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Abstract 

Herein, we develop a new numerical method based on absolution for Singularly Perturbed Boundary potential spline and Shishkin 

mesh discretization to solve singularly per Value Problems with an Uncertain-But Bounded Parameter.  We use the Adman 

decomposition method, a well-known method for solving functional equations nowadays, to solve systems of differential equations 

of the first order and an ordinary differential equation of any order by converting it into a system of differential of the order one. 

Some examples are presented to show the method's ability for linear and non-linear systems of differential equations. Theoretical 

considerations are being discussed, and convergence of the method for these systems is addressed. 

Keywords: parabolic equations, absolute errors, fluid dynamics, fluid mechanics.  

 

Introduction 

Herein, we consider the following singularly perturbed problem [1]; 

−ɛ𝑦′′ + 𝜇𝑓(𝑥)𝑦′ + 𝑔(𝑥)𝑦 = 𝑟(𝑥), 𝑥 ∈ [𝑎, 𝑏] 

Subject to the following boundary conditions, 

𝑦(𝑎) − 𝛼 = 𝑦(𝑏) − 𝛽 = 0 

Where 0 < ɛ ≪ 1 and 0 < 𝜇 ≪ 1 are two small perturbation parameters; 𝑓(𝑥), 𝑔(𝑥) and 𝑟(𝑥) are sufficiently smooth functions 

for𝑥 ∈ [𝑎, 𝑏]; 𝑎, 𝑏, 𝛼, and 𝛽 are real constants. In general, the solution 𝑦(𝑥) may exhibit two boundary layers of exponential type at 

both end points𝑥 = 𝑎, 𝑏. 

Different applications in science and engineering consider these kinds of problems that describe complicated physical and chemical 

models such as heat transfer problems, Navier-Stokes flow with large Reynolds numbers, chemical reactor theory, convection-

diffusion processes, geophysics, aerodynamics, reaction-diffusion processes, quantum mechanics and optimal control, etc [1]. Its 

solution exhibits two layers at the two endpoints of the domain. The nature of the two-parameter problem was asymptotically 

examined by [2]. It was found that layer-adapted meshes have been required to obtain a uniformly convergent method no matter 

how small the perturbation parameter see [3] for more details. 

Many numerical methods have been developed for the solution of two layer boundary value problems, such as described in [4-7] 

for one parameter singularly perturbed boundary value problems and with two small parameters are considered in [8-9], but on a 

Shishkin-type mesh. Vulanovic [10] considered Shishkin and Bakhvalov meshes but assumed 𝜇 = ɛ𝑝+
1

2with 𝑝 > 0. Dag and Sahin 

presented a numerical solution of singularly perturbed boundary value problems, using finite element method [11]. Their collocation 

method was applied with quadratic and cubic B-spline base functions over the geometrically graded mesh of the solution domain. 

Rashidina and Mohammadi [12] considered the self-adjoint singularly perturbed two-point boundary value problems. Ramadan et 

al. [13] developed quinticnonpolynomial spline methods for the numerical solution of fourth order two-point polynomial spline 

methods for the numerical solution of fourth order two-point boundary value problems. A second order monotone numerical method 

was constructed by Gracia et al. [14].The monotone operator was combined with a piecewise uniform Shishkin mesh. Kadalbajoo 

and Yadaw [15] presented a B-spline collocation presented a B-spline collocation method for solving a class of two-parameter 

singularly perturbed boundary value problems. They used B-spline collocation method on piecewise-uniform shown to have a 

uniform convergence of second order. 
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The system principally depends on generating a set of consummations of the arbitrary parameter, and also a unique result is defined 

by carrying out the deterministic solver for each of these consummations. Stein (16) generalized his model which incorporates 

stochastic goods due to neuronal excitations to handle the distribution of post-synaptic implicit confines and used the Monte-Carlo 

fashion for approaching the result. David Edwards (17) developed a multi-region FDM fashion for a particular singularly perturbed 

boundary value problem and this system was grounded on Monte Carlo ways. 

