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Introduction 

The fuzzy concept has wide application in all real life problems such as control system and information 

sciences. Especially, in mathematics fuzzy set is introduced by L. A. Zadeh [15]. The theory of fuzzy 

topological space was introduced and developed by C. L. Chang [3]. The various notions in classical topology 

have been extended to fuzzy topological space. In 1986, the “intuitionistic fuzzy set” was first initiated by 

Atanassov [2]. The concept of intuitionistic fuzzy topological spaces was defined by Coker [4] in 1997. This 

concept yields a wide field for working in the area of fuzzy topology and its application. One of the  

specification is associated to the properties of intuitionistic fuzzy sets introduced by Gurcay [6] in 1997. in 

2013, M.Umadevi K.Arun Prakash and S.Vengataasalam  developed  GCSIF



 
 in the topological space[12] 

and to study the application of GCSIF


  ,
 2

1TIF
g




 space introduced. Furthermore, these authors introduced 

the concepts of 


IF  generalized irresolute mapping and its characterizations are also discussed in 2016[13]. 

In this paper, intuitionistic fuzzy contra  β̂  generalized continuous mapping introduced and defined several 

theorems. The characterizations of the functions discussed. 

 

1. Preliminaries 

Definition 2.1 [2] An intuitionistic fuzzy set (IFS for short) P  in X is an object having the form 

    XxxxxP PP  /,,   where the functions  1,0: XP  and  1,0: XP                               

denote the degree of the membership (namely  xP ) and the degree of non- membership (namely  xP ) of 

each element Xx  to the set  A  respectively,     10  xx pp   for each Xx .  
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Definition 2.2 [2] Let P  and Q be IFS ’s of the forms     XxxxxP PP  /,,   and 

    XxxxxQ QQ  /,,  . Then, 

(a)  QP   if and only if     xx QP    and    xx QP    for all Xx , 

 (b)  QP   if and only if QP  and PQ , 

 (c)      XxxxxP PP  /,,  , 

 (d)          XxxxxxxQP QPQP  /,,   

 (e)         XxxxxxxQP QPQP  /,,   

 (f) 0~  Xxx  /1,0,   and 1~  Xxx  /0,1,  

 (g) PP   , 1~
̅̅̅̅ =  0~, 0~

̅̅̅̅ = 1~. 

 

Definition 2.3 [4] An intuitionistic fuzzy topology ( IFT  for short) on X is a family   of  IFS ’s in X 

satisfying the following axioms: 

(i)   0~, 1~ τ, 

(ii)   21 SS  for any 21,SS , 

(iii)  iS  for any family    JiSi
. 

Here  ,X  is said to be an intuitionistic fuzzy topological space( IFTS  for short) and any IFS  in is known 

as an intuitionistic fuzzy open set ( IFOS for short) in X. The complement  P of an IFOS  P in IFTS  ,X  

is known as intuitionistic fuzzy closed set ( IFCS for short) in X. 

 

Definition 2.4 [4] Let X and Y are two non-empty sets and YXk :  be a function. If 

    XxxxxQ QQ  /,,   is an IFS in Y, then the pre image of Q under k  , denoted by  Qk 1
, is the 

IFS in X defined by       XxxxkxQk QQ   /,, 11  .  

 

Definition 2.5 [4] Let  ,X  be an IFTS  and     XxxxxP PP  /,,   be an IFS  in X. Then the 

intuitionistic fuzzy interior and intuitionistic fuzzy closure of A are defined by 

                        
 PGandXinIFOSanisGGP  |)int(   

                        
 KPandXinIFOCSanisKKPcl  |)(   

   

Note that, for any IFS P  in  ,X , we have )int()( PPcl  and )(int P  = )(Pcl  

 

Definition 2.7 [10] An IFS  P  of an IFTS   ,X  
is called an intuitionistic fuzzy



  -generalized closed set 

if   UPclcl ))(int( , whenever UP  and U  is an IFOS . 
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    The complement P  of an intuitionistic fuzzy 


  generalized closed set P  is called an intuitionistic fuzzy



   generalized open set. 

 

Definition 2.9 [9] A function     ,,: YX   from an IFTS  ,X  into an  ,Y  is called an  

intuitionistic fuzzy


   generalized  closed  function[ GIF


 closed function  in  short],  if  )(Q   is  an   

intuitionistic fuzzy


   generalized closed set in Y for every IFCS  Q  in X. 

