
DOI : https://doi.org/10.56452/7-5-204 

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022) 

International Journal of Mechanical Engineering 

1784 

ISSN: 0974-5823   Vol. 7 No. 5 May, 2022 

International Journal of Mechanical Engineering 

Graphics Processor Unit-Based Real-Time 

Reconstruction of Sensitivity-Encoded Radial 

Magnetic Resonance Imaging 
 

Neha Bhatt 

Asst. Professor, School of Computing, Graphic Era Hill University,  

Dehradun, Uttarakhand India 248002 

 

 

Abstract: Clinical uses of magnetic resonance imaging (MRI) have contributed to an 

increase in the difficulty of image reconstruction. However, a speedy computational method 

is required in order to diagnose and treat the condition. The advent of modern, competitive 

designs for graphics processing units (GPUs) has made high-performance parallel processing 

accessible and appealing to regular consumers. This has made it possible to compute 

massively parallel reconstruction problems at commodity costs. The reconstruction of an 

MRI using artificial intelligence (AI) places a larger load on graphics processing units 

(GPUs) due to the computations that must be performed in order to complete the task. This 

study was conducted with the intention of producing a comprehensive resource on the image 

reconstruction methods that may be used by the MRI research community. The resource will 

focus on GPU (Graphical Processing Unit) computation 

Keywords: Graphics processing unit (GPU); magnetic resonance imaging (MRI); 

reconstruction 

 

Introduction 

When working in an MRI environment, medical staff would be subjected to high levels of 

magnetic field variations (up to 100 T/s in the range of frequencies 50-5000 Hz are 

generated) as well as powerful quasi-static magnetic fields. This could expose them to levels 

of magnetic field variation that could be harmful. Moving through magnetic fields may 

increase a person's exposure to extremely low frequency electromagnetic fields (ELF). This is 

because moving through magnetic fields can create rates of change in the magnetic field that 

can reach up to 20T/s in the frequency range of 0.1-50 Hz. Numerous studies [1-3] have been 

prompted by people's concerns about the biological implications of these interactions. When 

individuals in employment make continuous motions with their body, strong magnetic fields 

have the potential to cause huge induced currents [1]. A maximum permitted induced current 

density (J) of electric field in the body is often specified by both international and national 

rules governing exposure to ELF radiation. In order to accurately explain the boundaries of 

any discovered biological repercussions, it is essential to have the capability to monitor the 

induced electricity inside the body at a high spatial resolution. Because it is not possible to 

test these generated currents or electrical forces directly, the only method that can be used to 

determine exposure levels and ensure compliance with standards is computerised modelling 
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of the induced currents for specific applied fields. This is the only method that can be used. 

Examining these biological consequences via the use of numerical simulation is a strategy 

that is both time and money efficient. When attempting to estimate the size of the generated 

electric fields for simple or regular geometries or for conductivity distributions that are 

homogenous, an easy analytical procedure might be of great assistance. Even though there 

are many different numerical simulation packages available, such as Finite Difference Time 

Domain (FDTD) and Transmission Line Method (TLM), neither of these approaches is ideal 

for solving extremely low frequency problems, such as those associated with human motion 

and rotation near magnets [2]. Even though there are many different numerical simulation 

packages available, neither of these approaches is ideal for solving extremely low frequency 

problems. You might utilise a form of pseudo-static Finite-Difference (FD) approximation 

rather than FDTD. This approximation is based on the assessment of nodal potentials and 

connected admittances [3]. For the purpose of organising the data in preparation for 

calculation, this FD approximation makes use of a very large number of cubic cells. Because 

of the length of the calculation durations, putting such a computational instrument into 

practise might be challenging. It is important to calculate induced electric fields at various 

sites of movement at different periods in order to conduct an analysis of the movements of 

the body throughout the course of a certain amount of time. On a computer with two cores of 

processing power, a single motion calculation for a human head model with a precision of 

three millimetres and sixty-five hundred thousand voxels takes approximately five hours, and 

achieving convergence requires one thousand iterations. To investigate a typical body 

motion, such as the rotation of the head at an average angular velocity of /2 rad/s for one 

second, however, around 45 simulation frames are required. Because of the amount of 

processing time needed to reproduce many of the normal body movements associated with 

occupational workers, doing research on the consequences of modifying MRI scanner 

hardware is not a practical option. The General Purpose Graphics Processing Units (GPGPU) 

hardware acceleration, on the other hand, is a solution that fits in well with the quasi-static 

