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Abstract 

The least squares regression is optimal and the maximum likelihood estimators of the unknown parameters of the model if the errors 

are independent will follow a normal distribution with mean zero and a common (though unknown) variance. Robust estimation 

refers to the ability of a procedure to produce highly insensitive estimates to model misspecifications. Robust methods are known 

as resistant of abnormal values and other violations of model assumptions and appropriate for a broad category of distributions. A 

comparative study has been made between Least Absolute Deviations (LAD) method and Least Squares (LS) method. It has been 

made by using the empirical part which was the generation of experimental data depending on comparison criteria. Finally, it found 

that the LAD method is more efficient in estimating the parameters in all cases the distribution of errors for the model.  

Keywords:  Least Absolute Deviations, Ordinary Least Square, Maximum Likelihood Estimator, Iteratively Reweighted Least 

Squares. 

 

1. Introduction 

Least squares regression is sensitive to outlier points. It has dominated the statistical literature for a long time. This dominance and 

popularity of the least square regression can be imputed, at least partially to the fact that the theory is simple, well developed and 

documented. The computer packages are also easily available. The Least Squares regression is optimal and the maximum likelihood 

estimators of the unknown parameters of the model if the errors are independent will follow a normal distribution with mean zero 

and a common (though unknown) variance. 

The least squares regression is very far from the optimal in many non-Gaussian situations, especially when the errors follow 

distributions with longer tails. For the regression problems Huber (1973) stated that “just a single grossly outlying observation may 

spoil the least squares estimate and moreover, outliers are much harder to spot in the regression than in the simple location case”. 

The outliers occurring with extreme values of the regressor variables can be especially confusing. Andrews (1974) noted that even 

when the errors follow a normal distribution, alternatives to least squares may be required; especially if the form of the model is not 

exactly known. Further, least squares are not very satisfactory if the quadratic loss function is not a satisfactory measure of the loss. 

Loss denotes the seriousness of the nonzero prediction error to the investigator, where prediction error is the difference between the 

predicted and the observed value of the response variable.  

The least absolute deviation errors regression overcomes the drawbacks of the least squares regression and provides an attractive 

alternative. It is less sensitive than least squares regression to the extreme errors and assumes absolute error loss function. Because 

of its resistance to outliers, it provides a better starting point than the least squares regression for certain robust regression procedures. 

Unlike, other robust regression procedures, it does not require a rejection parameter. It may be noted that the absolute errors estimates 

are maximum likelihood and hence asymptotically efficient when the errors follow the double exponential distribution. 

To ease the model formulation and computation, some desired assumptions such as normality of the response variable are made on 

the regression structure. Out of many possible regression techniques for fitting the model, the Ordinary Least Squares (OLS) method 

has been traditionally adopted due to the ease of computation. However, there is presently a widespread awareness of the dangers 

posed by the occurrence of outliers in the OLS estimates (Rousseuw and Leroy, 2003). The robustness method is considered as an 

alternative to a LS method, especially if the regression model does not meet the fundamental assumptions.  

 

2. Ordinary Least Square Method or L2-norm Method 

Utilizing the OLS method, the estimator  is found by minimizing the sum of squared residuals 
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This gives the OLS estimator for  as 

 

  … (1) 

The OLS estimate is optimal when the error distribution is assumed to be normal in the presence of influential observations, 

robust regression is a suitable alternative to the OLS. Robust procedures have been focussed many studies recently. For a detailed 

study refer Hampel 1974. 

 

2.1. Mean Square Error (MSE) for the model 

 

 

… (2) 

2.2. Mean Square Error for Estimator 

 

… (3) 

2.3. Mean Absolute Error (MAE) 

 

… (4) 

3. Least Absolute Deviation Method or L1-norm Method 

 

LAD estimator obtains a higher efficiency than OLS through minimizing the sum of the absolute errors 

 

 

Once LAD estimation is justified over the OLS estimation, an efficient algorithm to obtain LAD estimates has a practical 

significance. For a detailed study refer Abdelmalek (1971, 1974), Fair (1974), Schlossmacher (1973) and Spyropoulos et.al (1973). 

They also proposed an improved algorithm for L1 estimation that is very similar to iterative weighted least squares. 

Robert (2001) used an iterative procedure when properly initialized, converges to the solution of the L1-regression problem and is 

called Iteratively Reweighted Least Squares (IRWLS).  