 

Definition 2.10 [5] An IFS  P  is said to be an intuitionistic dense ( IFD  for short) in another IFS  Q  in an 

IFTS   ,X  if   QPcl  . 

 

Definition 2.11 A function     ,,: YX   from an IFTS  ,X  into an  ,Y   said to be an 

(a) intuitionistic fuzzy contra continuous function  (IF contra continuous function  in short) if )(1 P is an

IFCS  in Y for every IFOS P  in X. 

(b) intuitionistic fuzzy contra   - continuous function  ( IFc continuous function  in short) if )(1 P  is an

OSIF  in Y for every IFOS P in X. 

(c) intuitionistic fuzzy contra generalized continuous function  ( IFcG  continuous function  in short) if 

)(1 P   is an IFGCS  in Y for every IFOS P  in X. 

(d) intuitionistic fuzzy contra generalized semi continuous function  ( IFcGS  continuous function  in short) if 

)(1 P  is an IFGSCS  in Y for every IFOS  P  in X. 

 

INTUITIONISTIC FUZZY CONTRA 



 
GENERALIZED CONTINUOUS          MAPPINGS 

 Intuitionistic fuzzy contra 𝛽̂ generalized continuous mapping is introduced and their characteristics are 

studied in this section.  

Definition 3.1: A mapping 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) is called an Intuitionistic Fuzzy Contra β̂ Generalized 

continuous mapping (𝐼𝐹𝐶𝛽̂𝐺continuous mapping) if 𝜙−1(𝑇) is an IF𝛽̂GCS in Y for every IFOS T in Y. 

Example 3.2: Assume that 𝑋 = {𝑥1, 𝑥2}and  𝑌 = {𝑦1, 𝑦2}. Let 𝑆 = 〈x, (
𝑥1

0.1
,

𝑥2

0.2
) , (

𝑥1

0.1
,

𝑥2

0.7
)〉 and  𝑇 =

〈y, (
𝑦1

0.3
,

𝑦2

0.2
) , (

𝑦1

0.5
,

𝑦2

0.7
)〉. Then 𝜏 = {0~, 1~, 𝑆} and 𝜅 = {0~, 1~, 𝑇} are 𝐼𝐹𝑇𝑆𝑠 on X and Y correspondingly. 

Construct a function 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) by 𝜙(𝑥1) = 𝑦1, 𝜙(𝑥2) = 𝑦2. Then 𝜙−1(𝑇) = 〈x, (
𝑥1

0.3
,

𝑥2

0.2
) , (

𝑥1

0.5
,

𝑥2

0.7
)〉, 

𝑐𝑙(𝜙−1(𝑇) ) = 1~, 𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝑇))) = 1~ and 𝜙−1(𝑇) ⊆ 1~. Thus 𝜙−1(𝑇) is an 𝐼𝐹𝛽̂𝐺𝐶𝑆 in X. Hence  𝜙 

is an  𝐼𝐹𝐶𝛽̂𝐺 continuous mapping. 

Theorem 3.3: In IFTS (𝑋, 𝜏) every intuitionistic fuzzy contra continuous mapping is an IFC𝛽̂G continuous 

mapping, but converse implication does not hold. 

Proof: Consider an intuitionistic fuzzy contra continuous mapping 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) and an IFOS T in Y. By 

assumption, 𝜙−1(𝑇) is an IFCS in X. As by Theorem 2.2.4 each IFCS is an 𝐼𝐹𝛽̂𝐺𝐶𝑆, 𝜙−1(𝑇) is an 𝐼𝐹𝛽̂𝐺𝐶𝑆 in 

X for each IFOS T in Y. Therefore 𝜙 is an  𝐼𝐹𝐶𝛽̂𝐺 continuous mapping. 
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Example 3.4: Assume that 𝑋 = {𝑥1, 𝑥2} and  𝑌 = {𝑦1, 𝑦2}. Let  𝑆 = 〈x, (
𝑥1

0.3
,

𝑥2

0.2
) , (

𝑥1

0.4
,

𝑥2

0.3
)〉 and 𝑇 =

〈y, (
𝑦1

05
,

𝑦2

0.7
) , (

𝑦1

0.3
,

𝑦2

0.2
)〉. Then 𝜏 = {0~, 1~, 𝑆} and 𝜅 = {0~, 1~, 𝑇} are 𝐼𝐹𝑇𝑆 on X and Y correspondingly. 

