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Abstract: This study on Autoencoders focuses mostly on the challenge of dealing with 

unpredictability in neural networks. Recently, auto encoders and deep stack of autoencoders 

(DSAE) have found applications in machine learning.Recent years have seen significant 

progress in solving the challenges of decreasing dimensionality and data compression. 

Autoencoders, like conventional neural networks, were deterministic architectures that 

struggle with coping with data uncertainty, despite their importance in many practical 

applications. In this research, we provide a fuzzy method for automatically incorporating 

qualitative fuzzy data information into the input layer, hence lessening the degree of 

ambiguity in Autoencoder stacks. To this end, we may add a fuzzy layer-0 to our 

Autoencoder stack and use it to supplement the crisp data set with some fuzzy information. 

The method is potentially applicable to any neural network design since it is transparent for 

both the network and the user. The provided findings are quite promising, and represent a 

significant advancement, particularly when working with noisy data.. 

Keywords: Autoencoders ,Deep Stacks, fuzzy, convolutional neural networks 

 

Introduction 

Over the past few decades, the "dark side of dimensionality" [1, 2] has become a pressing 

issue in a number of scientific and technological disciplines. Many disciplines are beginning 

to recognise the value of dimensionality reduction methods in light of the growing 

significance of big data and real-time applications. Neural networks have been essential in 

this field ever since Autoencoders were developed as a tool for feature extraction [3, 4], data 

compression [5, 6], noise reduction [6, 7], and so on. The background and evolution of 

autoencoders [10] are briefly covered in [8], [9]. The mathematical foundations of both linear 

and non-linear autoencoders are outlined in [8]. Several state-of-the-art results have been 

accomplished since the introduction of Deep Autoencoders [11–13]. Even though 

mechanisms for stochastic behaviours are widely used, data uncertainty remains a significant 

challenge for neural networks. As is the case with the vast majority of current neural network 

and deep neural network architectures, uncertainty is a problem of enormous significance for 

real-world circumstances, especially when training and testing are independent and sequential 

activities. It is usual for performance and accuracy to decline when dealing with 

circumstances marked by large amounts of noise and ambiguity, or when testing data 

significantly deviates from training data. Books on this subject have been published by a 
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number of writers. When dealing with ambiguous or noisy data, dropout techniques are often 

the best option [14, 15]. Gal et al. [16] expanded on this concept and used it as a Bayesian 

Approximation to define the uncertainty of deep learning. To demonstrate the efficacy of 

their methods, they employed the MNIST database of handwritten digits [17, 18]. A novel 

approach to learning a distribution of probabilities was developed by Blundell et al. [19], 

which not only obtained results competitive with dropout but also demonstrated how the 

acquired uncertainty aided in improving generalisation. As an alternative to dropping out and 

batch normalisation, Li et al. [20] presented Random Gradient Markov Chain Monte Carlo 

for training Deep Neural networks. In addition to confirming the improved identification 

accuracy, they also confirmed the approach's scalability. When it comes to dealing with data 

uncertainty, fuzzy systems excel as both universal approximators and reliable instruments. 

The first practical implementations of neural networks and fuzzy systems emerged about 30 

years ago [21]. Despite the current popularity of deep neural networks, the full potential of 

integrating the two concepts has yet to be explored. The authors of this research suggest a 

hierarchical fused architecture to address the limitations of neural network systems based on 

a single representational model. Both the fuzzy plane and the network's neural layer had the 

same extraction design. They demonstrated that a non-sequential combination of fuzzy and 

neural network systems may provide significantly improved findings for segmentation in 

medical pictures. This joint-learning approach shows promise in a wide range of network 

architectures and computational settings. We propose an extended structure for a set of 

Autoencoders that uses the well-known qualities of fuzzy systems for handling data 

uncertainty to enhance the reduced form of the input, particularly when working with noisy 

data. To do this, the input to the Autoencoder stack is "fuzzed" by adding a fixed number of 

new dimensions. The improved method is compatible with the standard Autoencoder stacks 

and may be adjusted to suit a wide variety of other factors. 

