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Abstract - The manuscript focused on developing the mathematical model to estimate the response of  

thermomechanical and carrier density loading in anisotropic photothermoelastic plate. Problem is formulated 

for a specific type of anisotropy having two planes of symmetry to recover the equations for orthotropic 

photothermoelastic plate. Laplace and Fourier transform are taken into account to solve the problem and 

obtain the boundary solution to satisfy the imported boundary conditions. Specific types of loading (uniformly 

distributed, linearly distributed, concentrated and continuous) are considered to obtain the components of 

displacement, stress, temperature distribution and carrier density distribution in the new domain. Numerical 

technique is employed to compute the analytic results and the obtained results are displayed in the form of 

graphs to show the effects of orthotropy, phase lag and one relaxation time for the resulting quantities. Some 

degrading results are recovered from the present case. 

Keywords : photothermoelastic orthotropic, Laplace transform, Fourier transform dual phase lag, 

thermomechanical loading, carrier density loading, uniformly distributed force, linearly distributed force. 

 

INTRODUCTION 

Semiconducting materials have been widely applied in modern engineering applications with the present 

development of technologies. When a semiconductor surface is exposed to a beam of laser, some electrons 

will be excited. In this case, the photo-excited free carriers will be produced with non-radiative transitions, 

and a recombination between electron and hole plasma occurs. Many efforts are made to explore the nature of 

semiconductors in last few years. The technique adopted is photo acoustic and photo thermal technology. 

Photoacoustic (PA) and photothermal (PT) science and technology have extensively developed new methods 

in the investigation of semiconductors and microelectronic structures during the last few years. PA and  PT 

techniques were recently established as diagnostic methods with good sensitivity to the dynamics of 

photoexcited carrier. (Mandelis[1], Almondand Patel[2], MandelisandMichaelian[3])Photogeneration of 

electron-hole pairs, i.e., the carriers-diffusion wave or plasma wave, generated by an absorbed intensity 

modulated laser beam, may, play a dominant role in PA and PT experiments for most semiconductor 

materials. Depth dependent plasma waves contribute to the generation of periodic heat and mechanical 

vibrations, i.e., thermal and elastic waves.This mechanism of elastic wave generation is a specific of semi-

conductors. The electronic deformation mechanism is based on the fact that photogenerated plasma in the 

semiconductor causes deformation of the crystal lattice, i.e. deformation of the potential of the conduction and 

valence bands in the semiconductor. Thus, photoexcited carries may cause local strain in the sample. This 

strain in turn may produce plasma waves in the semiconductor in a manner analogous to thermal wave 

generation by local periodic elastic deformation.Many problems of deformation and wave propagation 

problem in a semiconducting medium have become more important academic and applicable value. Many 

notable researchers have extensively examined various problems in photothermoelastic medium 

asAbbas[4],Lotfy[5-7],Lotfy et.al.[8],Hobiny and Abbas[9], Jahangir et.al.[10],Zenkour[11],Alzahraniand  
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Abbas [12,13]. 

TareqSaeed[14] studied the photo-thermal interactions in semiconductor media by utilizing hyperbolic two-

temperature model with one thermal relaxation time. The variations of the carrier density, the thermodynamic, 

the conductive temperatures, the stress and the displacement in a semi-infinite semiconductor material have 

been estimated.Abbas et.al.[15]discussedphoto-thermal-elastic interactions in an unbounded semiconductor 

media containing a cylindrical hole under a hyperbolic two-temperature are investigated using the coupled 

theory of thermo-elasticity and plasma waves. Hobiny et.al. [16]discussed on photo-thermo-elastic wave in a 

two dimension semi-conductor material caused by ramp-type heating. Alzahrani and Abbas [17] studied the 

numerical solutions of the thermal damages of biological tissue by nonlinear dual-phase-lag theory under 

different boundary conditions.Zakaria et.al.[18] deals with the study of photothermoelastic interactions in an 

isotropic homogeneous semiconductor solid, using a new model of generalized thermoelectricity with a 

memory-dependent derivative of heat conduction and the governing equations of the system are derived based 

on the dual-phase lag model (DPL) and the wave equation of coupled plasma. Zakaria et.al.[19] constructed a  

modified generalized fractional photothermeolastic  model  on the basis of the fractional calculus technique. 

Author introduced Fourier law using the Taylor series expansion of higher time-fractional for the considered 

model. 

In this paper, we studieddeformation due to thermomechanicaland carrier density loading in 

orthotropicphotothermoelastic plate with dual phase lag.Laplace and Fourier transform are employed to solve 

the problem. The analytical expressions of normal stress, temperature distribution and carrier density 

distribution are computed inthe transformed domain. However, the resulting quantities are obtained in the 

physical domain by using numerical inversion technique. The variations of normal stress component, 

temperature distribution and carrier density distribution with distance and thickness of the plate are depicted 

graphically to demonstrate the effect of orthotropy, phase lag andLord and Shulman’s theory with one 

relaxation time. 

 

BASIC EQUATIONS 

The constitutive relation and the field equations for photothermoelastic with dual phase lag model in absence 

of body forces, heat sources and carrier photogeneration sources are described by (Tzou 

[20];Todorovic[21,22]). 

𝑡𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 − 𝛼𝑖𝑗𝑇 − 𝛾𝑖𝑗𝑁         (1) 

𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙, − 𝛼𝑖𝑗𝑇,ℎ − 𝛾𝑖𝑗𝑁,ℎ = 𝜌𝑢𝑖̈                        (2) 

𝐾𝑖𝑗 (1 + 𝜏𝑇
𝜕

𝜕𝑡
)𝑇,𝑖𝑗  = −

𝐸𝑔

𝜏
𝑁 + (1 + 𝜏𝑞

𝜕

𝜕𝑡
+
𝑚𝑜𝜏𝑞

2

2

𝜕2

𝜕𝑡2
) (𝜌𝐶𝑒𝑇̇ + 𝑇𝑜𝛼𝑖𝑗𝑒𝑖𝑗̇ )     (3) 

𝐷𝑖𝑗
∗𝑁,𝑖𝑗 = 

𝜕𝑁

𝜕𝑡
+
𝑁

𝜏
− 𝛿 

𝑇

𝜏
                       (4) 

 (i, j, k, l ,h=1,2,3) 

The following cases arise: 

(i)The dual phase lag model 

0 < 𝜏𝑇 < 𝜏𝑞, 𝑚𝑜 = 1, 

(ii) The Lord and Shulman’s theory [23] 

𝜏𝑞 = 𝜏0 > 0, 𝜏𝑇= 𝑚𝑜 = 0, 

(iii) The classical dynamical coupled theory [24] 

𝜏𝑇 = 𝜏𝑞 = 𝑚𝑜 = 0 

where 

𝜏𝑇 − the phase lag of temperature gradient, 𝜏𝑞 − the phase lag of heat flux ,𝜏0 − the thermal relaxation time, 

𝐶𝑖𝑗𝑘𝑙 −elastic parameters,𝛼𝑖𝑗 −are coefficient of linear thermal expansion, ,𝛾𝑖𝑗 − coefficient of electronic 

deformation,𝑢𝑖 −components of displacement, T- the temperature distribution ,𝑇0-the reference 

https://www.tandfonline.com/author/Saeed%2C+Tareq
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temperature, 𝑁 = 𝑛 − 𝑛0 , 𝑛0 - equilibrium carrier concentration,𝐸𝑔 - the semiconductor energy gap, ρ - the 

medium density,tij - the components of stress tensor,𝐾𝑖𝑗 - thermal conductivity,  Ce- the specific heat, δ =
𝜕𝑛0

𝜕𝑇
 

the thermal activation coupling parameter, 𝜏 - the photogenerated carrier lifetime, t - the time variable,𝐷𝑖𝑗
∗  - the 

coefficients of carrier diffusion,𝑒𝑘𝑙 - the components of elastic strain . 

 

PROBLEM STATEMENT 

Consider an infinite orthotropic phototheroelastic plate with dual phase lag of finite thickness 2d. A plate is 

homogeneous, isotropic and thermal conducting with initial uniform temperature 𝑇0.The middle plane of the 

plate coincide with 𝑥1 − 𝑥2 plane such that −𝑑 ≤ 𝑥3 ≤ 𝑑 and−∞ < 𝑥1 ,𝑥2 < ∞, the origin of the coordinate 

system is taken at any point of the middle plane. The boundary surface 𝑥3 = ±𝑑 is subjected to 

thermomechanical and carrier density loading. Let the 𝑥1 − 𝑥3 plane be taken as the plane of incidence and 

restrict our analysis to this plane, so that the physical field variables are function of 𝑥1, 𝑥3 , 𝑡. Thus, the 

displacement components, temperature distribution and carrier density distribution are given by  

𝒖 = (𝑢1(𝑥1, 𝑥3 , 𝑡), 0,𝑢3(𝑥1, 𝑥3 , 𝑡)),𝑇 = 𝑇(𝑥1, 𝑥3 , 𝑡) and 𝑁 = 𝑁(𝑥1, 𝑥3 , 𝑡)      (5) 

We have used appropriate plane of symmetry, following( Slaughter[25]) on the set of equations (1) to (4) to 

derive the equations for orthotropic photothermoelastic solid for two dimensional problem with the aid of 

equation (5), take the following forms 

𝐶11
𝜕2𝑢1

𝜕𝑥1
2 + 𝐶55

𝜕2𝑢1

𝜕𝑥3
2 + (𝐶13 + 𝐶55)

𝜕2𝑢3

𝜕𝑥1𝜕𝑥3
− 𝛼1

𝜕𝑇

𝜕𝑥1
− 𝛾1

𝜕𝑁

𝜕𝑥1
= 𝜌

𝜕2𝑢1

𝜕𝑡2
  (6) 