Construct a function 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) by 𝜙(𝑥1) =  𝑦1, 𝜙(𝑥2)  =  𝑦2. Now 𝜙−1(𝑇) =

〈x, (
𝑥1

0.5
,

𝑥2

0.7
) , (

𝑥1

0.3
,

𝑥2

0.2
)〉 , 𝑐𝑙(𝜙−1(𝑇)) = 1~, 𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝑇))) = 1~  and 𝜙−1(𝑇) ⊆ 1~  only. Thus 𝜙−1(𝑇) 

is an 𝐼𝐹𝛽̂𝐺𝐶𝑆 in X. Therefore 𝜙 is an 𝐼𝐹𝐶𝛽̂𝐺continuous mapping. Then 𝑐𝑙(𝜙−1(𝑇) ) = 1~ ≠  𝜙−1(𝑇), 

implies 𝜙−1(𝑇) is an IFCS in X. Hence 𝜙 is not an intuitionistic fuzzy contra continuous mapping. 

Theorem 3.5: In IFTS(𝑋, 𝜏) every intuitionistic fuzzy contra 𝛼 continuous mapping is an IFC𝛽̂G continuous 

mapping, but converse implication does not hold. 

Proof: Consider an intuitionistic fuzzy contra 𝛼 continuous mapping 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) and an IFOS T in Y. 

By assumption 𝜙−1(𝑇) is an 𝐼𝐹𝛼𝐶𝑆 in X. As by Theorem 2.2.8 [14] every 𝐼𝐹𝛼𝐶𝑆 is an 𝐼𝐹𝛽̂𝐺𝐶𝑆,  𝜙−1(𝑇) is 

an 𝐼𝐹𝛽̂𝐺𝐶𝑆  in X. Therefore 𝜙 is an  𝐼𝐹𝐶𝛽̂𝐺 continuous mapping. 

Example 6.2.6: Assume that 𝑋 = {𝑥1, 𝑥2} and  𝑌 = {𝑦1, 𝑦2}. Let S = 〈x, (
𝑥1

0.1
,

𝑥2

0.3
) , (

𝑥1

0.5
,

𝑥2

0.5
)〉 and 𝑇 =

〈y, (
𝑦1

0.3
,

𝑦2

0.4
) , (

𝑦1

0.2
,

𝑦2

0.1
)〉. Then 𝜏 = {0~, 1~, 𝑆} and 𝜅 = {0~, 1~, 𝑇} are IFTS on X and Y correspondingly. 

Construct a mapping 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) by 𝜙(𝑥1) =  𝑦1, 𝜙(𝑥2)  =  𝑦2. Now 𝜙−1(𝑇) = 〈x, (
𝑥1

03
,

𝑥2

0.4
) , (

𝑥1

0.2
,

𝑥2

0.1
)〉, 

𝑐𝑙(𝜙−1(𝑇)) = 1~, 𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝑇))) = 1~,𝜙−1(𝑇) ⊆ 1~. Then 𝜙−1(𝑇) is an 𝐼𝐹𝛽̂𝐺𝐶𝑆 in X. Thus 𝜙 is an  

𝐼𝐹𝐶𝛽̂𝐺 continuous mapping. Now 𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝑇))) = 1~ ⊈ 𝜙−1(𝑇). Then 𝜙−1(𝑇) is not an 𝐼𝐹𝛼𝐶𝑆 in X. 

Therefore 𝜙 is not an intuitionistic fuzzy contra 𝛼 continuous mapping. 

 The following diagram shows the relationships between 𝐼𝐹𝐶𝛽̂𝐺 continuous mapping with other existing 

intuitionistic fuzzy contra continuous mappings. 

            𝐼𝐹𝐶 𝑐𝑡𝑠 𝑀                               𝑰𝑭𝑪𝜷̂𝑮 𝒄𝒕𝒔 𝑴                       𝐼𝐹𝐶𝛼 𝑐𝑡𝑠 𝑀 

Figure 3.1 Relation between 𝑰𝑭𝑪𝜷̂𝑮 𝒄𝒕𝒔 𝑴 and existing 𝑰𝑭𝑪 𝒄𝒕𝒔 𝑴 

 The reverse implication in the diagram is not true in general as seen from the above illustrated examples. 