FD approach. In this study, we demonstrate how a single graphics processing unit (GPU) 

from NVIDIA may be used to replicate the effect that a powerful magnetic field has on the 

behaviours of workers in a variety of different types of businesses. The first example takes 

around eight minutes to duplicate head rotation motions at four different magnetic field 

strengths, but the corresponding CPU version would take more than three hundred thirty-six 

minutes to complete the task. The end result is a decrease in processing time that is more than 

40 times faster. In the second illustration, a person is seen being dragged towards a 7T 

magnet. In this particular project, the torso model consists of close to 8 million individual 

cells and must be completed using 10,000 iterations. It is possible to get a speedup of increase 

to 27 times in comparison to the CPU. 

Rapid or Sparse MRI 

Researchers have been looking for feasible alternatives to increase the speed of MRI by 

sampling the k-space at a rate lower than the Nyquist rate, while maintaining the same level 

of picture quality despite the inherent limitations of the technique. However, in order to 

violate the Nyquist requirement for signal/image sampling, undersampling in k-space that is 

caused by periodic interleaving is necessary. Aliasing artefacts will be produced in the 

reconstructed signal or picture as a consequence of this. According to the Shannon-Nyquist 

theorem, which is generally followed by all signal or picture collecting systems, the sampling 

frequency must be at least twice as high as the highest frequency contained in the signal (the 

Nyquist rate). This is the minimum requirement for the sample frequency to meet. This 

approach, which converts analogue signals to digital ones and is used in every piece of 

consumer gear, every piece of medical equipment, and every radio receiver on the market 
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today, results in an enormous amount of data being dumped. As long as the natural signals or 

pictures are represented on an appropriate basis, compression may be applied to nearly any 

sort of natural signal or image. This indicates that just a few number of non-zero big 

magnitude coefficients need to be employed in order to accurately characterise the energy of 

the whole signal or picture. After applying the appropriate transformation to the signal or 

picture, the vast majority of the coefficients may be ignored. Lossy compression methods, 

such as JPEG-2000, are based on this basic idea as their foundation. In other circumstances, 

the difficulty is in simply obtaining access to the relevant information. The above raises an 

obvious follow-up question: is it not possible for us to reconstruct a signal or picture from 

just a few encoded measurements if we gather all of the samples and then toss away the 

majority of them during reconstruction?? 

i) It is suggested to correctly recover a single-slice MR image from significantly 

undersampled observations using a Hidden Markov Model-based wavelet support detector.. 

 ii) For the purpose of estimating multi-slice MRI missing data in k-space, a unique 3D 

interpolation approach is presented..  

iii) To take advantage of the information redundancy in multi-slice MRI data at the wavelet 

levels, we designed a forest sparsity based joint CS reconstruction model.  

iv) We developed a completely calibration-free joint CS reconstruction model that can take 

use of the wavelet and spatial sparsity of multi-slice pMRI data, and we validated and tested 

it on real-world multi-slice pMRI datasets. For the purpose of establishing the suggested CS 

reconstruction model's clinical viability, it is also implemented in a CPU-GPU setting. 

 

Literature Review 

Chong Ma ET.AL.,(2022) Because of the high risk associated with brain tumours, receiving 

a timely diagnosis and treatment is of the highest significance. When it comes to segmenting 

the cancer sub-regions of the multi-modal brain tumour MRI, the performance of the 3D 

convolutional neural network is superior to that of the conventional 2D convolutional neural 

network. The method, taken as a whole, makes it easier to extract more contextual 

information, which, in turn, helps with the accurate segmentation of the brain tumour into its 

component pieces. The author of this study suggests employing group convolution rather than 

traditional convolution as a means of significantly cutting down on the amount of memory 

that is required in order to optimise the flow of information between the many components 

that are connected by the multi-fiber unit. The experiment uses the cross-GPU 

synchronisation normalisation strategy in order to remedy the subpar segmentation effect 

generated by the 3D convolutional neural network as a consequence of the low batch value 

and the inability to forecast the gradient direction. This is done in order to remedy the subpar 