𝐶55
𝜕2𝑢3

𝜕𝑥1
2 + 𝐶33

𝜕2𝑢3

𝜕𝑥3
2 + (𝐶13 + 𝐶55)

𝜕2𝑢1

𝜕𝑥1𝜕𝑥3
− 𝛼3

𝜕𝑇

𝜕𝑥3
− 𝛾3

𝜕𝑁

𝜕𝑥3
= 𝜌

𝜕2𝑢3

𝜕𝑡2
  (7) 

𝐾1 (1 + 𝜏𝑇
𝜕

𝜕𝑡
)
𝜕2𝑇

𝜕𝑥1
2 + 𝐾3 (1 + 𝜏𝑇

𝜕

𝜕𝑡
)
𝜕2𝑇

𝜕𝑥3
2 = −

𝐸𝑔

𝜏
𝑁 + (1 + 𝜏𝑞

𝜕

𝜕𝑡
+
𝑚𝑜𝜏𝑞

2

2

𝜕2

𝜕𝑡2
)(𝜌𝐶𝑒

𝜕𝑇

𝜕𝑡
+ 𝑇𝑜 (𝛼1

𝜕2𝑢1

𝜕𝑥1𝜕𝑡
+

 𝛼3
𝜕2𝑢3

𝜕𝑥3𝜕𝑡
))              (8) 

𝐷1
∗ 𝜕

2𝑁

𝜕𝑥1
2 +𝐷3

∗ 𝜕
2𝑁

𝜕𝑥3
2 = 

𝜕𝑁

𝜕𝑡
+
𝑁

𝜏
− 𝛿 

𝑇

𝜏
    (9) 

𝑡33 = 𝐶13
𝜕𝑢1

𝜕𝑥1
+ 𝐶33

𝜕𝑢3

𝜕𝑥3
− 𝛼3𝑇 − 𝛾3𝑁       (10) 

𝑡31 = 𝐶55 (
𝜕𝑢1

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥1
)        (11) 

𝑡11 = 𝐶11
𝜕𝑢1

𝜕𝑥1
+ 𝐶13

𝜕𝑢3

𝜕𝑥3
− 𝛼1𝑇 − 𝛾1𝑁      (12) 

where 

𝛼1 = 𝐶11𝛼1
∗ + 𝐶12𝛼2

∗ + 𝐶13𝛼3
∗ ,𝛼3 = 𝐶13𝛼1

∗ + 𝐶23𝛼2
∗ + 𝐶33𝛼3

∗,  

𝛾1 = 𝐶11𝛾1
∗ + 𝐶12𝛾2

∗ + 𝐶13𝛾3
∗ , 𝛾3 = 𝐶13𝛾1

∗ + 𝐶23𝛾2
∗ + 𝐶33𝛾3

∗      

𝛾1
∗,𝛾2

∗ 𝑎𝑛𝑑 𝛾3
∗ are linear thermal expansion coefficients, 𝛾1

∗, , 𝛾2
∗ 𝑎𝑛𝑑  𝛾3

∗ are electronic deformation 

coefficients, 𝐾1, 𝐾3- thermal conductivity and𝐷1
∗ 𝑎𝑛𝑑 𝐷3 

∗ are carrier diffusion coefficients. 

 

To facilitate the solution, we introduce the following dimensionless quantities 

(𝑥1
′ , 𝑥3

′ , 𝑢1
′ , 𝑢3

′ ) = 𝜂1𝑐𝑜(𝑥1, 𝑥3, 𝑢1, 𝑢3) ,(𝑡11
′ , 𝑡33

′ , 𝑡31
′ ) = 

1

𝐶11
(𝑡11, 𝑡33, 𝑡31),(𝑡

′, 𝜏𝑇
′ , 𝜏𝑞

′ ) = 𝜂1𝑐0
2(𝑡, 𝜏𝑇 , 𝜏𝑞) 

𝑇′ =
𝛼1𝑇

𝜌𝑐𝑜
2, 𝜏′ = 𝜂1𝑐𝑜

2𝜏 , 𝑁′ =
𝑁

𝑛𝑜
        (13) 

where 

𝜂1 = 
𝜌𝐶𝐸

𝐾1
 ,𝑐𝑜

2 =
𝐶11

𝜌
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By taking into consideration equation (13), reduce the equations (6)-(12) and suppressing the prime yield  

𝜕2𝑢1

𝜕𝑥1
2 + 𝑔1

𝜕2𝑢1

𝜕𝑥3
2 + 𝑔2

𝜕2𝑢3

𝜕𝑥1𝜕𝑥3
−

𝜕𝑇

𝜕𝑥1
− 𝑔3

𝜕𝑁

𝜕𝑥1
=

𝜕2𝑢1

𝜕𝑡2
      (14) 

𝜕2𝑢3

𝜕𝑥1
2 + 𝑔4

𝜕2𝑢3

𝜕𝑥3
2 + 𝑔5

𝜕2𝑢1

𝜕𝑥1𝜕𝑥3
− 𝑔6

𝜕𝑇

𝜕𝑥3
− 𝑔7

𝜕𝑁

𝜕𝑥3
= 𝑔8

𝜕2𝑢3

𝜕𝑡2
      (15) 

(1 + 𝜏𝑇
𝜕

𝜕𝑡
)
𝜕2𝑇

𝜕𝑥1
2 + 𝑘

∗ (1 + 𝜏𝑇
𝜕

𝜕𝑡
)
𝜕2𝑇

𝜕𝑥3
2 = 𝑔11

𝑁

𝜏
+ (1 + 𝜏𝑞

𝜕

𝜕𝑡
+
𝑚0𝜏𝑞

2

2

𝜕2

𝜕𝑡2
) (𝑔12

𝜕𝑇

𝜕𝑡
+ 𝑔13

𝜕2𝑢1

𝜕𝑥1𝜕𝑡
+ 𝑔14

𝜕2𝑢3

𝜕𝑥3𝜕𝑡
) 

           (16) 

𝜕2𝑁

𝜕𝑥1
2 + 𝐷

∗ 𝜕
2𝑁

𝜕𝑥3
2 = 𝑔9

𝜕𝑁

𝜕𝑡
+ 𝑔9

𝑁

𝜏
− 𝑔10

𝑇

𝜏
       (17) 

𝑡33 = 𝑔15
𝜕𝑢1

𝜕𝑥1
+ 𝑔16

𝜕𝑢3

𝜕𝑥3
− 𝑔17𝑇 − 𝑔18𝑁       (18) 

𝑡31 = 𝑔1 (
𝜕𝑢1

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥1
)          (19) 

𝑡11 =
𝜕𝑢1

𝜕𝑥1
+ 𝑔15

𝜕𝑢3

𝜕𝑥3
− 𝑇 − 𝑔3𝑁        (20) 

where 

𝑔1 =
𝐶55

𝐶11
 , 𝑔2 =

𝐶13+𝐶55

𝐶11
, 𝑔3 =

𝛾1𝑛𝑜

𝐶11
 , 𝑔4 =

𝐶33

𝐶55
 , 𝑔5 =

𝐶13+𝐶55

𝐶55
 ,𝑔6 =

𝛼3𝐶11

𝛼1𝐶55
, 𝑔7 =

𝛾3𝑛𝑜

𝐶55
 , 𝑔8 =

𝐶11

𝐶55
 , 

𝑔9 =
1

𝜂1𝐷1
∗ , 𝑔10 =

𝛿𝜌𝐶𝑜
2

𝛼1𝐷1
∗𝑛𝑜𝜂1

 , 𝑔11 = − 
𝐸𝑔𝑛𝑜𝛼1

𝐾1𝜂1𝜌𝐶0
2  , 𝑔12 =

𝜌𝐶𝐸

𝐾1𝜂1
 ,𝑔13 = 

𝑇𝑜𝛼1𝛼1

𝐾1𝐶11𝜂1
 , 𝑔14 =

𝑇𝑜𝛼3𝛼1

𝐾1𝜂1𝐶11
 , 

𝑔15 =
𝐶13

𝐶11
, 𝑔16 =

𝐶33

𝐶11
 ,𝑔17 =

𝛼3

𝛼1
, 𝑔18 =

𝛾3𝑛𝑜

𝐶11
 , 𝑘∗ =

𝑘3

𝑘1
 , 𝐷∗ =

𝐷3

𝐷1
    (21) 

Now, Laplace transform of a function 𝑓(𝑥1, 𝑥3, 𝑝) w.r.t. time variable‘t’ and ‘p’ is Laplace transform variable 

defined as  

𝑓 ̅(𝑥1, 𝑥3, 𝑝)= L{𝑓(𝑥1, 𝑥3, 𝑝)}= ∫ 𝑓(𝑥1, 𝑥3, 𝑝)
∞

0
𝑒−𝑝𝑡𝑑𝑡     (22) 

The Fourier transform for the function 𝑓(𝑥1, 𝑥3, 𝑝)take the form and  𝜉 is Fourier transform variable 

𝑓 (𝑥1, 𝑥3, 𝑝) = 𝐹{𝑓(𝑥1, 𝑥3, 𝑝)} = ∫ 𝑓(𝑥1, 𝑥3, 𝑝)
∞

−∞
𝑒𝑖𝜉𝑥1𝑑𝑥1    (23) 

Employing Laplace and Fourier transform given by equations (22)-(23) on equations (14)-(19), reduce the 

system of differential equations as: 