Theorem 3.7: If 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) is an 𝐼𝐹𝐶𝛽̂𝐺 continuous mapping and (𝑋, 𝜏) is an 𝐼𝐹𝛽̂𝑔𝑇1
2⁄  space then 𝜙 

is an intuitionistic fuzzy contra continuous mapping. 

Proof: Consider 𝐼𝐹𝑂𝑆 T in Y. By assumption 𝜙−1(𝑇) is an IF𝛽̂GCS in X. As (𝑋, 𝜏) is an 𝐼𝐹𝛽̂𝑔𝑇1
2⁄ space, 

𝜙−1(𝑇)is an IFCS in X. Therefore 𝜙 is an intuitionistic fuzzy contra continuous mapping. 

Theorem 3.8: If 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅)is a mapping and (𝑋, 𝜏) is an 𝐼𝐹𝛽̂𝑔𝑇1
2⁄ space, then the statements below 

will equivalent: 

(i) 𝜙 is an 𝐼𝐹𝐶𝛽̂𝐺 continuous mapping and 

(ii) 𝜙 is an intuitionistic fuzzy contra continuous mapping. 

Proof: (i)  (ii): Since from Theorem 3.7 the proof is obvious. 

(ii)  (i): Proof is obvious from Theorem 3.3. 

Theorem 3.9: If 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) be a mapping then the statements below will equivalent: 

(i) 𝜙 is an 𝐼𝐹𝐶𝛽̂𝐺 continuous mapping and  

(ii) 𝜙−1(𝑆) is an 𝐼𝐹𝛽̂𝐺𝑂𝑆  in X for each 𝐼𝐹𝐶𝑆S in Y. 

Proof: (i)(ii): Consider an 𝐼𝐹𝐶𝑆S in Y. Thus 𝑆̅ is an 𝐼𝐹𝑂𝑆 in Y. By assumption 𝜙−1(𝑆̅) = (𝜙−1(𝑆)̅̅ ̅̅ ̅̅ ̅̅ ̅) is an 

𝐼𝐹𝛽̂𝐺𝐶𝑆 in X. Hence 𝜙−1(𝑆) is an 𝐼𝐹𝛽̂𝐺𝑂𝑆  in  𝑋. 

(ii)  (i): Consider an 𝐼𝐹𝑂𝑆S in Y. Thus𝑆̅ is an 𝐼𝐹𝐶𝑆 in Y. By assumption 𝜙−1(𝑆̅) = (𝜙−1(𝑆)̅̅ ̅̅ ̅̅ ̅̅ ̅) is an 

𝐼𝐹𝛽̂𝐺𝑂𝑆 in X. Then 𝜙−1(𝑆) is an 𝐼𝐹𝛽̂𝐺𝐶𝑆 in X. Hence 𝜙 is an 𝐼𝐹𝐶𝛽̂𝐺 continuous mapping. 
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Theorem 3.10: If 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) be a mapping and 𝜙−1(𝑇) be an 𝐼𝐹𝑅𝐶𝑆 in X for each 𝐼𝐹𝑂𝑆T in Y, then 

𝜙 is an 𝐼𝐹𝐶𝛽̂𝐺continuous mapping. 

Proof: Consider an 𝐼𝐹𝑂𝑆 T be in Y. By assumption 𝜙−1(𝑇) is an 𝐼𝐹𝑅𝐶𝑆 in X. As from Theorem 2.2.6[14], it 

has been prove that each IFRCS is an IF𝛽̂GCS, 𝜙−1(𝑇)  is an IF𝛽̂GCS in X. Therefore 𝜙 is an IFC𝛽̂G 

continuous mapping. 

Theorem 3.11:In a mapping 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) if one of the subsequent properties is held: 

(i) 𝜙(𝑐𝑙(𝑆)) ⊆ 𝑖𝑛𝑡(𝜙(𝑆)) for every IFS S in X, 

(ii) 𝑐𝑙(𝜙−1(𝑇)) ⊆  𝜙−1(𝑖𝑛𝑡(𝑇)) for every 𝐼𝐹𝑆 T in Y and 

(iii) 𝜙−1(𝑐𝑙(𝑇)) ⊆  𝑖𝑛𝑡(𝜙−1(𝑇)) for every 𝐼𝐹𝑆T in Y. 