segmentation impact produced by the 3D convolutional neural network. This is done in order 

to fully grasp the advantages that may be gained from the computer hardware that is now 

accessible. In the end, we changed the activation function that had been used before to one 

that was superior in terms of its ability to segment. The experiment described in this paper is 

verified by utilising the publicly available dataset of brain tumours known as Brats2018. The 

average Dice value of the revised model is 89.79% for the overall brain tumour region; this 

value is 85.59% for the area that contains the tumour core; and this value is 79.83% for the 

region that contains the cerebral tumour augmentation. When compared to earlier iterations 

of segmentation models, the training period for this experiment, which lasted 321.89 minutes, 

is relatively short. 
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Chi Zhang et.al.,(2020) Reconstruction accomplished via the use of physics-guided deep 

learning (PG-DL) has developed into a powerful method for rapid MRI. However, 

widespread use of PG-DL on 3D non-Cartesian MRI is still in its infant stages. This is 

primarily because of limitations in GPU hardware. Within the scope of this investigation, we 

use PG-DL to a large-scale 3D kooshball coronary MRI and make use of a wide range of 

memory-efficient techniques. To begin, we implement a recently proposed strategy for 

keeping GPUs on a single unrolled stride at all times. After that, a Toeplitz approach is used 

in order to properly depict the multi-coil encoding operator. Then, we get rid of the 

requirement for coil compression by distributing the data consistency operations that require 

the most memory across several GPUs, which enables iterations of the conjugate gradient. In 

conclusion, mixed-precision training is used in order to further reduce the need of using one's 

memory.Our research has shown that this combination of techniques produces the best results 

when it comes to training high-quality PG-DL reconstruction for 3D kooshball trajectories. 

This discovery suggests that this combination of methodologies is the best option for teaching 

high-quality reconstruction. 

Dushyant Sahoo et.al (2018) In recent years, there has been a rise in curiosity about resting-

state functional magnetic resonance imaging (MRI), a technique that enables researchers to 

evaluate the functional connectivity throughout the whole of the brain. In order to examine 

the dynamics of functional connectivity, this approach is being used more and more, 

particularly for the goal of identifying individual biomarkers. On the other hand, there are 

major barriers to overcome as a result of the high amounts of background noise that are 

present in each every fMRI scan. In this article, we propose using Granger causality patterns 

in order to examine the dynamics of fMRI among people. This approach is able to 

simultaneously derive population causality patterns that are more resistant to noise while also 

capturing the organisation of the brain at the individual level. We construct an efficient 

method for finding shared causation patterns by evaluating the rs-fMRI data of one hundred 

people who are not linked to each other who took part in the Human Connectome Project. We 

then demonstrate the method's effectiveness.. 

 

 

Figure 1: Multi-slice pMRI data. (a) Real and imaginary parts of complex Knee MRI data. (b) 

Magnitude of complex multi-slice Knee pMRI data (Source: www.mridata.org) 

http://www.mridata.org/
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Proposed Method 

By capitalising on similarities that occur simultaneously in slice and coil direction of 

multislice pMRI data, the fundamental objective of our research is to improve the quality of 

parallel MRI reconstruction from severely undersampled observations. This will be 

accomplished by using multislice pMRI data. The method that has been developed involves 

two stages: (a) k-space interpolation, and (b) calibrationless joint sparsity. These stages are 

used to reconstruct CS pMRI without the need of calibration. When it comes to interpolation, 

we make advantage of k-space redundant data along the slice-select axis. In addition, there 

are overlaps inside only one coil, across coils, and between slices of the 2D data. These 

overlaps may be found in all three locations. It is feasible to analyse tree sparsity by 

transforming coil data into an image and representing it using the wavelet domain. This may 

be done in one of two ways. A forest may be represented as a collection of wavelet trees that 

are connected to one another and consist of different coils and slices. 