−𝜉2𝑢1̂ + 𝑔1
𝑑2𝑢1̂

𝑑𝑥3
2 + 𝑔2𝑖𝜉

𝑑𝑢3̂

𝑑𝑥3
− 𝑖𝜉𝑇̂ − 𝑖𝜉𝑔3𝑁̂ = 𝑝

2𝑢1̂      (24) 

−𝜉2𝑢3̂ + 𝑔4
𝑑2𝑢3̂

𝑑𝑥3
2 + 𝑔5𝑖𝜉

𝑑𝑢1̂

𝑑𝑥3
− 𝑔6

𝑑𝑇̂

𝑑𝑥3
− 𝑔7

𝑑𝑁̂

𝑑𝑥3
= 𝑔8𝑝

2𝑢3̂      (25) 

−(1 + 𝑝𝜏𝑇)𝜉
2𝑇̂ + 𝑘∗(1 + 𝑝𝜏𝑇)

𝑑2𝑇̂

𝑑𝑥3
2 = 𝑔11

𝑁̂

𝜏
+ (1 + 𝑝𝜏𝑞 + 𝑝

2 𝑚0𝜏𝑞
2

2
) (𝑔12𝑝𝑇̂ + 𝑔13𝑝

𝑑𝑢1̂

𝑑𝑥1
+ 𝑔14𝑝

𝑑𝑢3̂

𝑑𝑥3
) 

            (26) 

−𝜉2𝑁̂ + 𝐷∗
𝑑2𝑁̂

𝑑𝑥3
2 = 𝑔9𝑝𝑁̂ + 𝑔9

𝑁̂

𝜏
− 𝑔10

𝑇̂

𝜏
        (27) 

𝑡33̂ = 𝑔15𝑖𝜉𝑢1̂ + 𝑔16
𝑑𝑢3̂

𝑑𝑥3
− 𝑔17𝑇̂ − 𝑔18𝑁̂       (28) 

𝑡31̂ = 𝑔1 (
𝑑𝑢1̂

𝑑𝑥3
+ 𝑖𝜉𝑢3̂)         (29) 

After some algebraic simplification equations (24)-(27) yield  

(𝐷8 + 𝑅1𝐷
6 + 𝑅2𝐷

4 + 𝑅3𝐷
2 + 𝑅4)(𝑢1̂, 𝑢3̂, 𝑇̂, 𝑁̂) = 0     (30) 

Where 

𝑅1 =
𝑟15

𝑟14
 ,  𝑅2 =

𝑟16

𝑟14
 , 𝑅3 = 

𝑟17

𝑟14
 , 𝑅4 =

𝑟18

𝑟14
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𝑟14 = −𝑔1𝑔4𝑟9𝐷
∗ 

𝑟15 = 𝑟10𝑔1𝑔4𝐷
∗ + 𝑟6𝑟9𝑔1𝐷

∗ − 𝑔1𝑔6𝑟8𝐷
∗ +𝑟1𝑔4𝑟9𝐷

∗ + 𝑔1𝑔4𝑟9𝑟13 + 𝑟2𝑟5𝑟9𝐷
∗ 

𝑟16 = −𝑟11𝑟12𝑔4𝑔1 + 𝑔7𝑔1𝑟12𝑟8 − 𝑟1𝑔4𝑟10𝐷
∗ − 𝑟1𝑟6𝑟9𝐷

∗ + 𝑔6𝑟1𝑟8𝐷
∗ − 𝑔4𝑔1𝑟10𝑟13 − 𝑟9𝑔1𝑟6𝑟13 

         +𝑔6𝑔1𝑟8𝑟13 − 𝑔4𝑟1𝑟9𝑟13 − 𝑟2𝑟5𝑟10𝐷
∗ + 𝑟2𝑔6𝑟7𝐷

∗ − 𝑟2𝑟9𝑟5𝑟13 + 𝑟3𝑟8𝑟5𝐷
∗ − 𝑟3𝑔4𝑟7𝐷

∗

−             𝑟6𝑔1𝑟10𝐷
∗ 

𝑟17 = 𝑟11𝑟12𝑟6𝑟12 + 𝑟1𝑟12𝑟12𝑔4 − 𝑟12𝑟1𝑟8𝑔7+𝑟2𝑟11𝑟5𝑟12 − 𝑟7𝑟2𝑔7𝑟12 - 𝑟4𝑟8𝑟5𝑟12+𝑟4𝑔4𝑟7𝑟12+𝑟1𝑟6𝑟10𝐷
∗ + 

𝑟6𝑟10𝑟13𝑔1+𝑟1𝑔4𝑟10𝑟13+ 𝑟1𝑟6𝑟9𝑟13  - 𝑟1𝑔6𝑟8𝑟13+𝑟2𝑟5𝑟10𝑟13-𝑟2𝑔6𝑟7𝑟13+𝑟3𝑟7𝑟6𝐷
∗ - 

𝑟3𝑟8𝑟5𝑟13+𝑟3𝑟7𝑔4𝑟13 

𝑟18 = - 𝑟1𝑟11𝑟6𝑟12- 𝑟4𝑟7𝑟6𝑟12-𝑟1𝑟10𝑟6𝑟13-𝑟3𝑟7𝑟6𝑟13     (31) 

The general solution of eq. (31) is written as 

(𝑢1̂, 𝑢3̂, 𝑇̂, 𝑁̂)=   ∑ (1, 𝛼1𝑗, 𝛽1𝑗, 𝛾1𝑗)
4
𝑗=1 𝐶𝑗𝑐osh𝑚𝑗𝑥3       (32) 

Where 

𝑚𝑗( 𝑗 = 1,2,3,4) are roots of  𝐷8 + 𝑅1𝐷
6 + 𝑅2𝐷

4 + 𝑅3𝐷
2 + 𝑅4 = 0 , and coupling parameters are 

𝛼1𝑗=∑
𝑅9𝑚𝑗

5+𝑅10𝑚𝑗
3+𝑅11𝑚𝑗

𝑅5𝑚𝑗
6+𝑅6𝑚𝑗

4+𝑅7𝑚𝑗
2+𝑅8

4
𝑗=1         (33) 

𝛽1𝑗 =∑
𝑅12𝑚𝑗

4+𝑅13𝑚𝑗
2+𝑅14

𝑅5𝑚𝑗
6+𝑅6𝑚𝑗

4+𝑅7𝑚𝑗
2+𝑅8

4
𝑗=1         (34) 

𝛾1𝑗= ∑
𝑅15𝑚𝑗

2+𝑅16

𝑅5𝑚𝑗
6+𝑅6𝑚𝑗

4+𝑅7𝑚𝑗
2+𝑅8

4
𝑗=1       (35) 

Where 

𝑅5 = 𝑔4𝑟9𝐷
∗𝑐ℎ𝑗

3
 ,  𝑅6= −𝐷∗𝑔4𝑟10𝑐ℎ𝑗

3 −𝐷∗𝑟4𝑟 9𝑐ℎ𝑗
3
 - 𝑔4𝑟13𝑟9𝑐ℎ𝑗

3
+𝐷∗𝑔6𝑟8𝑠ℎ𝑗

2𝑐ℎ𝑗 

𝑅7 = 𝑟12𝑟11𝑔4𝑐ℎ𝑗
3 − 𝑔7𝑟12𝑟8𝑠ℎ𝑗

2𝑐ℎ𝑗 + 𝐷
∗𝑟4𝑟10 − 𝑔4𝑟13𝑟10𝑐ℎ𝑗

3 − 𝑟4𝑟13𝑟9𝑐ℎ𝑗
3+𝑔6𝑟8𝑐ℎ𝑗𝑠ℎ𝑗

2 −  𝑟13𝑔6𝑟8𝑠ℎ𝑗
2𝑐ℎ𝑗 

𝑅8 = −𝑟12𝑟11𝑟4𝑐ℎ𝑗
3+𝑟13𝑟10𝑟4𝑐ℎ𝑗

3 , 𝑅9 = 𝐷∗𝑟5𝑟9𝑠ℎ𝑗𝑐ℎ𝑗
2 

𝑅10= 𝑟5𝐷
∗𝑟10𝑐ℎ𝑗

2𝑠ℎ𝑗+𝑟7𝐷
∗𝑔6𝑐ℎ𝑗

2𝑠ℎ𝑗- 𝑟5𝑟13𝑟9𝑠ℎ𝑗𝑐ℎ𝑗
2 

𝑅11 = 𝑟5𝑟12𝑟11𝑠ℎ𝑗𝑐ℎ𝑗
2- 𝑟7𝑟12𝑔7𝑠ℎ𝑗𝑐ℎ𝑗

2+𝑟5𝑟13𝑟10𝑠ℎ𝑗𝑐ℎ𝑗
2- 𝑔6𝑟13𝑟7𝑐ℎ𝑗𝑠ℎ𝑗 

𝑅12 = 𝑟5𝐷
∗𝑟8𝑠ℎ𝑗

2𝑐ℎ𝑗- 𝑟7𝐷
∗𝑔4𝑐ℎ𝑗

3, 𝑅13 = 𝑟6𝐷
∗𝑟7𝑐ℎ𝑗

3- 𝑟5𝑟13𝑟8𝑐ℎ𝑗𝑠ℎ𝑗
2+𝑟7𝑟13𝑔4𝑐ℎ𝑗

3 

𝑅14 = 𝑟6𝑟7𝑟13𝑐ℎ𝑗
3, 𝑅15 = 𝑟5𝑟12𝑟8𝑐ℎ𝑗𝑠ℎ𝑗

2- 𝑟7𝑟12𝑔4𝑐ℎ𝑗
3 ,  𝑅16 = 𝑟6𝑟12𝑟7𝑐ℎ𝑗

3    (36) 

