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Abstract –  

For most fluid-structure interaction (FSI) problems, the solution normally lies in solving the characteristics of the 

flow at the system’s fluid-structure (FS) interface. Arterial and venous circulatory blood flow system is an 

example of such a system. FSI problems are mostly solved using the immersed boundary method (IBM). IBM 

treats the interface between the cells near the sharp edges and nodes representing the moving/stationary rigid thin 

object in a 2-D domain. This study presents the integration of IBM (with 2-stage pressure-velocity corrections) 

with dynamic adaptive mesh refinement (DAMR) to address the issues associated with FSI simulations for thin 

solids. The successful incorporation of the solid and fluid motions at the boundary requires the computation of the 

body forces in proportion to the volume fraction of the solid in the fluid cells. The DAMR-IBM algorithm was 

used to discretize and solve the boundary layer flow governing equations at the FS-interface. To accurately 



Copyrights @Kalahari Journals Vol.7 No.10 (October, 2022) 

International Journal of Mechanical Engineering 

66 

capture the flow physics in the boundary layer, the DAMR was used to control the mesh resolution at the FS-

interface, while a uniform Cartesian grid with relatively wide cells was used in the freestream region far from the 

object to ensure significant decrease of the computational cost. The validation of the DAMR-IBM algorithm was 

done using a laminar flow benchmark case around a cylinder; the results showed a good agreement between the 

lift coefficients, drag coefficients, and Strouhal numbers produced by the model and those published in the 

literature. Simulations were conducted for three test cases in order to demonstrate the performance and accuracy 

of the DAMR-IBM algorithm. The DAMR-IBM algorithm was implemented on a staggered grid for the fluid 

flow simulation around thin object and for the computational cost determination. The results verify the accuracy 

and robustness of the DAMR-IBM algorithm in capturing the flow physics of the flow at the FS-interface of thin 

solid. Hence, the algorithm is suitable for uniform flows simulation around rigid thin solid, including sharp-edged 

ones. The DAMR-IBM algorithm can also be used to simulate flows past thin solid with high geometrical 

complexity, rendering it suitable to simulate the motion of amoeboid, fish fins, and insect wings. 

Keywords : Immersed boundary method, Dynamic, AMR, Two-stage velocity-pressure correction, thin objects, 

and Laminar flow. 

 

INTRODUCTION 

FSI problems involve determining the flow characteristics at the FSI of a system [1]–[7]. Examples of FSI include 

the rustling of leaves due to the wind, flapping of insect wings, and swimming of microorganisms. FSI problems 

are typically solved using body-fitted mesh methods based on the arbitrary Lagrangian-Eulerian approach [8]–

[17]. However, to date, many numerical models are incapable of accurately capturing the flow physics at the FS-

interface of ultra thin solid with complex geometries. The flow parameters at the surface of thin solid are 

determined in FSI problems via estimation of the velocities and pressure of the flow at the boundary layer. When 

the thin object is displaced or distorted, re-meshing is performed, which increases the computational cost. 

Because of its simplicity and cheap processing cost, fixed Cartesian mesh techniques are commonly employed for 

the discretization of the governing equations of fluid dynamics for the estimation of the flow properties of 

arbitrarily ultra- thin solid. IBM, on the other hand, uses a rectangular mesh and adds a few extra stages to 

determine the cell fractions occupied by arbitrarily shaped objects [18]–[29]. IBM has been widely used to 

simulate complex flows in medical applications and biological sciences such as simulating blood flow in the 

heart.  

IBM was originally developed by Peskin [30] where the moving and stationary boundaries were computed by 

introducing an external additional force field into the governing equations of fluid dynamics in order to fulfil the 

no-slip boundary conditions at the FS-interface. IBM can be used to solve flows within vicinity of deformable 

thin solid such as the response of a filament in flowing soap film [31]–[34]. The Dirac delta function with smooth 

estimation was used to apply forces to the fluid and interpolate the fluid velocity during the soap film-filament 

interactions. 

Kajishima [35] devised a basic approach (named cut-cell IBM) for simulating particle-laden flows, in which the 

determination of the forces acting on the body was done by the velocity of the solid domain. Solid volume 

fractions for the border cells were used to determine the solid & fluid velocities. Other researchers, such as [36], 

[37] and [38] took a different technique by incorporating the solid and its velocity into the solid nods in the last 

time step. On the other hand, these numerical models do not comply to the divergence-free criterion, which is 

essential for FS-interface flows [39]. The technique by Kajishima et al has the FSI connected by body forces. The 

fundamental disadvantage of fixed grid designs is the inaccuracy of flow resolution in the presence of moving 

structures [40]. 

The maximum grid resolution in fixed grid schemes must be defined in all the zones within the computational 

space prior to simulations. Much effort has been made to improve fixed grid schemes in recent years. Löffler et al. 

