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Abstract: 

A new trend in machine learning research is neural networks incorporating physical governing equations as constraints. In this 

vein, we provide a neural network constraint based on the governing equation for a deep learning model for one-dimensional 

consolidation. Prior research is reviewed and discussed first. Automatic differentiation is used by the deep learning model to 

restrict the application of the governing equation. Analytical and model-predicted solutions, as well as constraints, are used to 

calculate total loss (a requirement to satisfy the governing equation). Forward and inverse difficulties are both taken into account. 

For one-dimensional consolidation issues, the forward tasks show how well a neural network model with physical constraints 

performs in prediction. The coefficient of consolidation may be predicted using inverse problems. As an example, we employ 

Terzaghi's problem with shifting boundary conditions, and the deep learning model displays a fantastic performance in both the 

forward- and inverse-problem scenarios. A deep learning model with physical law integration may be useful for a wide range of 

applications, including faster real-time numerical prediction for digital twins, reproducibility of numerical models, and 

optimization of constitutive model parameters, although this particular application is a simple one-dimensional consolidation 

problem. 

 

1. Introduction 

Even outside of the realm of pure computer science, the application possibilities for machine learning have expanded rapidly in 

recent years. Artificial neural networks, a specific form of deep learning, are being used successfully in a variety of fields of 

science and industry. Recent years have seen a rise in the use of deep learning in the context of partial differential equations 

(PDEs). Several researchers are involved in this endeavour, and the use of deep learning in conjunction with physical systems 

regulated by PDEs is referred to by a variety of names. Physics-informed neural networks, theory-guided data science, and deep 

hidden physics models are just a few of the prevalent designations. Numerical techniques for solving partial differential equations 

(PDEs) may be more efficient, accurate, and generalizable with the help of these applications. 

Deep learning and machine learning may be used to solve one-dimensional consolidation difficulties. Fluid movement and excess 

pore water pressure dissipation in porous media are described in the issue. The problem's governing equation is briefly explained. 

The governing partial differential equation's deep learning model is then explained. For both forward and inverse tasks, outcomes 

are reported. 

Consolidation theory explains how compressive stress delays porous media deformation by dissipating fluid from the porous 

medium. One-dimensional consolidation is governed by the equation 

 

                (1) 

The vertical effective stress (zz) is equal to the vertical effective pressure (p) plus Biot's coefficient (), and the pore space storage 

(S) is equal to the restricted compressibility (mv) of the porous medium. In the conventional one-dimensional consolidation issue, 

a compressive force is applied at time t=0 and the load is sustained for time t>0. A continuous tension zz is seen for time intervals 

longer than zero. It's therefore possible to simplify the general formula (as in (1)) 
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              (2) 

 

 

Fig. 1. One-dimensional consolidation. 

 

t=0 is the starting point for the 1D consolidation issue, when the complete vertical load is borne by the pore fluid and there is no 

dissipation from the porous medium. The dissipation rate of the pore fluid is controlled by the second equation, which takes into 

account time as well as spatial dimension. Analytical or numerical approaches may be used to solve this equation for varying 

drainage boundary conditions at the top and bottom of the porous material. Analytical solutions are shown here for two alternative 

drainage boundary conditions, which will be discussed in more depth in a subsequent section. 

 

2. Literature Survey 

There is a shift away from conventional statistical approaches and mechanistic models toward ML and DL, such as deep neural 

networks (DNNs), across many commercial applications and sectors, such as education, natural science, medical research, 

engineering, as well as social science. mechnical engineering has typically relied on mechanistic models [1]. A common criticism 

of ML approaches is that they seem to be "black boxes," meaning they take in inputs and produce outputs but do not disclose 

information that can be understood by the user[2,3]. Black-box models have been widely criticised for their opacity, and some 

scientists have constructed physics-based ML in response. Even academics who construct the algorithms that produce the 

mechanical engineering ML models do not comprehend how variables are integrated to make predictions in these models. No 

matter how many input variables are included in a black-box predictive ML model, no researcher can grasp how the variables are 

linked together to arrive at the final prediction. High-data-demanding ML models, for example, have trouble estimating structural 

damage since they are related to processes that aren't fully understood. Thus, their large data requirements, difficulty in delivering 

physically consistent results, and inability to generalise to out-of-sample events [4,5]. ML and DL model[6]s are tested on large, 

curated datasets with well-defined, accurately labelled categories. These issues can be handled successfully by DL since it 

presume that the world is steady. While these classifications are continually developing in the actual world, particularly in 

mechanical engineering, We can only detect the issue after doing extensive testing on ML responses to diverse visual cues. 

mechanical engineering applications such as earthquake risk reduction, irrigation management, structural design and analysis, and 

structural health monitoring need physics-based numerical models. High-performance computers have enabled mechanical 

engineers and scientists to run ultra-realistic simulations with millions of degrees of freedom in their models for use in the real 

world. Simulating in the mechanical engineering industry is too time-consuming for an iterative design approach to integrate. 