The three phases of fuzzy system design are fuzzification, inference, and defuzzification. To 

create tags for fuzzy sets, fuzzification methods take the input and transform it into 

meaningful words and phrases. A fundamental part of every inference system is its input-

output rule base. The set of rules is a normalised set of input/output combination and 

membership functions.All the results from the inference system are converted into a machine-

readable format by using defuzzification. 

The original fuzzy system has spawned several offshoots. Neuro-fuzzy systems, fuzzy 

clustering, fuzzy logic image processing, etc., are all examples. Fuzzy logic was further 

developed into neuro-fuzzy logic with the advent of neural networks. Computing difficulties 

like as uncertainty, imprecision, and ambiguity may be effectively resolved and evaluated 

with the help of fuzzy logic. But methods like neural networks can only process data that is 

both consistent and well-defined. Their primary shortcoming is that fuzzy logic restricts how 

much data can be stored. Neuro-fuzzy is able to deal with complex calculations because to its 

foundation in established procedures. Since neuro-fuzzy systems rely on very specific inputs 

and outputs to function, it has been difficult to apply them to problems with high input-output 

dimensions. A number of researchers [8, 12] recently created and are further refining deep 

neural network techniques to solve the issue of picture categorization in AI. Irregular and 

imprecise input is common in many real-world circumstances, yet neural networks can't 

handle it. To cope with ambiguity and uncertainty, neuro-fuzzy logic methods have been 

proposed. 

Neuro-fuzzy logic makes use of white-box techniques. These techniques not only enhance 

comprehension but also promote interaction between the fields of mathematics and language 

structure. However, their applicability has been constrained by finite rule and 

datadimensions, making them unsuitable for use in the design of extremely complex systems. 
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These limits have proved to be a serious obstacle in several highly complex real-world 

contexts. 

This reduces the system's openness and generalizability. As the number of input parameters, 

datasets, or input-output combinations and mathematical connections grows, the constraints 

of the input-output dimensions for a fuzzy or neuro-fuzzy system must be tightened 

accordingly. 

The idea of merging hierarchical systems with fuzzy logic to solve the difficulties of 

generalisation, transparency, and dimensionality has been proposed by a number of scientists. 

Instead of a single, large system, this one will be broken up into smaller, low-dimensional 

subsystems that interact in a hierarchical fashion. The hierarchical system is described by a 

model with many inputs and a single output. Without compromising on generality, MIMO 

systems may be decomposed into a large number of smaller MIMO subsystems. Hierarchical 

systems are often used for a variety of purposes, including classification, grouping, planning, 

tracking, etc. The limitation of the fuzzy logic rule-base when dealing with large image 

datasets is addressed in this research via the introduction of a technique for creating 

hierarchical fuzzy systems that makes use of picture thresholding. 

The size of the system's rule base may be reduced using this way without compromising 

performance. 

Counting the number of rules in a system has traditionally been a stand-in for its level of 

complexity. Because more inputs necessitate more rules, system complexity increases as 

input counts rise. Due to this limitation, fuzzy systems cannot be employed in high-

dimensional, practical applications, such as those requiring very large images. The total 

number of rules increases as a result of this because of the positive correlation between the 

size of the system's input parameters and its complexity. 

In recent years, the hierarchical fuzzy system has shown effective in helping researchers and 

practitioners overcome some of the drawbacks of more conventional fuzzy and neuro-fuzzy 

approaches. The authors have not come across any other work that synthesises small data 

subsets from large image datasets using hierarchical fuzzy logic. Several researchers [1] have 

demonstrated that the hierarchical structure leads to fewer rules and thus makes the system 

simpler than conventional fuzzy logic. The calculation time and complexity are both reduced 

by the hierarchical system due to the fine-tuning of the quantity of rules required for each 

fuzzy logic unit. This motivates us to suggest hierarchical fuzzy as a viable approach to 

solving problems with large image collections. 