[41] developed a parallel scheme for adaptive mesh refinement based on the AMSS-NCKU framework. Brehm et 

al. [42] developed a stabilized IBM approach for compressible Navier-Stokes equations. Ji et al.  [43] developed a 

graphics processing unit-accelerated adaptive mesh refinement method for use with IBM. It is evident that all of 

these studies are focused on the development of innovative methods to expedite computational processing and 
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enhance accuracy of the solutions, as well as overcome the drawbacks of existing numerical models. 

In IBM, the interpolation function determines the FS-interaction and blurs the space between the fluid and 

structure to within the width of the fluid cells. However, it is difficult to accurately capture the flow physics in the 

boundary layer at the FS-interface without implementing body-aligned boundary layer meshes. The AMR 

techniques have been proposed for the refinement of mesh zones using the flow characteristics to achieve a proper 

mesh resolution in any part of the computational domain [44]–[49] AMR is useful because it can alter the mesh 

dynamically when there are changes in the flow characteristics, and therefore, AMR can be used to solve flow 

problems with high accuracy [50], [51]. AMR methods can be used in conjunction with linear and non-linear 

finite element formulations and therefore, these methods are typically used to solve FSI problems [52]–[55]. 

 

Many important applications involve incompressible viscous flows past arbitrary-shaped thin objects. However, 

the pressure discontinuities and velocity derivatives are neglected from the analytical solution using IBM. 

Second-order errors are also detected upon examining the interaction between the incompressible viscous fluid 

and thin object. Most IBMs are not really suitable to solve FSI problems involving thin solid since these problems 

require a high level of accuracy of the variables at the FS-interface. In other words, a high level of precision is 

required for the flow variables in order to capture the flow physics in the boundary layer. Kajishima et al.’s cut-

cell method for incompressible viscous flows past thin objects results in second-order errors. In addition, a 

number of IBMs are dependent on the mesh size at the FS-interface in order to precisely capture the flow kinetics. 

In IBM, volumetric coupling is used to represent the FS-coupling and the artificial viscosity may either affect the 

structure or alter the fluid property such that the fluid becomes incompressible. 

The maximum mesh resolution in fixed grid schemes must be specified for all the zones within the computational 

space, but for IBM, this step may not be needed. This issue can be addressed using the Dynamic adaptive mesh 

refinement (DAMR), which will minimize computational time during the simulations. In addition, DAMR can be 

used to achieve satisfactory performance for parallel computing using supercomputers in order to solve extremely 

demanding computational fluid dynamics (CFD) problems. The advantages of DAMR has spurred the 

development of a novel DAMR-IBM method with 2d-stage velocity- pressure corrections for two-dimensional FSI 

problems involving thin objects [56], [57]. While Kajishima et al.’s method is efficient in treating the 

complexities at the FS-interface (which in turn, increases the accuracy of the solution), the DAMR algorithm 

deals with the momentum exchange between the fluid and solid for thin arbitrary-shaped objects. Changes in the 

velocity field are associated with the average local solid volume while the fluid velocity affects the conservation 

of mass.  

Therefore, the purpose of this research is to create a novel DAMR-IBM method that combines IBM with 2d-stage 

velocity- pressure corrections with local adaptive mesh refinement using sub-mesh layers of variable mesh sizes. 

These sub- grid layers constitute a structured Cartesian grid for the computational space. When compared to fixed 

grid schemes, the DAMR-IBM technique is designed to tackle FSI issues that involve incompressible viscous 

flows (IVFs) around sharp-edged thin solid with high accuracy and reduced computing time. The algorithm is 

created by layering deformable fluid nodes near the solid's immersed boundary. Accurate capturing of the flow 

characteristics at the FS-interface requires the use of a suitable mesh size for the boundary layer to reduce the 

computational cost. The developed DAMR-IBM algorithm in this paper is used to evaluate the numerical model's 

capabilities for 2-dimensional IVFs past a thin object. Finally, validation is carried out in order to define the 

accuracy and reliability of the DAMR-IBM algorithm. It is believed that the DAMR-IBM algorithm will be useful 

to academics and researchers involved in simulations of FSI problems involving thin objects. 

 

METHODOLOGY 

The focus of this research is a dynamic system that presents the interface between the limit of movement of a thin 

object and the flow of fluid. The thin object was thought to be completely rigid in this work. The interactions of 

the thin object's moving boundaries will be used for the description of the basic governing equations 

& the numerical approach. The fluid is assumed to be incompressible & Newtonian. The modelling of fluid flow 

is carried out by the finite difference method; the modelling is done in a Cartesian coordinate system using 
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rectangular grids.  