Although they are often used during testing and certification, they are commonly used only in the last phases of development.  

Because numerical tools may be used throughout the design process if they can be accelerated, this is an essential challenge to 

solve [7,8]. Model complexity has hindered the development of innovative applications, such as enhancing construction 

productivity, that might benefit from the development of numerical techniques for quick simulations. An further key example of 

analysis that may be possible if simulation expenses were much reduced is uncertainty quantification. In fact, the variables of 

interest tracked by numerical simulations are affected by the actual system environment, which is often unknown. It may be 

necessary to estimate probability distributions for the quantities of interest to ensure the dependability of the product if these 

uncertainties have a substantial influence on simulation outcomes. For complex scientific and technological applications, neither 

an ML-only nor a scientific knowledge-only approach may suffice. To better understand the continuum between mechanistic and 

machine learning models, researchers are trying to combine scientific knowledge with data. 
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ML mechanical engineering has been the subject of several evaluations. In mechanical engineering, however, only a few studies 

have focused on the correct use of physics-based machine learning in mechanical engineering and creating a road map for future 

studies. Few studies have focused on the basic physics-based ML modelling in mechanical engineering. Mathematical modelling 

(ML) approaches and physics models are examined in depth in this work. Many studies have previously been done on merging 

scientific ideas with ML models, despite the fact that the idea of doing so has just lately gained traction[9,10]. In mechanical 

engineering, researchers use physics models, machine learning models, and use cases to tackle their difficulties. This research 

intends to inform the ML community about these exciting achievements, as well as the gaps and potential for furthering research 

in this promising path. 

3. Deep Learning Model 

 

A physical restriction based on the governing one-dimensional consolidation equation is addressed in this part, along with the 

neural network design. Hyper-parameters that are controlled during training are also described, as is the model training technique. 

 

3.1 Neural Network Architecture 

Using a fully-connected deep neural network with the necessary number of layers and hidden units, a one-dimensional 

consolidation issue is trained. Neural networks are shown in the diagram displayed in the following image. This one-dimensional 

consolidation issue uses (z,t) values from the training data as inputs for its input layer; the specifics are covered in the following 

sections on numerical examples for forward and inverse learning. 

 

Fig. 2. Illustration of the neural network architecture 

 

Using the excess pore pressure training data, the neural network with the required number of hidden layers and hidden units 

predicts the excess pore pressure[11]. Also included is a physical constraint, based on the governing one-dimensional 

consolidation equation, which is assessed via automated differentiation, which is briefly addressed in a subsequent sub-section 

below. An artificial neural network is built to minimise the training loss while still accommodating a physical limitation. 

3.2 Automatic Differentiation 

Automatic differentiation is a critical component of the deep learning model used to solve this issue. Automated differentiation 

should not be confused with other techniques for calculating derivatives in computer systems. Derivatives may be computed in 

four ways: manually, using finite difference approximations, numerically, using computers to approximate derivatives, and 

automatically, using computers to calculate symbolic derivatives and then evaluate them using algebraic expressions. Automatic 

differentiation, like the other approaches, gives numerical values of derivatives where these are derived using the principles of 

symbolic differentiation, but instead of producing the final expressions, they maintain track of the derivative values. Using this 

way of monitoring derivative values, automated differentiation is superior to the two most prevalent methods of calculating 

derivatives, numerical and symbolic differentiation[12,13]. There are just a few simple arithmetic operations and elementary 

function evaluations involved in each derivative calculation, no matter how sophisticated. The chain rule is continually used until 

the required derivative is calculated. Using this methodology, automated differentiation may be performed at machine accuracy 

and is far less computationally intensive than previous approaches. TensorFlow's automated differentiation functionality is used to 

evaluate the derivatives in the controlling one-dimensional equation[14]. By recording all operations and calculating the gradients 

of the recorded calculations using reverse mode differentiation, TensorFlow offers an API for automatically differentiating 

models. 

 

 

https://www.sciencedirect.com/topics/engineering/neural-network-architecture
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4. Drained Top Boundary 

 

A one-dimensional model with a drained top border, a model height of 1 m and a coefficient of consolidation of cv=0.6 m2/yr is 

studied here in an inverted situation with the same geometry and material/model characteristics. Using Nz=100 and Nt=100, the 

analytical solution is produced again. This means that the precise solution has a total of 10000 points in z, t, and p. The 

architecture of the neural network is designed to include 10 hidden layers, each having 20 hidden units. The neural network is 

trained using a random selection of 2000 points from the analytical solution data (which has a total of 10000 points). A batch size 

of 200 is used to shuffle and split the training data[15]. Initialization of wcv=0, the trainable weight corresponding to the 

consolidation coefficient, implies an initial consolidation coefficient of 1.0 m2/yr. Minimize training and constraint losses by 

training with a learning rate of 0.0001 and optimising using Adam. 

Using the inverse analysis, the outcomes of the issue with the drained upper border are shown in the graph below. As you can see 

in the top colour plot, white dots represent the randomly picked training data points. The deep learning model predicts the extra 

pore pressure well from a little training sample data, much as in the forward problem. Another example of the outstanding 

performance of the physical constraint produced by automated differentiation is provided here as well. 