 

Neural networks are one example of a current-day technique that has the limitation of only 

being able to process input that is known and definite; they cannot handle material that is 

unknown, imprecise, or ambiguous. The ability of deep learning algorithms to handle real-

world applications, some of which are critical to safety and security, is limited as a result of 

these limitations on system efficiency and output. This requires better data visualisation, 

which in turn requires greater data collection, analysis, and simplification. Problems with 

transparency are common in deep learning applications. This lack of transparency makes the 

data less accessible and useful to other users. In light of these limitations, fuzzy logic 

provides a strong answer and more precise assessment of human interpretations by factoring 

in uncertainty, imprecision, and ambiguity. 

There is currently no well-established procedure for creating type-1 and type-2 fuzzy 

inference systems with a hierarchical structure. In this study, a hierarchical technique is used 

to analyse type-1 and type-2 fuzzy inference systems. Type-1 and type-2 fuzzy inference 
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systems use distinct notations for rules and membership functions. Type-1 fuzzy inference 

systems have more precise membership definitions than type-2 fuzzy inference systems. Due 

to its enhanced flexibility in a wide variety of contexts, type-2 fuzzy excels above type-1 

fuzzy. Since there are so many design parameters in a type-2 fuzzy [9], the type-reduction 

method is required during the defuzzification phase, and the resulting computation time is 

quite long. Advanced features for paying members. Type reducer defuzzification is used to 

create the outcome by averaging the intervals at each iteration. Type-1 fuzzy inference is the 

subject of this investigation, however the approach used might easily be applied to type-2 

fuzzy inference with minor adjustments. 

 

Literature Review 

Qingshuo Zhang et.al.,(2021) While the extreme learning machine-based multi-label 

learning algorithm has strong efficiency and generalisation abilities, its classification power is 

low because it does not take into account the relationship between features and labels. In light 

of this, this work proposes a novel method for multi-label classification: the kernel extreme 

learning machine autoencoder (KELM-AE-fuzzy). The efficiency of the proposed approach 

is confirmed by experimental results showing that KELM-AE-fuzzy outperforms existing 

multi-label algorithms on a number of different multi-label datasets. 

Kutay Bölat et.al.,(2020) The recent breakthroughs of Deep Learning (DL) across a wide 

range of application domains have spawned a slew of "how" and "why" inquiries. If DL 

approaches are interpretable, they should be able to give some level of explanation, allowing 

us to answer these issues. In this study, we offer a DL framework for the development of a 

new DL based Fuzzy Classifier (FC) by combining the disentanglement and linguistic 

representation benefits of -Variational Autoencoder (VAE) and Fuzzy Sets (FSs). We begin 

by outlining our design process for building the DL-FC, which consists of the encoder layer 

of -VAE, a Fuzzy Logic System (FLS), and finally a softmax layer. The -VAE is taught to 

extract meaning from high-dimensional datasets. Clustering the -VAE's latent space allows 

for the extraction of FSs. The antecedents of the DL-trained FLS are defined using the FSs.  

Bruno Costa et.al.,(2019) In this study, we focus on Autoencoders and the challenge of 

dealing with uncertainty in neural networks. There has been a lot of interest in, and some 

promising outcomes from, applying the relatively new ideas of "Autoencoders" and "Deep 

Stacks of Autoencoders" (DSAE) to the challenges of reducing dimensionality and data 

compression. Auto encoders are predictable structures that, like standard neural networks, 

aren't great at handling data uncertainty, despite the fact that this is a crucial part of many 

practical applications. In this research, we present a fuzzy method for lowering the 

uncertainty in Autoencoder stacks by the incorporation of a layer of automatically generated 

qualitative fuzzy data information. In particular when confronting noisy data, the findings 

provided here are quite promising and represent a significant improvement. 

Yevgeniy Bodyanskiy(2018)  In this paper, we present a neo-fuzzy neuron-based 

autoencoder. Its learning process was also optimised; it makes advantage of the quadratic 

criteria. It's feasible to integrate such systems into an existing deep learning infrastructure. 

The proposed autoencoder features a faster learning rate and fewer tuning parameters than 

popular "bottle neck" autoencoders. The usefulness of the suggested strategy has been shown 

using a variety of benchmarks and real-world data sets. 