2.1 Equations governing fluid dynamics 

The Navier-Stokes (NS) equations were used for the description of the fluid dynamics for the considered FSI 

problem in this work. The NS-equations are given by: 

 . 0fu 
 

(1) 
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f f f f f
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u
u u p v u u
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(2) 

where fu
 is the velocity of the fluid, p  is the pressure, f  is the density of the  fluid, and fv

 is the kinematic 

viscosity of the fluid. The Cartesian grid was used to organize the Eulerian variables. The second-order finite 

difference method in space and time was used to define Eqs. (1) and (2). Then, the exchange of momentum at the 

FS-interface was addressed using IBM as detailed in the following sub-section. 

2.2 Sharp interface immersed boundary method 

Predicting the flow properties and related forces, which requires prior understanding of the moving boundaries, is 

one of the hurdles in FSI problems. As a result, in this work, a coupling method was adopted, in which the fluid-

structure representation was done as a node derived from a dynamic system. This was accomplished by iteratively 

and simultaneously embedding the entire governing equations. IBM [35] was used to study the exchange of 

momentum in cells that are partly occupied by solid particles. The velocity field in this work was introduced at 

the FS-interface, where solid particles partly occupied the cells, and IBM was used to solve the velocity field. To 

introduce the velocity field, the solid velocity
( )pu

 and the volume of local fluid velocity 
( )fu

 in each nod was 

averaged. The velocity field is given by: 

 (1 ) f pu u u   
 

(3) 

where “
(0 1 )  

is the solid particle’s volume fraction within a cell (as seen in Fig 1). The velocity of the 

solid particle 
( )pu

 was then decomposed for the translation and rotation of the elements such that

p t pu v r   
 , where tv

 is object’s velocity, 
( )p  is the angular velocity, and r is the relative position from 

the gravitational centre to a given point within an integral” area. 

 

Figure 1: Fluid-solid volume fractions of a cell in the uniform Cartesian mesh. 

The fraction of volume was determined using the hyperbolic tangent function as follows: 
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where “
( , , )x y zn n n n

is the normal outward unit vector at the surface of the element while  is the distance 

from the element’s surface to its midpoint. This formulation was first presented by Yuki [58] and termed surface 

digitizer. Hence, the fluid-solid boundary interaction was determined via integration of the velocity field using the 

NS-equations: 
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The following system was compute for the determination of the time improvement for : 
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where t  denotes the time increment while pf
  represents the intruder effect on the fluid inside the object at the 

FS-interface. It shall be noted that when 
( 0) 

and there is zero interaction force, 
0pf 

 

For single-phase fluids, the time advancement was calculated using the second-order Adams-Bashforth technique. 

The fraction of particle in the cell was subjected to a particle force comparable to that found in Eq. (11) but with 

the opposite sign. The body force was used to replace the hydrodynamic tension at the FS-interface contact, and 

the particle's advancement phase was completed via integration of the particle force throughout the particle 

volume. Application of pressure at the FS-interface modified the numerical technique in a way that the force of 

body 
( )pf

was removed from Eq (7). Hence, the velocity of the particle can be expressed as follows based on the 

Navier-Stokes equations: 
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The following system was compute for the determination of the time advancement for : 
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Where the time step is represented by the superscripts;  represent the increase in time, and Iu
 is the 

intermediate velocity. The computation of the time advancement was done in a single continuum using the 

s
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fractional step and second-order Adams-Bashforth methods. The deviation of 
( )Iu

was used to solve the Poisson 

equation; this serves as a source term for pressure 
1( )np 

. Then, the intermediate velocity was corrected to 

accommodate the time-step velocity 
1( )n

fu 

 integration. 

2.3. Second correction step after momentum exchange  

Most IBMs are susceptible to pressure oscillations, particularly in flows around thin solid. After momentum 

exchange, a second pressure correction step can be implemented to eliminate oscillations. As demonstrated in Eq. 

3, the contact force was exposed to the velocity field in fluid cells filled with solid particles. As a result, proper 

treatment was necessary to retrieve the pressure field that was affected by the alteration. A second 

pressure derivative was applied to the affected cells if there is error in the pressure field.  A small area was 

selected near the object for the correction of u  in Eq. (3), denoted as 
1

2

nu 

.The scalar values for the pressure 

and velocity corrections 
( 1) ( 1)

3 2( )n nu and p 

were also determined using the simplified marker and cell approach. 

The following equations were compute to rectify the pressure readings at the surface of the object using the 

projection method [56], [59]: 

 1
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Here, “
1

3

nu 

and 
1

2

np 

 represent the velocity & pressure respectively, that satisfy the continuity equation for the 

following time” step.  