 Then 𝜙 is an 𝐼𝐹𝐶𝛽̂𝐺continuous mapping. 

Proof: (i)  (ii): Consider an 𝐼𝐹𝑆T in Y. Put 𝑆 = 𝜙−1(𝑇). By assumption 𝜙(𝑐𝑙(𝜙−1(𝑇))) ⊆

𝑖𝑛𝑡 (𝜙(𝜙−1(𝑇))) = 𝑖𝑛𝑡(𝑇). Then 𝜙−1(𝜙(𝑐𝑙(𝜙−1(𝑇)))) ⊆ 𝜙−1(𝑖𝑛𝑡(𝑇)). Hence 𝑐𝑙(𝜙−1(𝑇)) ⊆

 𝜙−1(𝑖𝑛𝑡(𝑇)). 

(ii)  (iii): Taking complement for the result (ii) will implies (iii). 

 Assume (iii) holds. Consider an 𝐼𝐹𝐶𝑆T in Y. Thus 𝑐𝑙(𝑇) = 𝑇. By assumption 𝜙−1(𝑇) = 𝜙−1(𝑐𝑙(𝑇)) ⊆

𝑖𝑛𝑡(𝜙−1(𝑇)). Therefore 𝜙−1(𝑇) ⊆ 𝑖𝑛𝑡(𝜙−1(𝑇)). But 𝑖𝑛𝑡(𝜙−1(𝑇)) ⊆ 𝜙−1(𝑇). Therefore 𝜙−1(𝑇) is an 𝐼𝐹𝑂𝑆 

in X. As by the Theorem 2.2.4[14], 𝜙−1(𝑇)is an 𝐼𝐹𝛽̂𝐺𝑂𝑆 in X. Therefore 𝜙 is an 𝐼𝐹𝐶𝛽̂𝐺continuous mapping. 

Theorem 3.12:Let 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) is a bijective mapping. Then 𝜙 is an 𝐼𝐹𝐶𝛽̂𝐺 continuous mapping if  

𝑐𝑙(𝜙(𝑆)) ⊆ 𝜙(𝑖𝑛𝑡(𝑆)) for every 𝐼𝐹𝑆S in X. 

Proof: Consider an 𝐼𝐹𝐶𝑆 S in Y. Thus 𝑐𝑙(𝑆) =  𝑆 and 𝜙−1(𝑆) is an 𝐼𝐹𝑆 in X. By assumption 

𝑐𝑙 (𝜙(𝜙−1(𝑆))) ⊆ 𝜙(𝑖𝑛𝑡(𝜙−1(𝑆))). As 𝜙 is bijective mapping, 𝜙(𝜙−1(𝑆)) = 𝑆. Then  𝑆 = 𝑐𝑙(𝑆) =

𝑐𝑙(𝜙(𝜙−1(𝑆))) ⊆ 𝜙(𝑖𝑛𝑡(𝜙−1(𝑆))). Now 𝜙−1(𝑆)  ⊆ 𝜙−1(𝜙(𝑖𝑛𝑡(𝜙−1(𝑆)))) =  𝑖𝑛𝑡(𝜙−1(𝑆)) ⊆ 𝜙−1(𝑆). 

Therefore 𝜙−1(𝑆) is an 𝐼𝐹𝑂𝑆 in X and 𝜙−1(𝑆) is an 𝐼𝐹𝛽̂𝐺𝑂𝑆 in X. Hence 𝜙 is an 𝐼𝐹𝐶𝛽̂𝐺 continuous mapping.  

Theorem 3.13:If 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅)is an 𝐼𝐹𝐶𝛽̂𝐺 continuous mapping and (𝑋, 𝜏)  is an 𝐼𝐹𝛽̂𝑔𝑇1
2⁄  space then the 

conditions below will hold:  

(i) 𝑐𝑙(𝜙−1(𝑇)) ⊆  𝜙−1(𝑖𝑛𝑡(𝑐𝑙(𝑇))) for each 𝐼𝐹𝑂𝑆 T in Y and 

(ii) 𝜙−1 (𝑐𝑙(𝑖𝑛𝑡(𝑇)))  ⊆ 𝑖𝑛𝑡 ( 𝜙−1(𝑇)) for each 𝐼𝐹𝐶𝑆T in Y. 