Hierarchical Fuzzy Systems 

The entities in a hierarchical system are positioned "above," "below," or "on the same plane 

as" one another, as defined by the wiki. When the dimensions and amount of the dataset are 
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enormous, it is more challenging to find a solution to a complex issue utilising a fuzzy or 

neuro-fuzzy approach. One common method for dealing with this issue is to partition the 

system to individual subsystems and arrange them in a particular fashion, where each 

component is defined by a fuzzy system. These kinds of arrangements, known as 

"hierarchical fuzzy systems" [2], seem to be the most useful and productive. 

 

Figure 1. Cascaded structure of hierarchical systems 

Some scientists have found that adding a hierarchical system on top of fuzzy logic improves 

the accuracy of their findings. Hierarchical fuzzy systems have several applications, 

including classification, grouping, planning, tracking, etc. MISO stands for "multi-input, 

single-output," which describes the system, however larger MIMO systems may be 

partitioned into many smaller MISO subsystems. The inputs themselves are made available to 

the lowest level of the hierarchy, while the subsequent levels are connected to both the 

preceding level's output and the inputs themselves. Depending on the underlying structure, 

the hierarchical fuzzy may be defined at several levels of detail. Each level has many fuzzy 

logic units.Incremental, aggregated, and cascade approaches are the three most common ways 

to handle hierarchical structures. As the following structures consist of multiple stages, they 

are often referred to as "multi-stage structures." Assume that the parameters for each level are 

determined by a single fuzzy system, and that the output from one level is used as input for 

the next. To maintain the system's precision, it's best to give first thought to the most 

important inputs and then to the less important ones. The tiered hierarchy is shown in Fig. 1. 

 

Autoencoders 

The Autoencoder is an example of neural network whose output is a faithful representation of 

its input. Its architecture consists of a single input layer, a single hidden layer, and a single 

output layer. There are often fewer nodes in the hidden layer than in the input and output 

layers. Both the input and output layers are of same size. Figure 2: Autoencoder Schematic. 
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                                        Figure. 2. Representation of a traditional Autoencoder 

Among the many unsupervised learning-based applications for autoencoders are extraction of 

features, reducing dimensionality, and data compression. The objective is to produce as near 

to the input as possible from the compressed representation. Designing deep Autoencoder 

networks requires stacking, which our architecture makes easy [11, 23]. For guided and semi-

supervised learning, a sequential layer may be added, or it can be utilised as part of an 

additional structure, such as a classifier. 

 

Deep stacks of Autoencoders 

When the outputs of one layer of a neural network are completely linked to the inputs of the 

next layer, we get what is called a deep stack of autoencoders [6]. Autoencoder stacking may 

be accomplished in a manner very similar to that of RBM stacking [11]. Each stacked 

Autoencoder may be trained independently in an unsupervised fashion, and together they can 

create additional non-linear layers. Figure 2 depicts the first step of the stacking process, 

which is training a single Autoencoder. Figure 3 depicts the structure after training, when the 

decoder component may be discarded. A freshly trained Autoencoder's hidden layer may be 

used as input for a subsequent Autoencoder; this allows the characteristics learnt in a lower-

dimensional dataspace to be transferred to a higher-dimensional one. As can be seen in 

Figure 3, this novel Autoencoder is taught independently. This procedure is repeated with 

each successive buried layer containing fewer units than its predecessor. 
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                                                     Figure. 3. Process of stacking Autoencoders 

Conclusion 

In this paper, we provide a new design for HFSs that combines a fuzzy auto encoder with a 

fuzzy partition. The method generates all of the fuzzy sets and fuzzy rules automatically, 

beginning with a rule set of zero. The input data's distribution characteristics may be more 

accurately reflected with the use of a refined method for standardising box plot data. The 

HFS is gradually trained over time using a fuzzy auto encoder, which ensures the efficacy of 

the hidden layer variables and provides interpretability. HFS simplifies matters by cutting 

down on the number of rules and complexity often associated with fuzzy logic systems. We 

put the proposed HFS through its paces on three separate sets of regression data. 
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