 

BOUNDARY LAYER AND LOCAL ADAPTIVE MESH REFINEMENT  

The goal of adding AMR is to improve the resolution and precisely capture the flow behaviour in areas of 

expected high flow gradients, such as areas near a thin object’s surface; this is expected to improve the IBM 

solution’s accuracy. In the boundary layer, the requirements for the mesh resolution may differ dramatically from 

the requirements in the computational domain's free stream region, where there are minimal flow gradients. One 

technique to increase the solutions accuracy at the FS-interface is to use AMR systems. Because the flow field 

might change substantially owing to the presence of a thin object, it's critical to record the flow mechanics in the 

boundary layer appropriately. For different sub-blocks of the refined mesh in this work, the connected nodes in 

the cells were registered using a local AMR approach. A mesh hierarchy with specified grid size was only defined 

for the computational domain’s critical region in these sub-blocks. Being that each mesh layer has a temporary 

time step that is adjusted according to the cell size, the manner of the mesh layers overlap allows for time 

refinement. To assure the numerical scheme's stability and accuracy, the permissible time for meshes was ensured 

to match with the fine mesh cells size. This allows that larger cells can be modified with longer time steps 

selectively if considering meshes with mixed cell sizes in isolation. It should be noted, however, that each cell 

must be modified for each set time step and iteration. Smaller cells are connected with shorter time steps in the 

local AMR, and vice versa. The cells are divided into independent meshes with the same mesh size for each group 

of cells.  

The computations were done using the AMR technique; for the computation, the mesh were interpolated to 

produce new ones via computation static flow in the very thin mesh refinement layer. The preliminary fluid mesh 

nodes were built with the nodes at intervals 0.1X  ; the final nodes size was 160 40 (6400)  with

0.0125x  . A level-wise increment in the refinement the indirect boundary, the refinement was increased by 
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one level at each step. In summary, the addition of the finest AMR nearby the thin solid can increase the accuracy 

of the fixed grid approach. It should be emphasized, however, that while accuracy of the fixed grid scheme can be 

improved by AMR, it does not help in estimating the structure's motion. The mesh may require frequent update to 

adhere to the implicit interface due to transient instability (particularly for large-item motion). Therefore, it is 

beneficial to ensure a layer of small sized cells along the object’s surface to ensure that the boundary layer has the 

optimal mesh size. 

A rectangular grid is created in the AMR “by properly layering the sub-blocks to represent the whole 

computational domain while assuring a low degree of error and a short computation time. The modification of the 

time step is based on the mesh refinement level. The mathematical representation of the mesh refinement time 

step can be represented as / 2Nt T   , where 
1,..., levN p

 and levp
 is the number of cell size-

correlated patches.” Because of the pre-calculation of the time step for the solution at any mesh refinement 

level, a mechanism was designed to achieve the solution level synchronization. As indicated in Figure 2, the grid 

sub-blocks are introduced from the rectangle's boundaries. The AMR concept is depicted in Figure 2 for a single 

layer. The intermediate starting points are the original background mesh and the mesh bounds for Grid 1 while the 

fluid motion is used to determine the mesh for Grid 2. To achieve finer resolution mesh refinement, a rectangular 

grid is created from the boundaries of Grid 2.  

 

Figure 2: Two-dimensional adaptive mesh refinement for a single layer 

 

3.1 Dynamic adaptive mesh refinement around thin object 

In computationally demanding regions, DAMR was employed to solve partial differential equations. The first step 

of hierarchical adaptive mesh refinement is to identify the sections of the computational domain that needed 

special attention, followed by a dynamic layering of fine grids in these areas. A coarse grid is utilized as the base 

in the DAMR algorithm, with the computational domain's minimum permitted resolution. To improve the 

resolution of the solution, finer grids are used for regions with increasingly demanding computations as the 

solution develops. Using the same previous method, the new fine grid is improved further to produce a finer grid, 

resulting in a mesh hierarchy that is dynamically adaptive. Figure 3 showed the dynamically adaptive mesh 

hierarchy created with the DAMR scheme. The DAMR-IBM approach improves thin object boundary solutions, 

which need substantial computations to resolve flow physics in high flow gradient regions while coarse mesh is 

implemented in the regions with low flow gradients. The Cartesian mesh was coarsened or refined based on the 

distribution of the fluid nodes. Nonetheless, two mathematical issues arise as a result of grid resolution 

adjustments, which can be solved by dispersing fluid nodes across multilayer interfaces. The fine and coarse 

sections must have a similar cell shape; it is critical to avoid the formation of false errors at the boundaries, as 

these errors might cause pseudo-waves. Hence, the DAMR-IBM was developed to address this issue. The 

shape function in this case is constructed without implementing multiple geometrical functions within the 

computed regions. The Cartesian mesh is used for the IBM simulations while DAMR is effective to address 

complex structural motions. Table 1 shows the monolithic DAMR-IBM algorithm used to coarsen and refine the 
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mesh for a single time step. For example, when a cell enters into a fine mesh, the cell is split into two sub-cells. 