Proof: (i)  (ii): Consider an 𝐼𝐹𝑂𝑆T in Y. By assumption 𝜙−1(𝑇) is an 𝐼𝐹𝛽̂𝐺𝐶𝑆 in X. As X is an 𝐼𝐹𝛽̂𝑔𝑇1
2⁄  

space, 𝜙−1(𝑇) is an 𝐼𝐹𝐶𝑆 in X. Then 𝑐𝑙(𝜙−1(𝑇)) = 𝜙−1(𝑇) = 𝜙−1(𝑖𝑛𝑡(𝑇)) ⊆ 𝜙−1(𝑖𝑛𝑡(𝑐𝑙(𝑇))). Therefore 

𝑐𝑙(𝜙−1(𝑇)) ⊆ 𝜙−1(𝑖𝑛𝑡(𝑐𝑙(𝑇))). 

(i)  (ii): Taking complement of (i) we get (ii). 

Theorem 3.14: If 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) is a mapping and (𝑋, 𝜏) is an 𝐼𝐹𝛽̂𝑔𝑇1
2⁄ space. Then the conditions below 

will equivalent: 

(i) 𝜙 is an 𝐼𝐹𝐶𝛽̂𝐺continuous mapping, 

(ii)  for every p(α,β) in X and 𝐼𝐹𝐶𝑆T containing 𝜙(𝑝(𝛼,𝛽)), there exists an 𝐼𝐹𝑂𝑆 S in X containing p(α,β) ∈

𝑆 ⊆  𝜙−1(𝑇) and 

(iii) for every p(α,β) in X and 𝐼𝐹𝐶𝑆T containing 𝜙(𝑝(𝛼,𝛽)), there exists an 𝐼𝐹𝑂𝑆S in X containing p(α,β) ∈

𝜙(𝑆) ⊆ T. 

Proof: (i)  (ii):Consider an 𝐼𝐹𝐶𝛽̂𝐺 continuous mapping 𝜙 and an 𝐼𝐹𝐶𝑆T in Y. Let 𝑝(𝛼,𝛽) be an 𝐼𝐹𝑃 in X, 

such that 𝜙(𝑝(𝛼,𝛽)) ∈ 𝑇 then p(α,β) ∈ 𝜙−1(𝑇). By assumption 𝜙−1(𝑇) is an 𝐼𝐹𝛽̂𝐺𝑂𝑆 in X. As X is an 
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𝐼𝐹𝛽̂𝑔𝑇1
2⁄ space, 𝜙−1(𝑇) is an 𝐼𝐹𝑂𝑆 in X. For any IFOS S in Y, 𝑆 = 𝑖𝑛𝑡(𝜙−1(𝑇))  ⊆  𝜙−1(𝑇). Therefore 

p(α,β) ∈ 𝑆 ⊆  𝜙−1(𝑇). 

(ii) (iii): The result follows from the relations 𝜙(𝑆) ⊆ 𝜙(𝜙−1(𝑇)) ⊆ 𝑇. 

(iii)  (i): Consider an 𝐼𝐹𝐶𝑆T in Y and an 𝐼𝐹𝑃 p(α,β) in X, such that 𝜙(𝑝(𝛼,𝛽)) ∈ 𝑇. By assumption there 

exists an 𝐼𝐹𝑂𝑆S in X. Such that   𝑝(𝛼,𝛽) ∈ S and 𝜙(𝑆) ⊆ 𝑇implies 𝑝(𝛼,𝛽) ∈ 𝑆 ⊆  𝜙−1(𝑔(𝑆)) ⊆  𝜙−1(𝑇). That 

is 𝑝(𝛼,𝛽) ∈ 𝜙−1(𝑇). As S is an 𝐼𝐹𝑂𝑆, 𝑆 =  𝑖𝑛𝑡(𝑆) ⊆  𝑖𝑛𝑡(𝜙−1(𝑇)). Thus 𝑝(𝛼,𝛽) ∈ 𝑖𝑛𝑡(𝜙−1(𝑇)). But 

𝜙−1(𝑇) = ⋃ 𝑝(𝛼,𝛽)𝑝(𝛼,𝛽)∈𝜙−1(𝑇)
⊆  𝑖𝑛𝑡(𝜙−1(𝑇)) ⊆  𝜙−1(𝑇). Therefore  𝜙−1(𝑇) is an 𝐼𝐹𝑂𝑆 in X. Hence 

𝜙−1(𝑇) is an 𝐼𝐹𝛽̂𝐺𝑂𝑆 in X. Hence 𝜙 is an 𝐼𝐹𝐶𝛽̂𝐺 continuous mapping. 