The objective function for L1-regression,  

 

… (5) 

 

… (6) 

Differentiating the above is a problem. (since it involves absolute values). However, the absolute value function  
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is differentiable everywhere except at one point, z = 0. Also, the following formula can be used for the derivative, where it exists 

 

Using this, differentiate f with respect to each variable and setting the derivatives to zero, we have  

 

… (7) 

where r =1, 2, …., m 

Rewriting eqn. (7), we have 

 

… (8) 

Let  denote the diagonal matrix, (Das Gupta & Mishra, 2004), where 

 

We can write these equations in matrix notation as follows: 

 

This equation cannot be solved for x in L2-regression because of the dependence of the diagonal matrix on  Then  

 

… (9) 

This formula suggests an iterative scheme that converges to a solution. Indeed, we start by initializing arbitrarily and then use 

the above formula to successive computation of new approximations. Let  denote the approximation at the kth iteration, then 

formula can be expressed  

 

… (10) 

Assuming only that the matrix inverse exists at every iteration, one can show that this iteration scheme converges to a solution to 

the L1-regression problem.  

3.1. Mean Square Error for the Model 

 

… (11) 
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3.2. Mean Square Error for Estimator 

 

… (12) 

3.3. Mean Absolute Error 

 

… (13) 

 

4. Results 

The following model was used  

 

      yi = 0 + 1 Xi + i,              … (14)  

 

Now,  was obtained from set numbers (1, 1.1, 1.2, 1.3 ...), and   

where the distribution of errors is Normal, Extreme Value, Double Exponential, Cauchy and  

random size is n = 30, 60, 125 and 250. 

 

Table – OLS and IRWLS estimators 

Distribution 

of Errors 

Estimator OLS IRWLS 

n=30 n=60 n=125 n=250 n=30 n=60 n=125 n=250 

Normal 

Distribution 
̂ o 

1.3023 1.1936 1.3879 1.1758 0.8389 0.8240 1.2928 1.0544 

̂ 1 
1.0567 1.1444 1.0643 1.0985 1.2602 1.2750 1.0740 1.1116 

MSE 1.1290 0.9600 1.1600 2.0000 0.6909 0.9261 0.9632 0.8664 

MSE ( ̂ ) 
0.8947 0.2245 0.1566 0.1225 0.1157 0.10017 0.1016 0.10015 

MAE 0.8863 0.8643 0.9340 0.8808 0.8680 0.8574 0.9323 0.8779 

Extreme 

Value 
̂ o 

10.7810 20.7210 10.1000 -0.9020 2.9103 0.8576 1.8359 1.2890 

̂ 1 
-3.2310 -3.5190 -0.3534 1.2120 0.2918 1.2589 1.0265 1.0895 

MSE 17.9700 643.8000 631.4000 926.0000 2.5956 7.1667 6.9354 8.5235 

MSE ( ̂ ) 
13.8952 92.7330 33.9891 21.5186 0.4329 0.1075 0.1146 0.1001 

MAE 2.9484 10.4330 8.6242 8.5985 2.3460 6.8910 6.9761 8.3779 

Double 

Exponential 

Distribution 

̂ o 
-0.9430 -0.6235 0.5891 0.6647 0.8892 0.5808 0.7186 0.8657 

̂ 1 
1.6608 1.4463 1.1393 1.1383 1.0258 1.1492 1.1236 1.1120 

MSE 6.5770 6.2200 4.2800 3.9000 1.9253 1.8463 1.4321 1.1287 

MSE ( ̂ ) 
6.1020 0.9812 0.3244 0.1889 0.1003 0.1003 0.1010 0.1051 

MAE 1.8173 1.6193 1.3943 1.3172 1.7797 1.5578 1.3931 1.3011 

Log Normal 
̂ o 

-7.5580 -22.7700 3.3130 5.7940 -

1.1363 

-0.7567 1.2605 1.5622 

̂ 1 
4.5580 9.9260 1.3800 0.8562 1.8923 1.5644 1.3373 1.0912 

MSE 46.9800 3419 1777 889.4000 3.5731 11.5779 3.4222 2.9047 

MSE ( ̂ ) 
36.2982 491.7370 95.4313 20.6728 0.1001 0.7194 0.2325 0.1247 

MAE 3.9029 20.6249 9.0826 5.6301 3.3332 11.3649 7.4912 4.6529 
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5. Conclusion 

From the above table it is observed that the iterative reweighted least square methods provide robust estimator comparing to OLS. 

It’s also seen that the heavy tailed distribution gives better estimates than the normal and double exponential distribution. The 

estimates are provided in this paper are not only robust but gives consistent results. The method of LAD style is very suitable and 

efficient for estimating the parameters and regression analysis. 
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