The DAMR-IBM algorithm is implemented using an in-house FORTRAN code in order to enhance the resolution 

of two-dimensional incompressible viscous flows within proximity of the thin object surface and boost 

computational efficiency. Figure 3 shows the grouping of the cells for the background mesh and mesh refinement 

for dynamic surface tracking. The Cartesian mesh with two levels helps in overcoming the issues associated with 

simulations of flows around thin solid. The finest mesh level is applied close to the surface of the thin object and 

requires higher computational power.  

Mesh hierarchy computations must be performed by interpolating data from the coarse and finer mesh blocks. 

Due to the unpredictability of time, all node numbers must be inserted from the old grid to the new grid. 

The linear interpolation strategy, as seen in Figure 3, was used in this extremely easy procedure. The first stage is 

the positioning of the initial node 
( )oldN

in the Cartesian grid, and the second stage is the formation of new nodes 

( )newN
for the new grid. In this case, the number of in

( )newN
 comes from the local representation

( )oldN
. A 

specific procedure is used to locate
( )oldN

. The smooth set function is employed as an advanced stage in the 

interpolation technique in continuous space. A one-dimensional search is used to locate the primary node 1( )newN

in relation to oldN
 . This one-dimensional search is implemented using the steepest descent algorithm. 

The next step is to interpolate the next node 2( )newN
 that is lodging onto 1( )newN

 in search of the related oldN
. 

This process is repeated until all the new nodes have been located on the old mesh. For the search algorithm, the 

computational cost varies linearly with the number of nodes  N  in the new mesh. 

Table 1: Monolithic  IBM-AMR algorithm used to coarsen and refine mesh for a single time step. 

“Solve the Navier-Stokes equations for the entire computational domain using the method of projection.” 

“Compute  xd
 and 

yd
 for the small rectangular region around the thin object with respect to the degree 

of refinement: 

, / 2Ndx DX DY  / 2N

newdt DT   where 1,2,...,N n  .”      

“Interpolate 1U  and 1V  for the boundaries of the rectangular region around the thin object” 

“Compute the boundaries of the refined mesh node around the thin object:” 

2: 1 2: 1

1: 1 1: 1

NX NX

NX NXuc vc 

   

“Determine the volume fraction for the solid in the local cells and compute the velocity.” 

“Compute the momentum exchange.” 

“Compute DU  and DV  for the volume fraction based on the solid digitizer.”  

“Compute the intermediate velocity and pressure 1 1 )( n na du pn using the second-order Adams-Bashforth 

method and fractional step method.” 

“Call CONS to compute xd
 and yd

 and update the values accordingly.” 

“Correct the velocity and pressure
1 1

3 2 )( n na d pu n 

  .” 

“Compute the velocities 
)( pr pranu vd
for angular particles using the second-order Adams-Bashforth method 

and update  ” 

“Compute the coordinates 
)(  pr pranx yd
 for the moving particles using the Crank-Nicholson method.” 
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Figure 3: Depiction of the Eulerian & Lagrangian meshes (where s
 = solid area, f

 = fluid area). Also 

represented are the coefficients of velocity interpolation from the locally refined mesh at the fluid-solid boundary. 

The interpolation of the velocities at the new nodes from the old nodes was done within the square region. 
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3.2 Coupling between DAMR and IBM  

This section is focused on the development of an algorithm to control the local resolution when the mesh is 

generated for thin solid. Figure 4(a) shows the box window, which is the user-input keyword used for mandatory 

resolution of the mesh whereas Figure 4(b) shows the surface refinement, which is the user-input keyword used to 

improve the mesh resolution within vicinity of the thin solid. Figure 4(c) shows the layer window, which is the 

user-input keyword used to strengthen the new mesh resolution at a distance from the thin object. Surface 

refinement is necessary in order to achieve the desired mesh resolution within proximity of the thin solid, which 

in turn, will increase the accuracy of the solutions achieved using  IBM. The layer window aids in the creation of 

a seamless mesh transition from the thin object's boundaries to the far-field region. The Ubuntu 16.04 LTS 

OS was used to write the codes in FORTRAN. The open-source code VisIt 2.12.3 was used in this work to show 

the majority of the 2-D simulation results. Also, the VisIt 2.12.3 programme can handle massive datasets and aid 

in visualization of complex fluid flows via parallel graphical analysis. 

 

Figure 4: User-input keywords for local DAMR close to the thin object. 

The hybridization of DAMR and IBM was tested using the test scenario below. The proposed algorithm was used 

to create a prototype grid with 30,000 nodes and a revised mesh with 6,400 nodes. For the 2-D nal simulations, 

the mesh refinement was applied using the mesh generator. Figure 5 depicts a mesh that has been fine-tuned 

locally around a thin solid. The major goal is to keep track of the mesh's dynamic mobility while avoiding 

unnecessary computations in a limited section of the computational domain. In the improved mesh, there are 

around 6,400 nodes in the neighborhood of the thin solid, where Δ 0.0000625 st  .  