Theorem 3.15: Let 𝜙1: (𝑋, 𝜏) → (𝑌, 𝜅) and 𝜙2: (𝑌, 𝜅) → (𝑍, 𝜂) be any two mappings. If 𝜙1 is an  

𝐼𝐹𝐶𝛽̂𝐺continuous mapping and 𝜙2 is an IF continuous mapping, then 𝜙2 ∘ 𝜙1 is an 𝐼𝐹𝐶𝛽̂𝐺 continuous 

mapping. 

Proof: Consider an 𝐼𝐹𝑂𝑆 S in Z. As 𝜙2is an IF continuous mapping, 𝜙2
−1(𝑆) is an 𝐼𝐹𝑂𝑆 in Y. Further, as 𝜙1 

is an 𝐼𝐹𝐶𝛽̂𝐺 continuous mapping, 𝜙1
−1(𝜙2

−1(𝑆)) = (𝜙2 ∘ 𝜙1)−1(𝑆) is an 𝐼𝐹𝛽̂𝐺𝐶𝑆 in X. Therefore 𝜙2 ∘ 𝜙1 is 

an 𝐼𝐹𝐶𝛽̂𝐺continuous mapping. 

Theorem 3.16: Let 𝜙1: (𝑋, 𝜏) → (𝑌, 𝜅) and 𝜙2: (𝑌, 𝜅) → (𝑍, 𝜂) be any two mappings. If 𝜙1 is an 

𝐼𝐹𝐶𝛽̂𝐺continuous mapping and 𝜙2 is an IF contra continuous mapping, then 𝜙2 ∘ 𝜙1 is an 𝐼𝐹𝛽̂𝐺continuous 

mapping. 

Proof: Consider an IFOS T be in Z. As 𝜙2 is an IF contra continuous mapping, 𝜙2
−1(𝑇) is an IFCS in Y. 

Moreover, as 𝜙1 is an IFCβ̂G continuous mapping, 𝜙1
−1(𝜙2

−1(𝑆)) = (𝜙2  ∘ 𝜙1)−1(𝑆) is an IFβ̂GOS in X. 

Therefore 𝜙2 ∘ 𝜙1 is an IFβ̂G continuous mapping. 

Theorem 3.17: Let 𝜙1: (𝑋, 𝜏) → (𝑌, 𝜅) and 𝜙2: (𝑌, 𝜅) → (𝑍, 𝜂) be any two mappings. If 𝜙1 is an𝐼𝐹𝛽̂𝐺 

irresolute mapping and 𝜙2 is an 𝐼𝐹𝐶𝛽̂𝐺continuous mapping, then 𝜙2 ∘ 𝜙1 is an 𝐼𝐹𝐶𝛽̂𝐺 continuous mapping. 

Proof: Consider an 𝐼𝐹𝑂𝑆T in 𝑍. As 𝜙2 is an 𝐼𝐹𝐶𝛽̂𝐺continuous mapping, 𝜙2
−1(𝑇) is an 𝐼𝐹𝛽̂𝐺𝐶𝑆 in Y. 

Moreover, as 𝜙1 is an 𝐼𝐹𝛽̂𝐺 irresolute mapping, 𝜙1
−1(𝜙2

−1(𝑆)) = (𝜙2  ∘ 𝜙1)−1(𝑆) is an 𝐼𝐹𝛽̂𝐺𝐶𝑆 in X. 

Hence 𝜙2 ∘ 𝜙1 is an 𝐼𝐹𝐶𝛽̂𝐺continuous mapping. 

Theorem 3.18: If 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) be any mapping and 𝜙−1(𝑐𝑙(𝑇)) ⊆  𝑖𝑛𝑡(𝜙−1(𝑇)) for each IFS T in Y 

then 𝜙 is an IFC𝛽̂G continuous mapping. 