Expressions for stress components are obtained with the aid of  (28) ,(29) and (32) as 

𝑡33̂ = 𝑔15𝑖𝜉 ∑ 𝐶𝑗𝑐osh𝑚𝑗𝑥3
4
𝑗=1 + 𝑔16∑ 𝛼1𝑗

4
𝑗=1 𝑚𝑗𝐶𝑗𝑠𝑖𝑛h𝑚𝑗𝑥3 − 𝑔17∑ 𝛽1𝑗

4
𝑗=1 𝐶𝑗𝑐osh𝑚𝑗𝑥3  −

𝑔18∑ 𝛾1𝑗
4
𝑗=1 𝐶𝑗𝑐osh𝑚𝑗𝑥3          (37) 

𝑡31̂ = (𝑔1∑ 𝑚𝑗𝐶𝑗𝑠𝑖𝑛h𝑚𝑗𝑥3
4
𝑗=1 + 𝑖𝜉𝑔1∑ 𝛼1𝑗

4
𝑗=1 𝑚𝑗𝐶𝑗𝑐𝑜𝑠h𝑚𝑗𝑥3)     (38) 

 

BOUNDARY CONDITIONS 

The boundary conditions for an orthotropic photothermoelastic plate occupying the plane 𝑥3 = ±𝑑  subjected 

to normal force, thermal source and carrier density source are considered as  

𝑡33 = −𝐹1(𝑥1, 𝑡)
𝑡31 = 0              

𝑇 =  𝐹2(𝑥1, 𝑡)

𝑁 =  𝐹3(𝑥1, 𝑡)

}at𝑥3 = ±𝑑     (39) 
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Where  

𝐹1(𝑥1, 𝑡) =
𝐹10

16

𝑡2

𝑡𝑝
2 𝑒

−𝑡 𝑡𝑝⁄ .𝐹(𝑥1)                    (40) 

𝐹2(𝑥1, 𝑡) = 𝐹20𝑒
−𝑏𝑥.H (𝑥1)𝛿(t);                      (41) 

𝐹3(𝑥1, 𝑡) = 𝐹30 𝛿(𝑥1)H (t);          (42) 

for uniformly distributed normal force (UDF) ,   𝐹(𝑥1) =  𝐹10 {
1    𝑖𝑓  |𝑥1| ≤ 𝑎

0   𝑖𝑓   |𝑥1| > 𝑎
  (43) 

for linearly distributed normal force (LDF) , 𝐹(𝑥1) =  𝐹10 {
1 −

|𝑥1|

𝑎
  𝑖𝑓 𝑥1 ≤ 𝑎

0             𝑖𝑓  𝑥1 > 𝑎
              (44) 

also, H ( ) is Heaviside step function   , 𝛿( ) is Dirac delta function, 𝐹10 is the magnitude of the force, 𝐹20 is 

the constant temperature applied on the boundary and 𝐹30 is constant. 

Applying Laplace and Fourier transform defined by equations (22)-(23) on equations (39)-(44), we obtain 

𝑡33̂ = −𝐹1̂(𝜉, 𝑝)

𝑡31̂ = 0              

𝑇̂ =  𝐹2̂(𝜉, 𝑝)

𝑁̂ =  𝐹3̂(𝜉, 𝑝) }
 
 

 
 

                   (45) 

Where 

𝐹1̂(𝜉, 𝑝) =
𝐹𝑜

8

𝑡𝑝

(1+𝑝𝑡𝑝)
3 𝐹̂(𝜉)           (46) 

𝐹2̂(𝜉, 𝑝)= 
𝐹20

𝑏−𝑖𝜉
                       (47) 

𝐹3̂(𝜉, 𝑝)=  
𝐹30

𝑝
                       (48)  

for UDF  𝐹̂(𝜉)= 
2 𝑠𝑖𝑛𝜉𝑎

𝜉
  ; 𝜉 ≠ 0      and  for  LDF    𝐹̂(𝜉)= 

2(1−𝑐𝑜𝑠𝜉𝑎)

𝜉2𝑎
  ;    𝜉 ≠ 0   (49) 

Substituting the values of 𝑡33̂,𝑡31̂, 𝑇̂ and 𝑁̂ from equations (37)-(38) and (33), in the transformed boundary 

condition (45) along with equations (46)-(49) yield 

∑ (𝑑𝑗𝐶𝑗
4
𝑗=1 𝑐𝑜𝑠ℎ𝑚𝑗𝑑) = −𝐹1̂(𝜉, 𝑝)                   (50) 

∑ (4
𝑗=1 𝛼1𝑗𝐶𝑗 𝑐𝑜𝑠ℎ𝑚𝑗𝑑) = 0        (51) 

∑ (𝛽1𝑗𝐶𝑗
4
𝑗=1 𝑐𝑜𝑠ℎ𝑚𝑗𝑑) = 𝐹2̂(𝜉, 𝑝)       (52) 

∑ (𝛾1𝑗𝐶𝑗
4
𝑗=1 𝑐𝑜𝑠ℎ𝑚𝑗𝑑) =  𝐹3̂(𝜉, 𝑝)       (53) 

Where 

𝑑𝑗=𝑔15𝑖𝜉 − 𝑔17𝛽1𝑗 − 𝑔18𝛾1𝑗 and 𝑐𝑜𝑠ℎ𝑚𝑗𝑑 = 𝑐ℎ1𝑗 ( j=1,2,3,4) 

Equation (50)-(53) can be written in matrix form as AC=B     (54) 

Where 

𝐴 =   [

𝑑1𝑐ℎ11 𝑑2𝑐ℎ12
𝛼11𝑐ℎ11 𝛼12𝑐ℎ12

𝑑3𝑐ℎ13 𝑑4𝑐ℎ14
𝛼13𝑐ℎ13 𝛼14𝑐ℎ14

𝛽11𝑐ℎ11 𝛽12𝑐ℎ12
𝛾11𝑐ℎ11 𝛾12𝑐ℎ12

𝛽13𝑐ℎ13 𝛽14𝑐ℎ14
𝛾13𝑐ℎ13 𝛾14𝑐ℎ14

],𝐶 = [

𝐶1
𝐶2
𝐶3
𝐶4

] ,𝐵 [

−𝐹1(𝑥1, 𝑡)
0

𝐹2(𝑥1, 𝑡)

𝐹3(𝑥1, 𝑡)

] (55) 

From equation (55), we determine  𝐶𝑗 =
∆𝑗

∆
, 𝑗 = 1,2,3,4.    (56) 

Where 

∆= 𝑑𝑒𝑡𝐴 , ∆𝑗= determinant of A when jth column of A replaced by B and     
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∆= 𝑐ℎ11𝑐ℎ12𝑐ℎ13𝑐ℎ14 (𝛼11𝛽12𝛾14𝑑3 –𝛼11𝛽12𝛾13𝑑4-𝛼11𝛽13𝛾14𝑑2+𝛼11𝛽13𝛾12𝑑4 

+𝛼11𝛽14𝛾13𝑑2-𝛼11𝛽14𝛾12𝑑3-𝛼12𝛽11𝛾14𝑑3+𝛼12𝛽11𝛾13𝑑4+𝛼12𝛽13𝛾14𝑑1 

+𝛼12𝛽13𝛾11𝑑4-𝛼12𝛽14𝛾13𝑑1+𝛼12𝛽14𝛾11𝑑3+𝛼13𝛽11𝛾14𝑑2-𝛼13𝛽11𝛾12𝑑4-

𝛼13𝛽12𝛾14𝑑1+𝛼13𝛽12𝛾11𝑑4+𝛼13𝛽14𝛾12𝑑1-𝛼14𝛽11𝛾13𝑑2 + 𝛼13𝛽14𝛾11𝑑2 

+𝛼14𝛽11𝛾12𝑑3+𝛼14𝛽12𝛾13𝑑1-𝛼14𝛽12𝛾11𝑑3-𝛼14𝛽13𝛾12𝑑1+𝛼14𝛽13𝛾11𝑑2)   (57) 

∆1= 𝐹1𝑅21 + 𝐹2𝑅22 − 𝐹3𝑅23         (58) 

∆2= −𝐹1𝑅24 + 𝐹2𝑅25 − 𝐹3𝑅26         (59) 

∆3= −𝐹1𝑅27 + 𝐹2𝑅28 − 𝐹3𝑅29        (60) 

∆4= −𝐹1𝑅30 + 𝐹2𝑅31 − 𝐹3𝑅32        (61) 

and 

𝑅21 = −𝑖𝜉𝑐ℎ12𝑐ℎ13𝑐ℎ14( 𝛼12𝛽13𝛾14-𝛼12𝛽14𝛾13-𝛼13𝛽12𝛾14+𝛼13𝛽14𝛾12+𝛽12𝛾13-𝛼14𝛽13𝛾12) 

𝑅22 = −𝑖𝜉𝑐ℎ11𝑐ℎ12𝑐ℎ14( 𝛼11𝛽12𝛾14+𝛼11𝛽14𝛾12+𝛼12𝛽11𝛾14 − 𝛼12𝛽14𝛾11 − 𝛼14𝛽11𝛾12+𝛼14𝛽12𝛾11) 

𝑅23 = −𝑖𝜉𝑐ℎ11𝑐ℎ12𝑐ℎ13( 𝛼11𝛽12𝛾13 − 𝛼11𝛽13𝛾12 − 𝛼12𝛽11𝛾13 − 𝛼12𝛽13𝛾11 − 𝛼13𝛽11𝛾12+𝛼13𝛽12𝛾11) 

