ISI distribution pattern 

with more increased membrane decay constant and applied input stimulus. Here, each neuron is showing similar qualitative 

behavior in ISI distribution but different quantitative behavior i.e. ISI distribution pattern is similar but number of spikes in fix 

simulation time varies. Simple LIF neuron has small number of spikes as compared with LIF neuron in DDF. This is happening 

due to memory element and refractory time periods. The refractory time period is responsible to take more time during spiking 

activity whereas distributed delay helps a neuron to reach its firing threshold.  

 

Fig. 6: ISI distribution with uniformly distributed rtp 

 

Fig. 7: ISI distribution with uniformly distributed rtp 
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Fig. 7 shows the ISI distribution with increased membrane decay constant and noisy input. Here, the noise in applied input 

stimulus and rtp is responsible to bring log tail behavior in ISI distribution patterns. Similarly, Fig. 8 represents consistent ISI 

distribution pattern. Here each neuron model is showing similar qualitative as well as quantitative behavior. This is happening due 

to the set of parameter values where the delay in the neuron model has negligible or very small effect on the neuronal information 

processing. Fig. 9 to 12 exhibit ISI distribution pattern for considered neuron modelsin presence of Gaussian distributed rtp. Mean 

and standard deviation of the refractory time period is assumed as 4ms and 1ms, respectively. Fig. 9 represents ISI distribution 

pattern for small membrane decay constant and applied input stimulus. As compared with Fig. 1 and Fig. 5, ISI distribution 

patterns in Fig. 9 have more spread due to the presence Gaussian distributed rtp. Fig 10 shows ISI distribution pattern for 

comparatively large membrane decay constant value and applied stochastic input stimulus. Increased membrane decay constant 

with Gaussian distributed rtp is making the synchronous spiking activity. The number spikes in other neuron model as compared 

with LIF model with hypo-exponentially distributed kernel is increased as compared with the ISI distribution patterns in Fig. 2 

and Fig. 6.  

 

 

Fig. 8: ISI distribution with uniformly distributed rtp

 

Fig. 9: ISI distribution for LIF Neuron in DDF with Gaussian distributed refractory time period 

 

 

Fig. 10: ISI distribution with Gaussian distributed rtp 
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Fig. 11: ISI distribution DDF with Gaussian distributed rtp 

 

Fig. 12: ISI distribution with Gaussian distributed rtp 

 

Fig. 11 shows the ISI distribution patterns for neuron model for comparatively more noisy input stimulus. This noise is generating 

the long tail behavior in ISI distribution whereas Gaussian distributed rtp is producing the similarpattern in ISI distributions. Fig. 

12 illustrates the similar qualitative and quantitative behavior in ISI distribution patterns for studied neuron models. This study 

suggests the parameter values and refractory time period for which LIF neuron exhibits zero on its spiking behavior in distributed 

delay framework.      

VI. CONCLUSION AND FUTURE SCOPE 

LIF model is the first choice to for implementing ANN at hardware level and ANN at software level. This model has a threshold 

value for firing purpose. This model is widely used to analytically study the neuronal behavior as the easiness of the model. LIF 

neuron model in DDF is comparatively more realistic to biological neuron as compared with LIF neuron with stochastically driven 

input. The neuronal information processing mechanism and spiking behavior of LIF neuron model in presence of refractory time 

is investigated in DDF. The study is extended byincorporating three different kinds of kernel function, namely, exponentially, 

gamma and hypo-exponentially distributed kernel function and two different kind of refractory time period, namely, uniformly 

distributed and Gaussian distributed time period have used. The obtained results are compared with no refractory time period 

results. We notice that the Gaussian distributed refractory time period with hypo-exponentially distributed delay kernel function 

has ISI distribution patterns is similar with the experimental studies. We also find the combination of various parameter values in 

aforementioned situation where DDF has no effect on the evolution of the membrane potential and neuronal information 

processing.Thesefinding may be extended for other neuronal information mechanism and at ANN implementation level. 
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