The main donation of this paper is to develop a new spline system grounded on a Shishkin mesh discretization for carrying an 

approximation for the result of two-subcaste boundary value problems. As the anxiety parameter isn't deterministic, thus the interval 

analysis is considered to estimate the result range. The confirmation of the developed solver will be done by comparing the exact 

and the approximate results of Hosts' results. The confluence analysis also is presented numerically and shows that the presented 

system is nearly alternate-order. The paper is organized as follows. 

Derivation of Exponential Spline 

Discredited the solution region Ω = [𝑎, 𝑏] such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁−1 < 𝑥𝑁 = 𝑏. Where 𝑁 is the number of mesh 

points. Let ℎ𝑗 = 𝑥𝑗+1 − 𝑥𝑗, 𝑗 = 1,2,3,⋯ ,𝑁 be the mesh size and the mesh ratio𝜎𝑗 =
ℎ𝑗+1

ℎ𝑗
> 0, 𝑗 = 1,2,3,⋯ ,𝑁 − 1. When 𝜎 = 1 the 

mesh reduces to a uniform mesh, ℎ𝑗+1 = ℎ𝑗 = ℎ. The interpolating exponential spline approximation function can be defined as 

[20]: 

𝑆(𝑥) = 𝑎𝑗 + 𝑏𝑗(𝑥 − 𝑥𝑗) + 𝑐𝑗𝜉𝑗 (
𝑥 − 𝑥𝑗
ℎ𝑗

) + 𝑑𝑗𝜁𝑗 (
𝑥 − 𝑥𝑗
ℎ𝑗

) , 𝑗 = 0,1,⋯ , 𝑁 − 1 

where𝜉𝑗(𝑥) = 2/𝜏
2[cosh (𝜏𝑥) − 1], 𝜁𝑗 = 6/𝜏

3[sinh (𝜏𝑥) − 𝜏𝑥], 𝑎𝑗, 𝑏𝑗 , 𝑐𝑗, 𝑑𝑗  are constants and 𝜏 is a free parameter such that the 

non-polynomial spline reduces to usual cubic spline when 𝜏 approaches to zero [18], which satisfies the following conditions: 

𝑆(𝑥𝑗) ∈ 𝐶
2[𝑎, 𝑏], 

𝑆(𝑥𝑗) = 𝑦(𝑥𝑗), 𝑆
′′(𝑥𝑗) = 𝑀𝑗. 

The algebraic manipulations of Equations yield the following expressions: 

𝑎𝑗 = 𝑦𝑗, 

𝑏𝑗 =
1

ℎ𝑗
(𝑦𝑗+1 − 𝑦𝑗) + (

ℎ𝑗

𝜏sinh 𝜏
−

ℎ𝑗

𝜏2
)𝑀𝑗+1 + (

ℎ𝑗

𝜏2
−

ℎ𝑗

𝜏
coth 𝜏)𝑀𝑗, 

𝑐𝑗 =
ℎ𝑗
2

2
𝑀𝑗, 

𝑑𝑗 =
𝜏ℎ𝑗
2

6sinh 𝜏
(𝑀𝑗+1 −𝑀𝑗cosh 𝜏). 

From the aspect of the first derivative continuity at the mesh points yields the expression for the determination of 𝑆′′(𝑥𝑗)where 

𝑖 = 0,⋯ , 𝑁. We can get the following exponential spline identity relation: 

𝑦𝑗+1 − (1 + 𝜎𝑗)𝑦𝑗 + 𝜎𝑗𝑦𝑗−1 = ℎ𝑗ℎ𝑗−1[𝛼𝑗𝑀𝑗+1 + (1 + 𝜎𝑗)𝛽𝑗𝑀𝑗 + 𝛾𝑗𝑀𝑗−1] 

where 

𝛼𝑗 =
1

𝜏𝑗
2 −

1

𝜏𝑗sinh 𝜏𝑗
, 𝛽𝑗 =

coth 𝜏𝑗
𝜏𝑗

−
1

𝜏𝑗

𝛾𝑗 =
1

𝜏𝑗
2 +

1

𝜏𝑗
(sinh 𝜏𝑗 − coth 𝜏𝑗cosh 𝜏𝑗), 𝑗 = 1,2,⋯

 

Note that, the exponential spline relation is consistent with the standard variable-mesh cubic spline if 𝜏 → 0, hence 𝛼 = 𝛾 =
1

6
, 𝛽 =

1

3
 [19.20].  