𝑅24 = 𝑐ℎ14𝑐ℎ12𝑐ℎ13(−𝛽12𝛾14𝑑3+𝛽12𝛾13𝑑4+𝛽13𝛾14𝑑2- 𝛽13𝛾12𝑑4- 𝛽14𝛾13𝑑2 + 𝛽14𝛾12𝑑3) 

𝑅25= 𝑐ℎ11𝑐ℎ12𝑐ℎ14((𝛽11𝛾14𝑑2 − 𝛽11𝛾12𝑑4 − 𝛽12𝛾14𝑑1+ 𝛽12𝛾11𝑑4+ 𝛽14𝛾12𝑑4 − 𝛽14𝛾11𝑑2) 

𝑅26 = 𝑐ℎ11𝑐ℎ12𝑐ℎ13(−𝛽11𝛾13𝑑2 + 𝛽11𝛾12𝑑3 + 𝛽12𝛾13𝑑1 −  𝛽12𝛾11𝑑3 − 𝛽13𝛾12𝑑1 − 𝛽13𝛾11𝑑2) 

𝑅27 == 𝑖𝜉𝑐ℎ12𝑐ℎ13𝑐ℎ14(𝛼12𝛾14𝑑3 − 𝛼12𝛾13𝑑4 − 𝛼13𝛾14𝑑2+𝛼13𝛾12𝑑4+𝛼14𝛾13𝑑2 − 𝛼14𝛾12𝑑3) 

𝑅28 =  𝑖𝜉𝑐ℎ11𝑐ℎ12𝑐ℎ14(−𝛼11𝛾14𝑑2 + 𝛼11𝛾12𝑑4 + 𝛼12𝛾14𝑑1 − 𝛼12𝛾11𝑑4 − 𝛼14𝛾12𝑑1 + 𝛼14𝛾11𝑑2) 

𝑅29 =  𝑖𝜉𝑐ℎ11𝑐ℎ12𝑐ℎ13(𝛼11𝛾13𝑑2 − 𝛼11𝛾12𝑑3 − 𝛼12𝛾13𝑑1 + 𝛼12𝛾11𝑑3 + 𝛼13𝛾12𝑑1 − 𝛼13𝛾11𝑑2) 

𝑅30 = 𝑖𝜉𝑐ℎ14𝑐ℎ12𝑐ℎ13(𝛼12𝛽13𝑑4 − 𝛼12𝛽14𝑑3 − 𝛼13𝛽12𝑑4 + 𝛼13𝛽14𝑑2 + 𝛼14𝛽12𝑑3 − 𝛼14𝛽13𝑑2) 

𝑅31 =  𝑖𝜉𝑐ℎ11𝑐ℎ12𝑐ℎ14(−𝛼11𝛽12𝑑4 + 𝛼11𝛽14𝑑2 + 𝛼12𝛽11𝑑4 − 𝛼12𝛽14𝑑1 − 𝛼14𝛽11𝑑2 + 𝛼14𝛽12𝑑1) 

𝑅32 =  𝑖𝜉𝑐ℎ11𝑐ℎ12𝑐ℎ13(𝛼11𝛽12𝑑3 − 𝛼11𝛽13𝑑2 − 𝛼12𝛽11𝑑3 + 𝛼12𝛽13𝑑1 + 𝛼13𝛽11𝑑2 − 𝛼13𝛽12𝑑1)  

 (62) 

Substituting the values of 𝐶𝑗 from equations (56) in equations (32) and (37)-(38), determine the displacement 

components, stress components, temperature distribution and carrier density distribution as 

𝑢1̂ = ∑ 𝐶𝑗
4
𝑗=1 𝑐𝑜𝑠ℎ𝑚𝑗𝑥3 = 

1

∆
(𝐿1𝐹1̂(𝜉, 𝑝) + 𝐿2𝐹2̂(𝜉, 𝑝) + 𝐿3𝐹3̂(𝜉, 𝑝))   (63) 

𝑢3̂ = ∑ 𝛼1𝑗𝐶𝑗
4
𝑗=1 𝑐𝑜𝑠ℎ𝑚𝑖𝑥3 = 

1

∆
(𝐿4𝐹1̂(𝜉, 𝑝) + 𝐿5𝐹2̂(𝜉, 𝑝) + 𝐿6𝐹3̂(𝜉, 𝑝))   (64) 

𝑡33̂ = ∑ (𝑑𝑗
4
𝑗=1 𝑐𝑜𝑠ℎ𝑚𝑗𝑥3 + 𝑒𝑗𝑠𝑖𝑛ℎ𝑚𝑗𝑥3)𝐶𝑗 = 

1

∆
(𝐿13𝐹1̂(𝜉, 𝑝) + 𝐿14𝐹2̂(𝜉, 𝑝) + 𝐿15𝐹3̂(𝜉, 𝑝))  (65) 

𝑡31̂ = ∑ (𝑖𝜉𝑔1𝛼1𝑗
4
𝑗=1 𝑐𝑜𝑠ℎ𝑚𝑗𝑥3 + 𝑔1𝑚𝑗𝑠𝑖𝑛ℎ𝑚𝑗𝑥3)𝐶𝑖 = 

1

∆
(𝐿16𝐹1̂(𝜉, 𝑝) + 𝐿17𝐹2̂(𝜉, 𝑝) + 𝐿18𝐹3̂(𝜉, 𝑝)) 

 (66) 

𝑇̂ = ∑ 𝛽1𝑗𝐶𝑗
4
𝑗=1 𝑐𝑜𝑠ℎ𝑚𝑗𝑥3 = 

1

∆
(𝐿7𝐹1̂(𝜉, 𝑝) + 𝐿8𝐹2̂(𝜉, 𝑝) + 𝐿9𝐹3̂(𝜉, 𝑝))   (67) 

𝑁̂ = ∑ 𝛾1𝑗𝐶𝑗
4
𝑗=1 𝑐𝑜𝑠ℎ𝑚𝑗𝑥3 = 

1

∆
(𝐿10𝐹1̂(𝜉, 𝑝) + 𝐿11𝐹2̂(𝜉, 𝑝) + 𝐿12𝐹3̂(𝜉, 𝑝))  (68) 

Where 

𝑑𝑗=𝑔15𝑖𝜉 − 𝑔17𝛽1𝑗 − 𝑔18𝛾1𝑗, 𝑒𝑗 = 𝑔16𝛼1𝑗, cosh𝑚𝑗𝑥3= 𝑐ℎ𝑗 and sinh𝑚𝑗𝑥3= 𝑠ℎ𝑗 

𝐿1 = 𝑅21 𝑐𝑜𝑠ℎ𝑚1𝑥3+𝑅24 𝑐𝑜𝑠ℎ𝑚2𝑥3+𝑅27 𝑐𝑜𝑠ℎ𝑚3𝑥3+𝑅30 𝑐𝑜𝑠ℎ𝑚4𝑥3 

𝐿2 = 𝑅22 𝑐𝑜𝑠ℎ𝑚1𝑥3+𝑅25 𝑐𝑜𝑠ℎ𝑚2𝑥3+𝑅28 𝑐𝑜𝑠ℎ𝑚3𝑥3+𝑅31 𝑐𝑜𝑠ℎ𝑚4𝑥3 

𝐿3 = 𝑅23 𝑐𝑜𝑠ℎ𝑚1𝑥3+𝑅26 𝑐𝑜𝑠ℎ𝑚2𝑥3+𝑅29 𝑐𝑜𝑠ℎ𝑚3𝑥3+𝑅32 𝑐𝑜𝑠ℎ𝑚4𝑥3 

𝐿4 = 𝛼11𝑅21 𝑐𝑜𝑠ℎ𝑚1𝑥3+𝛼12𝑅24 𝑐𝑜𝑠ℎ𝑚2𝑥3+𝛼13𝑅27 𝑐𝑜𝑠ℎ𝑚3𝑥3+𝛼14𝑅30 𝑐𝑜𝑠ℎ𝑚4𝑥3 
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𝐿5 = 𝛼11𝑅22 𝑐𝑜𝑠ℎ𝑚1𝑥3+𝛼12𝑅25 𝑐𝑜𝑠ℎ𝑚2𝑥3+𝛼13𝑅28 𝑐𝑜𝑠ℎ𝑚3𝑥3+𝛼14𝑅31 𝑐𝑜𝑠ℎ𝑚4𝑥3 