 

 

Fig. 3. Inverse analysis results from analytical solution 

 

(a)                                                                                       (b) 

Fig. 4. There are two plots here: (a) a plot showing the projected consolidating coefficient with time and (b) one of the mean 

squared error vs the number of training epochs. 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/inverse-analysis
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In the picture above, the projected coefficient of consolidation is shown as a function of training epochs in the plot on the left. Cv 

= 0.5970 m2/yr, which is quite near to the anticipated value of 0.6 m2/yr with an absolute error of 3.010-3, is the final projected 

value for the coefficient of consolidation. On the right, you can see how the mean squared errors have changed over time. 

5. Drained Top and Bottom Boundaries 

In the last part, we looked at a numerical example in which the top and bottom bounds were both drained. Using a coefficient of 

consolidation of 0.1 m2/yr, which we hope to anticipate using the inverse deep learning model, we are able to derive the analytical 

solution for this model. Analytical solution based on Nz=100 and Nt=100 yields 10000 data points, from which a training sample 

of 2000 is picked. The hidden layers and 20 hidden units in each layer of the neural network have a similar structure. The batch 

size is 200 and the Adam optimizer is used with a learning rate of 0.0001 for the other model hyper-parameters. 

The figures below illustrate the inverse analysis findings for drained top and bottom bounds. The model accurately forecasts the 

grid's excess pore pressures even with a little training sample.

 

Fig. 5. Inverse analysis results from analytical solution 

 

Fig.6. (a) Evolution of the anticipated coefficient of consolidation for drained top and bottom bounds as a function of training 

epochs; (b) Mean squared error as a function of training epochs. 

According to the deep learning model, cv=0.0994 m2/yr, which is an absolute inaccuracy of 6.010-4, is the projected 

consolidation coefficient. These findings may be seen on the left plot of the image above, which depicts the expected coefficient 

of consolidation over time as a function of training epochs. To get an idea of how many epochs it takes to train a neural network, 

we plotted the mean squared errors (training and constraint) as a function of epochs. 

 

6.  Conclusions 

The governing partial differential equation is utilised as a constraint in a deep learning model for one-dimensional consolidation. 

Researchers in the machine learning field have lately begun to investigate physics-constrained neural networks, and the work 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/inverse-analysis


Copyrights @Kalahari Journals Vol. 7 (Special Issue, Jan.-Feb. 2022) 

International Journal of Mechanical Engineering 

463 

described here contributes to that endeavour. Briefly, a few examples of how the concept has been used in various scientific and 

technical fields were discussed. 

A fully-connected sequential neural network is the deep learning model used here. The extra pore pressure is a function of the 

geographical and temporal coordinates, which are sent into the neural network. It is possible to confine the system physically by 

utilising the governing equation of one-dimensional consolidation since the neural network design incorporates automatic 

differentiation. Using TensorFlow's automated differentiation capabilities, the projected extra pore pressure is assessed in terms of 

its spatial and temporal derivatives. Forward and inverse difficulties are both taken into account. Derivatives are assessed at a 

certain number of points created using the latin hypercube sampling approach, taking into account the spatial and temporal 

boundaries of the real model. A surprising degree of precision might be achieved by training a neural network utilising just the 

starting and boundary condition data. Training the neural network is done using a larger set of randomly chosen training data 

points, and the derivatives based on the governing equation are assessed at these points. For solving forward problems, the 

coefficient of consolidation is used immediately, but it is left as a training parameter when solving inverse ones. The total training 

loss is defined as the sum of the training and constraint losses for both forward and inverse issues. Excess pore pressure predicted 

by the model and its accurate analytical solution are used to calculate the training loss's mean squared error. Based on the 

derivatives and automated differentiation, the mean squared error for constraint loss is calculated using the governing partial 

differential equation. Minimizing total mean squared error (TMSE) is accomplished by the use of a model optimizer (Adam). The 

number of hidden layers, the number of hidden units at each layer, the batch size for training, and the optimizer learning rate are 

all model hyper-parameters that may be changed for any kind of issue. In order to show the model's potential, Terzaghi's one-

dimensional consolidation issue with two versions is used: one with simply a drained top boundary and one with drained top and 

bottom borders. It was shown that the pore pressure across the model's spatial and temporal boundaries could be accurately 

predicted for forward issues, while the coefficient of consolidation could be accurately predicted for inverse problems using the 

model. 

There are significantly wider ramifications to our deep learning model than can be seen in this basic one-dimensional 

consolidation issue. Because of the physical constraints, deep learning models trained with a little quantity of data but with high 

accuracy may predict numerical solutions quicker than models trained with a large amount of data but with low precision. For 

digital twins, where real-time numerical prediction is desired, this might be a tremendous benefit. Reproducibility and 

optimization of complicated numerical models might benefit from the ability to forecast material properties, as illustrated by 

inverse issues. 
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