 

Figure 5: “Illustration of the background mesh and locally refined mesh within vicinity of the rigid thin 

object.” 
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SIMULATION SETUP 

The features of 2D incompressible viscous flow near a thin object were investigated using simulations. As 

illustrated in Figure 6, the computational domains size was 20L £ 15L  and the thin object's length was L . The 

thin object's leading edge was placed at 
( 5,7.5)

 from the inlet. The parameters settings for the flow 

characteristics simulation using IBM are listed in Table 2. A consistent Cartesian grid was utilized, with equal 

length & width 
0.1x y   

 in each cell. The number of nodes was set to 
200 150x yN N  

, and the time 

step was set to Δ 0.005t s . For the initial velocity, it was set to 
1 /oU m s

. The no-slip boundary 

conditions for the computational domain (upper and lower walls) were defined. Following the recommendations 

of [60], the fluid density was fixed to
31.0 /kg m 
 and the (Re) was set to 200. The refined mesh zone has a size 

of 2 1L L , with each cell having equivalent length & width of 
0.00125x y   

. The refined mesh zone has 

a time step of 0.000625 . The inclination of the “rigid thin object was done at 3 different angles of attack (15, 30, 

& 45°). The computational domain’s outlet pressure was set as gradient-free. The thin object was represented by 

21 Lagrangian nodal” points. 

 

Figure 6: Depiction of the utilized computational domain for the simulation of the 2-D incompressible viscous 

flow around a thin solid inclined at an angle of attack, 
( )

. 

Table 2: Simulation parameters. 

Parameter Preliminary mesh Refined mesh 

Number of cells 4. 200 × 150  160 × 40  

/Re UD v  200  200  

Time step, Δt  0.005  0.000625  

Cell size, 
Δ ,Δyx

 0.1  0.0125  

Angle of attack, 
( )o

  
5. 15, 30, 45 6. 15, 30, 45 

 

5. VALIDATION OF THE DAMR-IBM ALGORITHM 

The DAMR-IBM algorithm was validated using the work of [61]  as the benchmark case. The Reynolds number 

(Re) for laminar flow past a cylinder was set at 100. The Re can be calculated depending on the 

cylinder’s diameter D  in 2-D simulations using the relation /Re UD v . Based on the results of 
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the simulation, the coefficient of drag DC
 and coefficient of lift LC

 were determined using 
22 /D D mC F U D

 

and respectively. The integration of the Lagrangian space with the immersed boundary forces yielded the lift 

& drag coefficients. The DAMR-AMR algorithm was also validated by calculating the Strouhal number

( )St
 given by 

  /St Df U
. The pressure interval approach was used to determine the pressure from the fluid 

node nearest to the cylinder's boundary. The Strouhal numbers and the lift and drag coefficients for laminar flow 

around a fixed cylinder at 
Re 100

are shown in Table 3. 

Two sets of results were obtained in this study — the first set pertains to results obtained from the DAMR-IBM 

algorithm whereas the second set represents the results obtained by the OpenFOAM software. The DAMR-IBM 

algorithm clearly obtained similar drag coefficients, Strouhal numbers, and lift coefficients as those obtained by 

[61] and  [62] as well as the OpenFOAM software. Figure 7 shows the variations of the drag and lift coefficients 

at 
Re 100

 and it can be seen that there is very good agreement between the results obtained from the DAMR-

IBM algorithm and OpenFOAM software throughout the simulations.  

 

Figure 7: Comparison of the obtained coefficients lift and drag from AMR-IBM and open-source CFD software 

for 2-D laminar flow nearby a cylindrical fixed object at Re 100 . 

Table 3: Comparison of the obtained coefficients of drag DC
, lift LC , and Strouhal numbers St  from AMR-IBM 

and those obtained the published studies and OpenFOAM software for 2-D laminar flow around a cylindrical 

stationary at 
Re 100

. 

Source 
DC

 LC
 

St  

Present work  3.255 0.9913 0.2997 

[61]  3.22–3.24 0.990–1.010 
0.295–

0.305 

[62] 3.2258 0.98934 0.30061 

OpenFOAM software  3.227 0.9723 0.2985 
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RESULTS AND DISCUSSION  