𝐿6 = 𝛼11𝑅23 𝑐𝑜𝑠ℎ𝑚1𝑥3+𝛼12𝑅26 𝑐𝑜𝑠ℎ𝑚2𝑥3+𝛼13𝑅29 𝑐𝑜𝑠ℎ𝑚3𝑥3+𝛼14𝑅32 𝑐𝑜𝑠ℎ𝑚4𝑥3 

𝐿7 = 𝛽11𝑅21 𝑐𝑜𝑠ℎ𝑚1𝑥3+𝛽12𝑅24 𝑐𝑜𝑠ℎ𝑚2𝑥3+𝛽13𝑅27 𝑐𝑜𝑠ℎ𝑚3𝑥3+𝛽14𝑅30 𝑐𝑜𝑠ℎ𝑚4𝑥3 

𝐿8 = 𝛽11𝑅22 𝑐𝑜𝑠ℎ𝑚1𝑥3+𝛽12𝑅25 𝑐𝑜𝑠ℎ𝑚2𝑥3+𝛽13𝑅28 𝑐𝑜𝑠ℎ𝑚3𝑥3+𝛽14𝑅31 𝑐𝑜𝑠ℎ𝑚4𝑥3 

𝐿9=𝛽11𝑅23 𝑐𝑜𝑠ℎ𝑚1𝑥3+𝛽12𝑅26 𝑐𝑜𝑠ℎ𝑚2𝑥3+𝛽13𝑅29 𝑐𝑜𝑠ℎ𝑚3𝑥3+𝛽14𝑅32 𝑐𝑜𝑠ℎ𝑚4𝑥3 

𝐿10 = 𝛾11𝑅21 𝑐𝑜𝑠ℎ𝑚1𝑥3+𝛾12𝑅24 𝑐𝑜𝑠ℎ𝑚2𝑥3+𝛾13𝑅27 𝑐𝑜𝑠ℎ𝑚3𝑥3+𝛾14𝑅30 𝑐𝑜𝑠ℎ𝑚4𝑥3 

𝐿11 = 𝛾11𝑅22 𝑐𝑜𝑠ℎ𝑚1𝑥3+𝛾12𝑅25 𝑐𝑜𝑠ℎ𝑚2𝑥3+𝛾13𝑅28 𝑐𝑜𝑠ℎ𝑚3𝑥3+𝛾14𝑅31 𝑐𝑜𝑠ℎ𝑚4𝑥3 

𝐿12 = 𝛾11𝑅23 𝑐𝑜𝑠ℎ𝑚1𝑥3+𝛾12𝑅26 𝑐𝑜𝑠ℎ𝑚2𝑥3+𝛾13𝑅29 𝑐𝑜𝑠ℎ𝑚3𝑥3+𝛾14𝑅32 𝑐𝑜𝑠ℎ𝑚4𝑥3 

𝐿13 = 𝑑1𝑐𝑜𝑠ℎ𝑚1𝑥3 + 𝑒1𝑠𝑖𝑛ℎ𝑚1𝑥3)𝑅21+(𝑑2𝑐𝑜𝑠ℎ𝑚2𝑥3 + 𝑒2𝑠𝑖𝑛ℎ𝑚2𝑥3)𝑅24+(𝑑3𝑐𝑜𝑠ℎ𝑚3𝑥3 

+ 𝑒3𝑠𝑖𝑛ℎ𝑚3𝑥3)𝑅27+(𝑑4𝑐𝑜𝑠ℎ𝑚4𝑥3 + 𝑒4𝑠𝑖𝑛ℎ𝑚4𝑥3)𝑅30 

𝐿14 = 𝑑1𝑐𝑜𝑠ℎ𝑚1𝑥3 + 𝑒1𝑠𝑖𝑛ℎ𝑚1𝑥3)𝑅22+(𝑑2𝑐𝑜𝑠ℎ𝑚2𝑥3 + 𝑒2𝑠𝑖𝑛ℎ𝑚2𝑥3)𝑅25+(𝑑3𝑐𝑜𝑠ℎ𝑚3𝑥3 

+ 𝑒3𝑠𝑖𝑛ℎ𝑚3𝑥3)𝑅28+(𝑑4𝑐𝑜𝑠ℎ𝑚4𝑥3 + 𝑒4𝑠𝑖𝑛ℎ𝑚4𝑥3)𝑅31 

𝐿15=(𝑑1𝑐𝑜𝑠ℎ𝑚1𝑥3 + 𝑒1𝑠𝑖𝑛ℎ𝑚1𝑥3)𝑅23+(𝑑2𝑐𝑜𝑠ℎ𝑚2𝑥3 + 𝑒2𝑠𝑖𝑛ℎ𝑚2𝑥3)𝑅26+(𝑑3𝑐𝑜𝑠ℎ𝑚3𝑥3 +
          𝑒3𝑠𝑖𝑛ℎ𝑚3𝑥3)𝑅29+(𝑑4𝑐𝑜𝑠ℎ𝑚4𝑥3 + 𝑒4𝑠𝑖𝑛ℎ𝑚4𝑥3)𝑅32 

𝐿16=(𝑖𝜉𝑔1𝛼11𝑐𝑜𝑠ℎ𝑚1𝑥3 + 𝑔1𝑚1𝑠𝑖𝑛ℎ𝑚1𝑥3)𝑅21+(𝑖𝜉𝑔1𝛼12𝑐𝑜𝑠ℎ𝑚2𝑥3 + 𝑔1𝑚2𝑠𝑖𝑛ℎ𝑚2𝑥3)𝑅24+ 

(𝑖𝜉𝑔1𝛼13𝑐𝑜𝑠ℎ𝑚3𝑥3 + 𝑔1𝑚3𝑠𝑖𝑛ℎ𝑚3𝑥3)𝑅27 + (𝑖𝜉𝑔1𝛼14𝑐𝑜𝑠ℎ𝑚4𝑥3 + 𝑔1𝑚4𝑠𝑖𝑛ℎ𝑚4𝑥3)𝑅30 

𝐿17=(𝑖𝜉𝑔1𝛼11𝑐𝑜𝑠ℎ𝑚1𝑥3 + 𝑔1𝑚1𝑠𝑖𝑛ℎ𝑚1𝑥3)𝑅22+(𝑖𝜉𝑔1𝛼12𝑐𝑜𝑠ℎ𝑚2𝑥3 + 𝑔1𝑚2𝑠𝑖𝑛ℎ𝑚2𝑥3)𝑅25+ 

(𝑖𝜉𝑔1𝛼13𝑐𝑜𝑠ℎ𝑚3𝑥3 + 𝑔1𝑚3𝑠𝑖𝑛ℎ𝑚3𝑥3)𝑅28 + (𝑖𝜉𝑔1𝛼14𝑐𝑜𝑠ℎ𝑚4𝑥3 + 𝑔1𝑚4𝑠𝑖𝑛ℎ𝑚4𝑥3)𝑅31 

𝐿18=(𝑖𝜉𝑔1𝛼11𝑐𝑜𝑠ℎ𝑚1𝑥3 + 𝑔1𝑚1𝑠𝑖𝑛ℎ𝑚1𝑥3)𝑅23+(𝑖𝜉𝑔1𝛼12𝑐𝑜𝑠ℎ𝑚2𝑥3 + 𝑔1𝑚2𝑠𝑖𝑛ℎ𝑚2𝑥3)𝑅26+ 

(𝑖𝜉𝑔1𝛼13𝑐𝑜𝑠ℎ𝑚3𝑥3 + 𝑔1𝑚3𝑠𝑖𝑛ℎ𝑚3𝑥3)𝑅29 + (𝑖𝜉𝑔1𝛼14𝑐𝑜𝑠ℎ𝑚4𝑥3 + 𝑔1𝑚4𝑠𝑖𝑛ℎ𝑚4𝑥3)𝑅32  (69) 

 

UNIQUE CASES 

(i) For normal force 𝐹20 = 𝐹30 = 0 yield 

 (𝑢1̂, 𝑢3 ,̂ 𝑡33̂, 𝑡31̂, 𝑇̂, 𝑁̂)  = 
1

∆
((𝐿1, 𝐿4, 𝐿13, 𝐿16, 𝐿7, 𝐿10, )𝐹1̂(𝜉, 𝑝))   (70) 

 where𝐹1̂(𝜉, 𝑝) is given by equation (46) and (49). 

(ii) For thermal source 𝐹10 = 𝐹30 = 0 yield 

(𝑢1̂, 𝑢3 ,̂ 𝑡33̂, 𝑡31̂, 𝑇̂, 𝑁̂)  = 
1

∆
((𝐿2, 𝐿5, 𝐿14, 𝐿17, 𝐿8, 𝐿11, )𝐹2̂(𝜉, 𝑝))   (71) 

 where𝐹2̂(𝜉, 𝑝)is given by equation (47) 

(iii) For carrier density source 𝐹10 = 𝐹20 = 0 yield 

(𝑢1̂, 𝑢3 ,̂ 𝑡33̂, 𝑡31̂, 𝑇̂, 𝑁̂)  = 
1

∆
((𝐿3, 𝐿6, 𝐿15, 𝐿18, 𝐿9, 𝐿12, )𝐹3̂(𝜉, 𝑝))   (72) 

 where𝐹3̂(𝜉, 𝑝)is given by equation (48) 

 

LIMITING CASES 

a) If  𝜏𝑇 = 0and𝑚𝑜 = 1  in equations (63)-(68) we obtain the corresponding expressions for single phase 

lag parameter. 

b) If 𝑚𝑜 = 1 , 0 < 𝜏𝑇 < 𝜏𝑞 in equations (63)-(68) attain the related expressions of photothermoelastic with 

dual phase lag. 

c) If   𝜏𝑞 = 𝜏0 > 0, 𝜏𝑇= 𝑚𝑜 = 0 in equations (63)-(68) recover the corresponding expressions for one 

relaxation time. 
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d) If  𝜏𝑇 = 𝜏𝑞 = 0 in equation (63)-(68) yields the expressions for photothermoelastic medium. 

e) If 𝛾1= 𝛾3= 0,𝐸𝑔 = 0  𝑎𝑛𝑑 ,𝐷1
∗ = 𝐷3

∗ = 0 in equations (63)-(68)determines the expressions for 

orthotropic thermoelstic material. 

f) If  𝐶11 = 𝐶33 =  𝜆 + 2𝜇, 𝐶13 =  𝜆, 𝐶55 =  𝜇 , ∝1𝑡=∝3𝑡=∝𝑡, 𝛾1𝑑 = 𝛾3𝑑=𝛾𝑛 , 𝐷1 = 𝐷3 = 𝐷𝑒and  

g) 𝐾11 = 𝐾33 = 𝐾, we obtain the desired results for normal stress and thermal distribution (without N) with 

the change values of equation (30) where 𝑚1,𝑚2𝑎𝑛𝑑 𝑚3 be the roots of characteristic equation 𝐷6 +
𝑅33𝐷

4 + 𝑅34𝐷
2 + 𝑅35 = 0with general solution 

(𝑢1̂, 𝑢3̂, 𝑇̂)=   ∑ (1, 𝑎𝑗, 𝑏𝑗)
3
𝑗=1 𝐶𝑗𝑐osh𝑚𝑗𝑥3 and the coupling parameters are 

𝑎𝑗= ∑
𝑅39𝑚𝑗

3+𝑅40𝑚𝑗

𝑅36𝑚𝑗
4+𝑅37𝑚𝑗

2+𝑅38

3
𝑗=1    and𝑏𝑗=∑

𝑅41𝑚𝑗
2+𝑅42

𝑅36𝑚𝑗
4+𝑅37𝑚𝑗

2+𝑅38

3
𝑗=1  

 

NUMERICAL RESULTS AND DISCUSSION: 

For the numerical calculations we take material constants for an isotropic Silicon (Si) material given by 

(Hobiny and Abbas[26]). 

