
DOI : https://doi.org/10.56452/7-6-122

Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022)

International Journal of Mechanical Engineering

1100

ISSN: 0974-5823 Vol. 7 No. 6 June, 2022

International Journal of Mechanical Engineering

SOFTWARE TESTING TOOLS AND

FRAMEWORKS WITH VISUAL GUI

TECHNIQUES IN INDUSTRIAL

PRACTICE
Priyanka Yadu

 School of Information Technology, Mats University, Raipur, C.G., India

(priya_tc@rediffmail.com) https://orcid.org/0009-0002-9783-0926

School of Information Technology, Mats University, Raipur, C.G., India

ABSTRACT

Software testing with visual Graphical Visual Interface (GUI) techniques is being done while

maintaining a high level of accuracy with the ever-growing demand for speedier delivery of

high-quality software, often known as "Quality at Speed". The use of relevant testing

methodology(s) and the choice of suitable test automation tools and frameworks are two key

components for a successful and efficient software testing project. A mix of numerous distinct

testing processes is often necessary when testing software to make sure it is up to par; the use

of a single testing method will not be sufficient. Similar to the previous point, finding the right

tool combination for automated testing is difficult because no single tool can meet all of the

needs. The first step in performing successful and efficient software testing is to familiarise

industrial professionals with the various testing techniques, tools, and frameworks. An in-depth

examination of the various test automation tools and frameworks is provided in this paper. An

explanation of the various frameworks for test automation was delivered after an overview of

automated testing and the categories it fits under. Finally, a brief summary of a few of the most

popular automation solutions was provided, along with a comparison of those programmes.

Keywords: - Fasting, delivery, Automation tools, Testing methods and Practices

INTRODUCTION

Software testing is a crucial aspect of software system quality assurance. However, software

testing is costly and accounts for roughly half of a typical software project's development costs

[30]. Hence, software testing is referred to as a formal process in which a single piece of

software, a group of connected software components, or a complete package is tested by

executing the programmes on a computer. On approved test cases, all associated tests are run

in accordance with approved test procedures [12]. GUI is one of the unique forms of software

testing that is often used to examine the graphic user interface features of an application or

piece of software. The majority of the efforts that have been put into researching software

testing have been focused on developing new methods and determining how well they function

in real-world development settings. Testing approaches have had a persistent hard time keeping

Dr. Bhawana Narain

 (narainbhawna@gmail.com)

mailto:priya_tc@rediffmail.com
mailto:vaibhavs@matsuniversity.ac.in

DOI : https://doi.org/10.56452/7-6-122

Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022)

International Journal of Mechanical Engineering

1101

up with the more rapid shifts in paradigms across the entirety of the software development

process.

The GUI testing process is either manually or automatically implemented or repeatedly

executed by a third-party organization, as opposed to the developers or end-users. The

implementation of a graphic user interface is required for the execution of the other categories

of software testing techniques. It is anticipated that in the not too distant future, the marketing

of software will place a greater emphasis on the content of the software. As a consequence of

the deterioration of this situation, testing procedures are becoming an increasingly significant

component of the whole picture. Unfortunately, the real software testing and quality assurance

(QA) practises that are utilised by software professionals are not extensively documented by

recent statistics. As a result, in order to make an effort to find these practises, a comprehensive

reviews of software testing strategies [10]. The primary objective of any form of testing is to

deliver a high-quality product that satisfies the customer's requirements and is bug-free. Shift-

left testing is a process that can be implemented earlier in the SDLC (Software Development

Life Cycle) to enhance the product's quality. Instead of waiting until an application is complete

to perform system testing, the development teams devote more time and resources to unit and

interface testing. Consequently, early error detection in the development process will reduce

the costs associated with their correction.

Recent research on software testing for visual GUI has focused primarily on the development

of new methods and the evaluation of their efficacy in real-world development scenarios. This

has been the principal focus of the majority of research endeavours [11]. Throughout the entire

history of software development, testing approaches have had a difficult time keeping up with

the ever-faster trends in software development paradigms. To bring about a positive shift in

the current state of practise, it is necessary to make substantial efforts in predicting future

trends, gaining a comprehension of the perspectives of stakeholders, and identifying problem

areas in software testing.[3]

Recent efforts in software testing research have focused primarily on the development of novel

methodologies and the assessment of their applicability to actual development scenarios with

visual GUI features. Current software testing research has been on-going for quite some time.

This is a relatively recent development in the academic discipline. Throughout the entire

history of software development, testing methodologies have struggled to keep up with the

ever-increasing rate of change brought about by alterations in software development

paradigms [5]. The testing with GUI has excellent features for software testing mechanisms.