The DAMR-IBM algorithm was tested for its accuracy and robustness in the simulation of 2-D incompressible 

viscous flows around a thin solid; the outcome of this analysis was analysed and presented in this section. At this 

point, it's worth repeating the goal of this work, which is to design an AMR technique that works for both moving 

and stationary thin solid. The AMR technique is expected to be capable of addressing the interactions of 

deformable structures (both compressible and incompressible) subjected to extreme deformation in 

incompressible flows, as well as resolving the flow characteristics in the boundary layer near the thin object's 

surface. The described DAMR-IBM in this paper is capable of addressing thin object deformations in a cost-

effective way while maintaining high resolutions around the thin object's boundaries throughout simulations; 

hence, the proposed approach is ideal for simulating real-world FSI situations. Mesh layers of different grid sizes 

were generated in the DAMR-IBM algorithm in the layers of boundary where there are large flow gradients, such 

as flow re-attachment and flow separation. The effectiveness of the DAMR-IBM was simulated using 

different algorithms in 3 case scenarios which are “flow around a stationary rigid thin object (simulated with IBM 

with no mesh refinement), flow around a moving thin object inclined at different angles of attack (simulated with 

DAMR-IBM), and flow around a stationary thin object inclined at different angles of attack (simulated with 

AMR-IBM)”.  

6.1 Flow around a fixed rigid thin solid 

The performance of the IBM algorithm (without mesh refinement) in modelling flows around a fixed rigid thin 

solid was focused on this section. The grid size of the fluid is larger than the length of the solid (thin object). 

The velocity contours of the flow around the thin object without mesh refinement are depicted in Figure 8, 

where Figure 8(b) shows a significantly higher pressure near the thin object's leading edge as illustrated by the 

small red region. In contrast, the pressure decreases at the upper surface and trailing edge of the thin object. The 

fluid particles accumulate and move in a different direction when the particles collide with the leading edge of the 

thin solid whereas there is a lower number of fluid particles accumulating at the rear of the thin object.  

Figure 8: (a) Velocity contour and (b) pressure contour for flow around a fixed rigid thin solid obtained using the 

IBM algorithm without mesh refinement. 

 

6.2 Flow around a fixed thin object inclined at different attack of angles  

The algorithm was used in this case to model the flow around a fixed thin solid inclined at 15, 30, & 45 degrees. 

The flow is discovered to be fully developed at 
8t s

. The various attack angles were selected to mimic the 

insect wings flapping scenario. The pressure and velocity contours of the studied flow at 
8t s

 are shown in 
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Figure 9. Owing to the sudden jump in the flow within the computational domain as a result of the inclination of 

the thin object in the freestream direction, there was a dramatic increase in the surface average pressure, causing 

oscillations in the force exerted on the object. As the flow reaches a steady state, there was a decline in 

the average pressure on the surface.  

Figure 9a depicts the velocity field in the computational domain, as well as the velocity field near the thin solid 

tilted at
15o 

. Figure 9 also shows e location of the finest mesh. With the AMR-IBM technique, the 

observed computational time for this test scenario was 2,756.78 s (~45 minutes). But on the IBM with full mesh 

refinement, the observed computational time was 164,101.27 s (~46 h), meaning that the computational time for 

the AMR-IBM technique is about ~98.3 percent of the time it takes to complete full mesh refinement. This test 

scenario demonstrates the effectiveness of AMR in using IBM to compute a solution. In addition, the 

implementation of AMR based on local grid refinement nearby the stationary rigid thin object improves the 

degree of accuracy of the solution obtained using IBM. 

 

(a) 

 

(b) 
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(c) 

Figure 9: Velocity and pressure contours at different inclination angles of attack for flow around a fixed rigid thin 

solid as obtained using the AMR-IBM algorithm: (a) 
15o 

, (b) 
30o 

, and (c) 
45o 

 

Figure 10 illustrates the lift and drag coefficients as a function of time, as calculated using the AMR-IBM method 

and the IBM technique with full mesh refinement. Based on the OpenFOAM-5.0 software, there is a good 

agreement between the results obtained with the AMR-IBM and the IBM technique with full refinement mesh. 

The AMR-IBM approach, on the other hand, is preferable because of its simplicity, which requires no high-level 

computations, thereby saving time. It may be concluded that the AMR-IBM technique is appropriate for solving 

real-world FSI problems. 

 

(a) 
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(b) 

Figure 10: “Variations of the (a) lift coefficient and (b) drag coefficient with time for flow around a fixed rigid 

thin solid at (a) Re 200  obtained using the AMR-IBM algorithm. The lift and drag coefficients obtained from 

the IBM technique with full mesh refinement are plotted for comparison.” 

FSI problems that involve moving objects (where there is a substantial deformation on the thin solid surface) 

requires constant update of the mesh to account for changes in the implicit interface. It is preferable in such 

instances to produce a thin mesh layer near the thin object's boundaries to ensure the maintenance of an optimal 

mesh in the boundary layer at all times. The next section shows the performance of the DAMR-IBM method in 2-

D incompressible V-L flow modelling around moving thin solid.  