𝜆 = 3.64 𝑁 𝑚2⁄  , 𝜇 = 5.46𝑁 𝑚2⁄ ,𝛾𝑡 = 6.55𝑁 𝑚2𝐾⁄ ,𝛾𝑛 = −0.0195𝑁 𝑚2⁄ ,𝜌=0.2330 𝑘𝑔 𝑚3⁄  , 𝑇0 = 300 K 

, 𝑇𝑝 = 2 ps, 𝐾 = 150 w mk⁄ ,  𝐸𝑔 = 1.11 eV , 𝐶𝑒 = 695 𝐽 𝑘𝑔 𝐾⁄  , 𝜏 = 5 s ,𝜏𝑜 = 0.2 𝑝𝑠 , 𝑑𝑛 = −9 𝑚
3 , 

𝐷𝑒 =2.5 𝑚2/𝑠 

For orthotropic material we have taken following values 

𝐶11=19.45 𝑁 𝑚2⁄ , 𝐶13=6.41 𝑁 𝑚2⁄  ,𝐶33=16.57 𝑁 𝑚2⁄ , 𝐶55=7.96 𝑁 𝑚2⁄ ,𝛼1𝑡 = 3.25𝑁 𝑚2⁄ 𝐾, 𝛼3𝑡 =
3.10𝑁 𝑚2⁄ 𝐾, 𝛾1𝑑 = −0.029715   𝑚

3, 𝛾3𝑑 = −0.02714𝑚
3,𝜌=0.2328 𝑘𝑔 𝑚3⁄ ,𝑇0 = 300 K ,𝑇𝑝 = 2 ps 

,𝐾11 = 192 w/mk , 𝐾33 = 190 w/mk, 𝐸𝑔 = 1.11 eV , 𝐶𝑒 = 710 𝐽 𝑘𝑔 𝐾⁄  , 𝜏 = 5 s , 𝐷1
∗ = 4.0𝑚2/𝑠, 𝐷3

∗ =

3.5𝑚2/𝑠, , 𝑛𝑜 = 10^20𝑚
−3 

The MATLAB (R2016a) software has been used for numerical computation for the following cases: 

i.Orthotropic photothermoelastic with dual phase lag(OPTP). 

ii.Orthotropic photothermoelastic with LS theory (OPTL). 

iii.Orthotropic photothermoelastic without dual phase lag (OPT). 

iv.Isotropicphotothermoelastic with dual phase lag (IPTP). 

Figures (1.1)-(1.3) and (1.13-1.15)represents uniformly distributed normalforce(UDF), figures(1.4)-(1.6) and 

(1.16)-(1.18)represents linearly distributed normal force(LDF), figures(1.7)-(1.9) and (1.19)-(1.21) represents 

thermal source(TS), and figures(1.10)-(1.12) and (1.22)-(1.23) represents carrier density source(CDS). In all 

the figures, solid line correspond to OPTP for ,𝜏𝑇 = 0.02 ,𝜏𝑞 = 0.04, 𝑚𝑜 = 1, dash line correspond to OPTL 

for, 𝜏𝑇 = 0 ,𝜏0 = 0.04,𝑚𝑜 = 0, dotted linecorrespond to OPT for,𝜏𝑇 = 𝜏𝑞 = 0 and dash cum dot 

linecorrespond to IPTP for,𝜏𝑇 = 0.02 ,𝜏𝑞 = 0.04,𝑚𝑜 = 1. 

Case-I:Figure (1.1)-(1.12) depict the variations of all field variables with plate length 𝑥1 on the plane 𝑥3 = 1. 

Normal force (UDF): 

Figure 1.1 depicts trend of normal stress 𝑡33vs 𝑥1 . Near the loading point, 𝑡33 shows decreasing trend for all 

the cases whereas far away from it 𝑡33attains increasing trend except IPTP. In the initial range of 𝑥1,OPT 

maximize the magnitude of 𝑡33in comparison to OPTP,OPTL and OPT. All the curves correspond to 𝑡33 

depict fluctuating behavior for entire range of 𝑥1. 

Figure 1.2 displays variations of temperature distribution T vs𝑥1. T shows increasing trend near the point of 

application of source for all cases except IPTP, whereas away from it T gets increasing trend for all the cases. 

The magnitude of T enhanced due to one relaxation time as compare to other cases. The trend and variation of 

OPT and OPTP are similar with difference in magnitude. 

Figure 1.3 demonstrates trend of carrier density distribution N vs𝑥1.Initially, for the limited range of 𝑥1, N 
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depicts increasing trend for all curves except IPTP. Phase lag enhanced the magnitude of N in contrast to 

OPTL, OPT and IPTP. For intermediate values of 𝑥1 , N follows oscillatory behavior for all cases. 

Normal force (LDF): 

Figure 1.4 shows trend of normal stress 𝑡33vs 𝑥1. Near the point of loading 𝑡33 depicts the decreasing trend for 

all cases. In the initial range of 𝑥1 , the magnitude of 𝑡33 is higher due to phase lag in comparison to other 

cases. The values of 𝑡33 determine a bell shaped curve for IPTP in the range  5 ≤ 𝑥1 ≤ 13. 

Figure 1.5 displays variation of temperature distribution T vs𝑥1. For initial values of 𝑥1 , T shows decreasing 

trend for OPTP, OPTL and IPTP except OPT. The magnitude of T is higher for OPT in comparison to other 

cases. In the range11 ≤ 𝑥1 ≤ 20 , phase lag depicts a bell shape curve correspond to T. 

Figure 1.6 demonstrates variation of carrier density distribution N vs𝑥1. All the curves for OPTP, OPTL, OPT 

and IPTP corresponds to N display decreasing and increasing trend near and away from the loading point.  N 

attains maximum value for IPTP at the initial values  of 𝑥1, whereas phase lag enhance the magnitude of N in 

the finite domain of  𝑥1. 
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Thermal Source: 

Figure 1.7 displays trend of normal stress 𝑡33vs 𝑥1. Initially, the values of 𝑡33 depict decreasing trend for 

OPTP,OPTL and OPT. Near the point of loading, the magnitude of 𝑡33 is higher due to phase lag in 

comparison to other cases. The behavior of 𝑡33shows a parabolic curve for IPTP in the range 10 ≤ 𝑥1 ≤
16.The trend and variation of OPTL and OPTP are similar with difference in magnitude of 𝑡33. 

Figure 1.8 shows trend of temperature distribution T vs𝑥1. The values of T decrease initially for OPTL and 

OPT, whereas increase for OPTP and IPTP in limited range of 𝑥1. All the curves for OPTP, OPTL, OPTand 

IPTP correspond to T shows oscillatory behavior in the range 2≤ 𝑥1 ≤ 20.Phase lag enhances the magnitude 

of T in the range 10 ≤ 𝑥1 ≤ 16. 

Figure 1.9 demonstrates variation of carrier density distribution N vs𝑥1. One relaxation time enhances the 

magnitude of N near the loading point in comparison to other cases. All the curves for OPTP, OPTL, OPT and 

IPTP correspond to N follow oscillatory trend for the range 4 ≤ 𝑥1 ≤ 20 . 

Carrier density source: 

Figure 1.10 displays trend of normal stress 𝑡33vs 𝑥1. Phase lag enhances the magnitude of 𝑡33 in the range 1 ≤
𝑥1 ≤ 4 in comparison to other cases. Away from the point of application of the source𝑡33 attains increasing 

trend for all the cases. All curves for OPTP, OPTL, OPT and IPTP refers to 𝑡33 shows fluctuating behavior for 

the entire range 4 ≤ 𝑥1 ≤ 20. 

Figure 1.11 shows trend of temperature distribution T vs𝑥1. T attains decreasing trend for all cases except 

OPTL in initial range of 𝑥1. The magnitude of T is higher due to one relaxation time in comparison to other 

cases. For all cases, T depict oscillatory trend for the intermediate values of 𝑥1.  

Figure 1.12 depicts trend of carrier density distribution N vs𝑥1. Due to phase lag, the magnitude of N is 

maximum for the entire domain of 𝑥1,except at two points in contrast to other cases. All the curves for OPTP, 

OPTL, IPTP and OPT corresponds to N follows fluctuating behavior for the whole range of 𝑥1. 
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Case-II: Figure (1.13)-(1.24) show the variations of all field variables with plate thickness𝑥3 on the plane 

𝑥1 = 1. 

Normal force (UDF): 

Figure 1.13 depicts trend of normal stress 𝑡33vsd. In the range |𝑑| ≤ 5, 𝑡33 shows oscillatory trend for all the 

cases.The magnitude of 𝑡33 is higher at the middle point of the plate for IPTP as compare to OPTP, OPTL and 

OPT. The value of 𝑡33 reduces just near the edges (𝑑 = −5 𝑎𝑛𝑑 𝑑 = 5) for all the cases. Thebehavior and 

variation of OPT and OPTP is similar although a difference in their magnitude is noticed. 