Proof: Consider an IFCST in Y. Then 𝑐𝑙(𝑇) = 𝑇. By assumption 𝜙−1(𝑇) = 𝜙−1(𝑐𝑙(𝑇)) ⊆ 𝑖𝑛𝑡(𝜙−1(𝑇)) ⊆
𝜙−1(𝑇). Hence 𝜙−1(𝑇)  is an IFOS in X. Therefore 𝜙 is an intuitionistic fuzzy contra continuous mapping. 

Then by Theorem 3.3, 𝜙 is an IFC𝛽̂G continuous mapping. 

Theorem 3.19: In an IFC𝛽̂G continuous mapping 𝜙: (𝑋, 𝜏) → (𝑌, 𝜅), (𝑋, 𝜏)is an 𝐼𝐹𝛽̂𝑔𝑇1
2⁄ space implied and 

implies 𝜙−1(𝑠𝑐𝑙(𝑇)) ⊆ 𝑖𝑛𝑡(𝜙−1(𝑐𝑙(𝑇)) for each IFS T in Y.  

Proof: Necessity: Consider an IFST in Y. Then 𝑐𝑙(𝑇) is an IFCS in Y. By assumption 𝜙−1(𝑐𝑙(𝐵) is an 

IF𝛽̂GOS in X. As(𝑋, 𝜏) is an 𝐼𝐹𝛽̂𝑔𝑇1
2⁄ space, 𝜙−1(𝑐𝑙(𝑇)) is an IF𝛽̂GOS in X. Hence 𝜙−1(𝑠𝑐𝑙(𝑇)) ⊆

𝜙−1(𝑐𝑙(𝑇)) = 𝑖𝑛𝑡(𝜙−1(𝑐𝑙(𝑇)). Thus IFOS  𝜙−1(𝑠𝑐𝑙(𝑇)) ⊆ 𝑖𝑛𝑡(𝜙−1(𝑐𝑙(𝑇)). 

Sufficiency: Consider an IFCS T in Y. Then 𝑐𝑙(𝑇)  =  𝑇, and by assumption 𝜙−1(𝑠𝑐𝑙(𝑇)) ⊆

𝑖𝑛𝑡(𝜙−1(𝑐𝑙(𝑇)) = 𝑖𝑛𝑡(𝜙−1(𝑇)). Since every IFCS is an IFSCS, 𝑠𝑐𝑙(𝑇)  =  𝑇. Therefore 𝜙−1(𝑇) =

𝜙−1(𝑠𝑐𝑙(𝑇)) ⊆ 𝑖𝑛𝑡(𝜙−1(𝑇)) ⊆ 𝜙−1(𝑇) implies 𝜙−1(𝑇) is an IFOS in X. Therefore 𝜙−1(𝑇) is an 𝐼𝐹𝛽̂𝐺𝑂𝑆 in 

X. Hence 𝜙 is an IFC𝛽̂G continuous mapping. 

Theorem 3.20: An IF continuous mapping𝜙: (𝑋, 𝜏) → (𝑌, 𝜅) is an  𝐼𝐹𝐶𝛽̂𝐺continuous mapping if 

𝐼𝐹𝛽̂𝐺𝑂(𝑋)  =  𝐼𝐹𝛽̂𝐺𝐶(𝑋). 

Proof: Consider an IFOS S in Y. By assumption,𝜙−1(𝑆) is an 𝐼𝐹𝑂𝑆 in X and hence  𝜙−1(𝑆) is an 𝐼𝐹𝛽̂𝐺𝑂𝑆 in 

X. Since IF𝛽̂GO(X) = IF𝛽̂GC(X), 𝜙−1(𝑆) is an 𝐼𝐹𝛽̂𝐺𝐶𝑆 in X. Hence𝜙 is an 𝐼𝐹𝐶𝛽̂𝐺 continuous.   
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 4. Conclusion:  

 In this research article, we have introduced a new kind of closed function called IFC ̂ G continuous 

mapping. The properties, equivalent conditions and some characterizations of the new mapping we established 

via theorems and converse parts are illustrated by suitable examples. As a future work, we like to extend the 

same concept to contra closed mapping, which is opposite to continuous mapping. 
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