 

6.3 Flow around a moving thin object inclined at different angles of attack  

This section evaluates the modelling performance of DAMR-IBM in the simulation of flows around a moving 

thin solid. As in the previous case, the same computational domain was maintained in this case. Similarly, the 

point of origin in the computational domain for the thin object is the same as in the preceding example. Figure 6 

depicts the computational domain while Table 2 presents the employed simulation parameters. No-slip boundary 

constraints were also imposed on the upper & lower walls of the computational domain. The rigid thin object 

(depicted by 21 Lagrangian nodal points) was inclined at 15, 30, & 45 degrees. At the outlet of the computational 

space, the pressure was set to be gradient-free. All the simulations were done at a fixed Re number. The thin 

object's two edges were unbound, allowing it to move around.  

Dynamic changes were noticed on the refined mesh around the thin object's boundaries due to the movement of 

the object. The pressure & velocity contours presented in Figures 11–13 are generated for the incompressible V-L 

flow around moving thin solid for 3 angles of attack at different time steps
( 1.5,3.5,8.0 )time s

. The 

simulations revealed the following motions: (1) thin solid rotation around its gravitational centre, and (2) thin 

solid motion in the fluid field. The thin solid spins and revolves in a clockwise motion as a function of time. As 

the simulation progresses, the thin object is horizontally pushed by the fluid forces, while the forces originating 

from the pressure gap between the lower and upper surfaces pulls up the thin solid. Note that despite the thin 

solid depicting an air-foil in the simulations, it is also capable of representing other objects, such as various types 

of insect wings, minuscule fish fins, and valves of aortic. This study is focused on the thin solid response to the 

fluid forces operating on it. A static Cartesian grid was compute to calculate the flow dynamics while IBM was 

used to interpolate the flow parameters between adjacent cells. The overall force of fluid that acts on the IB was 

computed via extrapolation from the node points and used in the structural dynamics solver as the external force. 
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(a) 

 

(b) 

 

(c) 

Figure 11: “Velocity and pressure contours of the moving thin object inclined at 
15o 

 in the x-y plane at (a) 

(a) 
1.5t s

 , (b) 
3.5t s

 , and (c) 
8t s

 obtained using the DAMR-IBM approach.” 
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(a) 

 

(b) 

 

(c) 

Figure 12: “Velocity and pressure contours of the moving thin object inclined at 
30o 

  in the x-y plane at (a) 

1.5t s
 , (b) 

3.5t s
 , and (c) 

8t s
 obtained using the DAMR-IBM algorithm.” 
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(a) 

 

(b) 

 

(c) 

Figure 13: “Velocity and pressure contours of the moving thin object inclined at 
45o 

 in the x-y plane at (a) 

1.5t s
 , (b) 

3.5t s
 , and (c) 

8t s
  obtained using the DAMR-IBM algorithm” 
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Figure 14 depicts the thin solid position at 15°, 30°, & 45° angles of attack at 
8t s

. Due to variations in the 

angle of attack, there were clear variations in the thin solid position. The lift and drag forces acting on the thin 

object are affected by the angle of attack, which alters its position. Over time, the thin object's rotation around its 

gravitational center will lessen this impact. 

 

Figure 14: Location of the thin object due to differences angle. 

 

CONCLUSION 

The simulation of flows at the FI-interface for thin solid using the DAMR-IBM method with two-stage 

pressure-velocity correction was proposed in this work. high resolution flow characteristics near the thin solid 

surface with expected flow gradients were achieved using local adaptive mesh refinement while maintaining a 

moderate resolution elsewhere in the computational area. In most cases, a very fine mesh is applied throughout 

the computational domain, which is impractical because of the high computational cost. In this study, DAMR was 

integrated with IBM, which reduces the computational cost without compromising the accuracy of the solution in 

simulations of two-dimensional incompressible viscous flows nearby a thin solid. Furthermore, the DAMR-IBM 

developed algorithm addresses the issues concerning mesh refinement in the boundary layer, where thin layers of 

nodes are applied close to the thin object. A uniform Cartesian mesh with relatively wide cells was used 

throughout the computational domain except from the region within proximity of the thin object, which 

significantly reduces the computational cost. The DAMR algorithm is more suitable to resolve flows around thin 

solid compared with static mesh algorithm due to the fact that thin solid tend to deform easily. The 

developed DAMR-IBM outperformed the earlier reported algorithms; hence, the developed algorithm can be used 

to simulate flows around moving and stationary arbitrarily shaped rigid thin solid. The advantages of the 

hybridization of AMR-DAMR with IBM was also evaluated using three different test scenarios in this paper. The 

DAMR-IBM algorithm is advantageous because of its simplicity and lower computational cost compared with 

other numerical models to date. This study can be furthered to other applications that require high-resolution 

simulations such as flows around a thin elastic object or high-performance computing applications that are 

dependent on the parallel scalability (scaling efficiency) of the solver. 
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