Figure 1.14 displays trend of temperature distribution Tvsd. For all cases, behavior of Tis oscillatory for the 

intermediate values of d. The magnitude of T remains higher due to one relaxation time except at two points, 

in comparison to rest of the cases.Thevalues of 𝑇decrease just near the edges (𝑑 = −5 𝑎𝑛𝑑 𝑑 =  5), for all the 

cases. The trend of T for OPTL and IPTP is opposite in comparison to OPTP and OPT at the middle point of 

the plate. 

Figure 1.15 demonstrates trend of carrier density distribution N vsd.N shows fluctuating behavior for all the 

cases in whole range of d.Due to phase lag the magnitude of N is higher at 𝑑 = −1 and 𝑑 = 1in contrast  to 

OPTL, OPT and IPTP.The magnitude of Ndisplaysdecreasing trend just near the boundaries (𝑑 =
−5 𝑎𝑛𝑑 𝑑 =  5) for all the cases. 

Normal force (LDF): 

Figure 1.16 shows trend of normal stress 𝑡33vsd.𝑡33 gets maxima at the middle point of the plate for OPTP in 

contrast to OPTL, OPT and IPTP. The magnitude of 𝑡33decreases for IPTP and increase for OPTP, OPTL and 

OPT near the edges (𝑑 = −5 𝑎𝑛𝑑 𝑑 =  5).The trend and variation of OPT and OPTP is similar while a 

difference in magnitude is observed. 
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Figure 1.17 displays trend of temperature distribution T vsd. T depicts oscillatory trend for all the cases in the 

range − 5 ≤ 𝑑 ≤ 5. The magnitude of T is higher at 𝑑 = −1 and 𝑑 = 1in the absence of phase lag as 

compare to other cases. Just adjacent the boundaries the magnitude of T decrease for IPTP and increase for 

OPTP, OPTL and OPT. Variation and behavior of T for model OPTP and OPT are similar. 

Figure 1.18 demonstrates trend of carrier density distribution N vsd.In all the cases magnitude of N shows 

fluctuatingnaturefor the entire range of d. The value of N is higher at the middle point of the plate for model 

IPTP as compare to OPTP, OPTL and OPT. The magnitude of N decreases for IPTP and increases for OPTP, 

OPTL and OPT near the edges (𝑑 = −5 𝑎𝑛𝑑 𝑑 = 5). 
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Thermal Source: 

Figure1.19 shows trend of normal stress 𝑡33vs d. The behavior and variation of 𝑡33,for IPTP are opposite to 

OPTP, OPTL and OPT for all values of d. The values of 𝑡33 attain oscillatory trend for all the cases in the 

range |𝑑| ≤ 5.Phase lag enhanced the magnitude of 𝑡33at = −1 and 𝑑 = 1. Thebehavior and variation 

of𝑡33for OPTP,OPT and IPTP are similar with difference in their magnitude. 

Figure1.20 displays trend of temperature distribution T vs d. T depicts oscillatory trend for all the cases in the 

range |𝑑| ≤ 5. The magnitude of T is higher at the middle of the plate for OPTP as compare to other cases. 

The values of T decrease for OPTL and IPTP and increase for OPTP and OPT, near the edges (𝑑 =
−5 𝑎𝑛𝑑 𝑑 =  5).  

Figure1.21 depicts trend of carrier density distribution N vs d. In all the cases, the magnitude of N shows 

fluctuating behavior in the bounded range of d.N attains maxima in the range − 1 ≤ 𝑑 ≤ 1, for OPTL. Near 

the boundaries the values of N decrease for all cases except OPT. 

Carrier density source: 

Figure 1.22 shows trend of normal stress 𝑡33vs d.𝑡33shows oscillatory trend for all the cases in the range 

− 5 ≤ 𝑑 ≤ 5. The magnitude of 𝑡33  is higher at the middle of the plate for IPTP as compare to OPTL, OPTP 

and OPT. The magnitude of 𝑡33decrease for OPTP, whereasincrease for OPTL, OPT and IPTP near the edges 

(𝑑 = −5 𝑎𝑛𝑑 𝑑 =  5).  

Figure 1.23 demonstrates trend of temperature distributionT vs d. T depictsfluctuating trend for all the cases 

for the intermediate values of d. The magnitude of T is higher at the middle point of the plate,due to one 

relaxation time. The values of T decrease for OPTP, OPTL andIPTP, however increase for OPT near the 

boundary points(𝑑 = −5 𝑎𝑛𝑑 𝑑 =  5). 

Figure 1.24 depicts trend of carrier density function N vs d. In all the cases magnitude of N shows oscillatory 

behavior in the range− 5 ≤ 𝑑 ≤ 5.One relaxation time enhances the magnitude of N as compare to IPTP, 

OPTP and OPT. The value of N decreases for IPTP, OPTP and OPTL and increase for OPT near the edges 

(𝑑 = −5 𝑎𝑛𝑑 𝑑 = 5). 
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CONCLUSIONS 

In this paper a new model of orthotropic photothermoelastic material has been established due to various 

loadings (thermomechanical and carrier density source). Laplace and Fourier transform are used to solve the 

problem. Specific types of sources are taken to demonstrate the utility of the problem. Numerical conversion 

technique has been employed to obtain the transformed expressions into the physical domain and presented in 

the form of figures. From the numerical results the following conclusions are made  

1. For normal force (UDF),in the initial range of 𝑥1, magnitude of  𝑡33 for OPT is higher as compare toother 

cases. The behavior and variation of  𝑡33 for OPTP, OPTLandOPT are similar with difference  in 



Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022) 

International Journal of Mechanical Engineering 

592 

magnitude. 

2. For normal force (UDF), one relaxation time enhances the value of T, near the application of the source. 

All the curves correspond to T attains increasing trend away from the loading point. 

3. For normal force (UDF), phase lag maximize the value of N, for the initial range of 𝑥1, in comparison to 

other cases. 

4. For normal force (LDF), near the point of loading, themagnitude of 𝑡33higher due to phase lag. Forthe 

starting values of 𝑥1, negligible difference in values of 𝑡33 is observed for OPTP and OPT. 

5. For normal force (LDF), in the bounded rangeof 𝑥1,the magnitude of T increases due to absence of phase 

lag. In the range 11 ≤ 𝑥1 ≤ 20 , phase lag depicts a bell shape curve correspond to T. 

6. For normal force (LDF), N attains higher value for IPTP in comparison to other cases. 

7. For thermal source, near the application of the source phase lag maximize the values of 𝑡33. The behavior 

of 𝑡33 is parabolic in nature for  the range10 ≤ 𝑥1 ≤ 16. 

8. For thermal source, phase lag enhances the magnitude of T, near the loading point. 

9. For thermal source, one relaxation time increases the magnitude of N, near the application of the 

source,in comparison to other cases. 

10. For carrier density source, 𝑡33 have maxima in the bounded domain of 𝑥1for OPTP. 

11. For carrier density source, one relaxation time attains higher magnitude of T near the loading point.T 

depicts decreasing trend for all cases, in the initial range of 𝑥1 Oscillatory behavior for all the curves 

related to T is observed in the range 4 ≤ 𝑥1 ≤ 20. 

12. For carrier density source, the magnitude of N is higher for the whole domainof 𝑥1, due to phase 

lag,except at two points in contrast to other cases. 

13. For normal force (UDF), the magnitude of 𝑡33 is higher at the middle point of the plate for IPTP as 

compare to other cases. Variation and trend are similar for OPT and OPTP corresponds to𝑡33with change 

in magnitude.  

14. For normal force (UDF), One relaxation time enhanced the magnitude of T at 𝑑 = −1 and 𝑑 = 1, 

whereas the values of 𝑇 decrease just near the edges (𝑑 = −5 𝑎𝑛𝑑 𝑑 =  5), for all the cases. 

15. For normal force (UDF),𝑡33 gets maxima at the middle point of the plate for OPTP in contrast to OPTL, 

OPT and IPTP. 

16. For normal force (LDF),𝑡33attains maximafor intermediate values of d, due to phase lag. 

17. For normal force (LDF), in the absence of phase lag T gets maximum magnitude at  𝑑 = −1 and 𝑑 = 1. 

T attains lowest values for IPTP for the whole range of d. 

18. For normal force (LDF), the value of N enhances in absence of orthotropy. 

19. For thermal source, phase lag boost the magnitude of 𝑡33at 𝑑 = −1 and 𝑑 = 1.𝑡33for IPTP, behave 

opposite in comparison to other cases, for the intermediate values of d. 

20. For thermal source, the magnitude of T remains higher at the middle of the plate for OPTP as compare to 

rest of the cases. 

21. For thermal source, N shows fluctuating behavior for the bounded range ofd. 

22. For carrier density source, in absence of orthotropy, 𝑡33attain maxima at the middle of the plate. 

23. For carrier density source,T and N determine the higher magnitude for one relaxation time, in comparison 

to other cases. 

24. All the curves for OPTP, OPTL, OPTand IPTP corresponds to 𝑡33,T and N w.r.t. thickness,are symmetric 

around the middle point of the plate. 

It is concluded that normal stress, temperaturedistribution and carrier density distribution show a fluctuating 

behavior in presence and absence of orthotropy, phase lag and one relaxation time. Non-uniform pattern of 

curves is followed by the resulting quantities for normal force over UDF and LDF, thermal source and carrier 
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density source with respect to distance.Oscillatory behavior is observed for normal force, thermal source and 

carrier density function with respect to thickness of the plate. 
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