 Mesh Selection Strategy 

The domain is Ω = [𝑎, 𝑏] into three sub-domains 

Ω1 = [𝑎, 𝑎 + 𝜔1], Ω𝑐 = [𝑎 + 𝜔1, 𝑏 − 𝜔2], Ω𝑟 = [𝑏 − 𝜔2, 𝑏] 

where the transition parameters are given by: 

𝜔1 = m(
1

4
,
2

𝜑1
ln 𝑁) , 𝜔2 = m(

1

4
,
2

𝜑2
ln 𝑁)

 and 𝜑1 = − max
𝑥∈[𝑎,𝑏]

 𝜆1(𝑥), 𝜑2 = min
𝑥∈[𝑎,𝑏]

 𝜆2(𝑥)
 

where𝜆1(𝑥) and 𝜆2(𝑥) are two solutions of the characteristic equation: 

−ɛ𝜆2(𝑥) + 𝜇𝑓(𝑥)𝜆(𝑥) + 𝑔(𝑥) = 0 
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The quantity 𝜆1 < 0 describes the boundary layer at 𝑥 = 𝑎, while 𝜆2 > 0 characterizes the layer at 𝑥 = 𝑏, and 

𝜆1 =
𝜇𝐵 −√𝜇2𝐵2 + 4ɛ𝒞

2ɛ
, 𝜆2 =

𝜇𝐵 +√𝜇2𝐵2 + 4ɛ𝐶

2ɛ
, where 𝐵 = max

𝑥∈[𝑎,𝑏]
 𝑓(𝑥) 

We take 𝑁/4,𝑁/2 and 𝑁/4 mesh points, respectively in Ω𝑙, Ω𝑐and Ω𝑟. Denote the step sizes in each subinterval by ℎ1 =
4𝜔1/𝑁, ℎ2 = 2(𝑏 − 𝑎 − 𝜔1 −𝜔2)/𝑁and ℎ3 = 4𝜔2/𝑁, respectively. Accordingly, the resulting piecewise-uniform Shishkin 

mesh is represented by: 

ℎ̌ =

{
 
 

 
 ℎ1 =

4𝜔1
𝑁

𝑥𝑗 = 𝑥𝑗−1 + ℎ1;  for 𝑗 = 1,2,⋯ ,𝑁/4,

ℎ2 =
2(𝑏 − 𝑎 − 𝜔1 − 𝜔2)

𝑁
𝑥𝑗 = 𝑥𝑗−1 + ℎ1;  for 𝑗 =

𝑁

4
+ 1,⋯ ,3𝑁/4,

ℎ3 =
4𝜔2
𝑁

𝑥𝑗 = 𝑥𝑗−1 + ℎ1;  for 𝑗 =
3𝑁

4
,⋯ , 𝑁.

 

Interval and Sensitivity Analysis 

The interval analysis can be used as a descriptive measure of query in quantitative values. Hence, the anxiety parameter isn't 

deterministic; the result has to be defined as a range grounded on the interval of the parameter. Accordingly, the upper and lower 

bounds of the anxiety parameter can be written as 

ɛ̅ = ɛ𝑐 + Δɛ, ɛ = ɛ𝑐 − Δɛ 

Where   ɛ̅ is the upper value, ɛ is the lower value and ɛ𝑐  is the central value. Then the fluctuation range of solution could be 

predictable. Understanding measures can be conducted using different techniques for example One-at-a-Time Sensitivity 

Measures(±𝑆𝐷), the Sensitivity Index (SI), the Importance Index (II), Differential Sensitivity Analysis (PD), etc. We estimated the 

sensitivity measures using the following methods One-at-a-Time Sensitivity Measures (±SD) , the Sensitivity Index, and the 

Differential Sensitivity Analysis.  