 

 

Figure 2: Graphical representation of the propose non-uniform undersampling scheme for 

multi-slice pMRI data 

 

These data sets are comprised of MR images that are of a complex character. In Dataset I, 

there are eight channels of genuine knee data that were sampled on a 320320172 Cartesian 

grid. In Dataset II, there are fifteen channels of real knee data that were sampled on a 

76877031 grid. Both of the datasets, which contain authentic k-space information, are 

subjected straight away to undersampling. We handle the real and imaginary portions of the 

data individually during the iterative reconstruction. This results in a large collection of 

reconstructed pictures that can be used to assess the correctness of the approach and compare 
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it to other methods. Real MR images are complicated data, thus we process them separately 

during the iterative reconstruction. At each of the four levels of decomposition, we put into 

action a sparsifying transformation that makes use of the Daubechies wavelet (db2). Because 

the majority of MR images are piece-wise smooth, the 'db2' wavelet could be a good choice. 

Higher order wavelets require more computation, but they do not significantly improve the 

quality of the reconstructed image. On the basis of study and testing [18, 52], the parameters 

for regularisation have been fixed in stone. These parameters include 1 = 0.001 and 2 = 

0.035. The SNR, MSSIM, and FSIM of Dataset I reconstructions are shown in Figures 5.6 for 

a range of undersampling percentages. According to our findings, the performance of 

ESPIRiT is superior than that of SPIRiT and CS-SENSE, which are two additional auto-

calibration approaches. The recommended method offers an advantage over the ESPIRiT in 

terms of performance since it is superior by a margin of 1.5 dB on average,the proposed 

technique could also end in an increase of 0.5–1 dB in SNR. Alterations of a positive nature 

may also be seen in the FSIM. Despite this, both the PLORAKS and the proposed offer 

superior performance in terms of how similar their structures are to one another.

 

Figure 3: Reconstruction performance in terms of SNR for different datasets under different 

undersampling ratios 

 

Parallel Implementation in CPU-GPU Environment 

To solve the overall reconstruction problem, we break it up into smaller, more manageable 

pieces that can be run in parallel on multi-core machines. For example, in order to perform 

the 58 CS reconstruction problems in parallel, Dataset I (320 320 8 172) was split into two 

halves. First and last parallel subproblems take into account data of size (320 320 8 2), while 

the remaining 56 parallel CS reconstruction subproblems take into account data of size (320 

320 8 3). These 4D subproblems are simultaneously tackled by multi-core machines. Using 
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distributed shared memory, each concurrent task performs computationally expensive 

operations locally, such as forward/backward Fourier and wavelets modifications, matrix-

matrix/vector multiplications, and so on. 

Table 1: Comparison of the computational cost in terms of the amount of time spent by the 

central processing unit (in minutes) for sequentially and parallel versions of the proposed 

approach with an under sampling ratio of 20% 

 

 

Graphics processing units with a high number of cores. This approach considerably cuts 

down the amount of time necessary to calculate the answer by virtue of the fact that many 

operations included inside each subproblem may make use of GP-GPU hardware in parallel. 

Programming on multi-core central processing units (CPUs) as well as graphics processing 

units (GPUs) have both made use of the MATLAB Parallel Computing Toolbox. The results 

of the computational analysis are shown in Table 1 for both datasets. We have found that the 

reconstruction process may be finished in a matter of minutes when a parallel incorporate-

core and GP-GPU are used in conjunction with the strategy that has been presented. We only 

evaluated the recommended way to evaluate the practical practicality of GPU creation in 

terms of processing time. This is because the suggested approach is both one of the fastest 

algorithms in serial construction and the most exact of all of those that were researched for 

comparison. Consequently, it was the only one that we investigated. We come to the 

conclusion that the proposed method, if it has the appropriate parallel computing features, has 

the potential to provide clinically-viable reconstruction outcomes within a period that is 

clinically sensible.. 

 

Conclusion 

Within the scope of this investigation, we propose a novel approach to the calibration-free 

CS-based reconstruction of pMRI. Because we have tested the proposed method using actual 

MRI datasets from the real world and compared it to the most advanced computer science–

based pMRI algorithms, we are confident that it is successful. Experiments have proven that 

it is superior to other approaches in terms of both the quantity and quality of the results it 

produces. We have developed the approach using parallel computing on multi-core central 

processing units (CPUs) and general purpose graphics processing units (GP-GPUs) in order 

to further study the computational time and clinical feasibility of the method. In as little as 

two to three minutes, it's possible to successfully recreate clinical information by employing 

graphics processing units (GPUs). It has been shown that the calibration-less CS pMRI 

reconstruction approach that was developed is not only effective but also feasible. 
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