Numerical Example 

We consider the following reaction-diffusion problem;  

−ɛ𝑦′′ + 𝑦 = cos 𝜋𝑥, 𝑥 ∈ [0,1], 𝑦(0) = 𝑦(1) = 0 

Solution is given by: 

𝑌 = 𝑐1cos 𝜋𝑥 + 𝑐2e
𝜆1𝑥 + 𝑐3e

−𝜆2(1−𝑥)

𝑐1 =
1

ɛ𝜋2 + 1
, 𝑐2 = −𝑐1

1 + e−𝜆2

1 − e𝜆1−𝜆2
, 𝑐3 = 𝑐1

1 + e𝜆2

1 − e𝜆1−𝜆2
, 𝜆1,2 = ∓

1

√ɛ

 

The estimated maximum error 𝐸𝑁 and the rate of convergence 𝑟𝑁 are computed by the formulas: 

𝐸𝑁 = max
0<𝑗<𝑁

 |𝑌𝑗 − 𝑦𝑗|, 𝑟𝑁 = log2 ∥∥𝐸𝑁∥∥ − log2 ∥∥𝐸2𝑁∥∥ 

Table 1 shows the maximum absolute error and the order of confluence for colorful values of the anxiety parameterɛ. The results 

attained using the current system are veritably accurate compared with the logical result and give the order of confluence 2 indeed 

for small values of ɛ, and it's shown in Figure 1 that the exact and the approximate results are veritably near. Likewise, since the 

problem is singularly perturbed its result possesses layers along the boundary of the sphere which is passed in the form of sharp 

boundary layers in Figure 1 at x =0,1 . 

Table 1. Maximum absolute errors and the order of convergence for = 10−𝑘. 

 𝑘 = 8 𝑘 = 10 𝑘 = 12 𝑘 = 14 

𝑁 𝐸𝑁 𝑟𝑁 𝐸𝑁 𝑟𝑁 𝐸𝑁 𝑟𝑁 𝐸𝑁 𝑟𝑁 

27 9.49E − 04 1.64 8.64E − 04 1.80 8.57E − 04 1.82 8.56E − 04 1.82 

28 3.03E − 04 1.55 2.47E − 04 1.85 2.41E − 04 1.89 2.43E − 04 1.89 

29 1.03E − 04 1.44 6.91E − 05 1.82 6.56E − 05 1.93 6.52E − 05 1.94 

210 3.78E − 05 1.30 1.93E − 05 1.75 1.72E − 05 1.94 1.68E − 05 1.96 

211 1.51E − 05 1.24 5.64E − 06 1.64 4.48E − 06 1.93 4.34E − 06 1.98 
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Figure 1. Deterministic Case: exact and approximate solutions for ɛ = 10−14, = 512. 

 

Figure 2. Random Case: Mean of the solution of the proposed method and the MCS results, ɛ = 10−14, = 256. 

 

 

Results 

 ɛ = 10−14, = 256. The upper, centre and lower solutions of the two methods are very close which shows the accuracy and 

validation of the proposed method. Further sensitivity measures have been conducted such as the SI method gives an index of 

value 0.0039%, which is very small. The differential method indicates that the sensitivity coefficient is also very small by value 

1.34E − 15 at the mid-point of the scheme. Therefore, the solution is not sensitive to the changes in the perturbation parameter. 

 

Conclusion 

A numerical system grounded on an exponential spline with Shishkin mesh discretization is combined with an interval analysis 

perspective to estimate the range of the result for the singularly perturbed two-point boundary value problems with uncertain 

parameters. Hosts are used to prove the confirmation and the delicacy of the proposed system. Perceptivity analysis has been 

conducted using different styles and it's a plant that the result isn't sensitive to the anxiety parameter. 
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