The GUI testing methods (Figure 1) for software are utilized to execute or allocate tests on a

Selenium Grid with a fixed Selenium Web Driver. GUI testing will enable us to assess an

application's functionality from the user's perspective. Sometimes the system's internal

performance is correct but the user interface is not; therefore, GUI testing is an excellent

method for testing other types of applications. If there is to be a positive shift in the present

state of practise, significant effort will be required in the areas of trend prediction, gaining an

understanding of the mentalities of stakeholders, and identifying software testing problem

areas in GUI. In order for there to be a positive shift in the current state of practise, there must

be a positive shift in the current state of practise [6].

NEEDS OF SOFTWARE TESTING WITH VISUAL GUI TECHNIQUES FOR

INDUSTRIAL ASPECTS

Software testing is the process of putting a product through its trials so that developers can

identify bugs and other issues while it is operational. As a component of the quality assurance

procedure, it contributes in some way to the final outcome. With the aid of this resource,

DOI : https://doi.org/10.56452/7-6-122

Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022)

International Journal of Mechanical Engineering

1102

software developers are able to construct error-free products. In addition, it assists in

validating a product in accordance with consumer demands and expectations. SDLC stands

for "software development lifecycle," which refers to the procedure used by the software

industry to create new software and it is effective with GUI visual techniques. Typically, there

are five processes involved in a scenario (visual GUI testing). This process encompasses the

phases of analysis, design, implementation, testing, and maintenance. The software

development process begins with the client submitting requirements, which serve as the

process's starting point. The process continues through Analysis, Design, Implementation,

Testing, and ongoing maintenance. After the implementation phase concludes, it is

hypothesised that testing will commence. This is anticipated to take place at some stage in the

future. In actuality, testing is a parallel procedure that begins with the accumulation of

requirements for the evaluated product or service. After providing an explanation of the

project's requirements, it is necessary to conduct a parallel check. Imagine for a moment that

an error can be discovered before it is implemented, as opposed to after it has already been

implemented [9].

The need of software testing is to detect defects and other potential issues within a system.

Using the most effective and efficient test cases, it is possible, with a high degree of

probability, to find defects that were not previously discovered and undetected. The testing

phase of a project is both the most essential and the most expensive phase. It is essential that

testing consume forty percent of the total effort expended. In spite of this, it is not always

feasible to guarantee that software is bug-free. If there is a defect in the customer-delivered

product, it is the responsibility of the testing team to identify it and make the necessary

adjustments. Because of this, it is crucial that the software developed by software evaluators

contains no flaws. The qualifications of an examiner consist of operability, observability,

controllability, decomposability, simplicity, stability, and the capacity to comprehend.

In industrial process, the advancements in software processes, methods, and solutions, software

complexity is increasing at an exponential rate and software developers face greater challenges

than ever before. It is of the utmost importance that software engineers have access to the

proper software tools in order to increase their capacity to produce high-quality software

products effectively and efficiently. The industry with software testing methods examines the

most recent practises that have emerged in the industry of software tools, as well as the most

recent and anticipated future developments in the creation of software tools. The applications

throughout the software lifecycle, but our primary focus is on aspects of software tools that

have changed significantly in recent years and are expected to change significantly in the near

future as tools continue to advance. In other words, we provided an overview of the tool

applications that occur throughout the software development lifecycle [4]. The internal

structure of tools, the availability of multiple view interfaces, integration options, collaborative

work support, and an increasing reliance on automated assistance within tools are some of the

characteristics.

GUI TESTING METHODS USED IN INDUSTRIAL PRACTICES

Experts in industry who are doing many software testing techniques with GUI and rectify the

errors in software development and is effective with the techniques, they use to conduct using

evolutionary testing. In recent years, many researchers have made some encouraging

discoveries regarding automated functional testing, also known as black-box testing. However,

despite the encouraging results, these techniques have had only limited success when applied

to complex systems in the real world. As a direct result, information regarding the scalability,

applicability, and acceptability of these approaches in the corporate sector is scarce. Graphical

DOI : https://doi.org/10.56452/7-6-122

Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022)

International Journal of Mechanical Engineering

1103

User Interface testing must be performed and the development of the software product depends

on how the GUI interacts with the end-user and facilitates the use of its various features.

Graphical User Interface testing is essential for ensuring that an application looks and functions

uniformly across multiple platforms and browsers. Therefore, GUI testing is very important

because it ensures a substantial customer base and business value. In GUI testing, Manual GUI

testing can sometimes be a repetitive and laborious procedure. However, Automation is

strongly recommended for GUI testing. There are distinct types of testing techniques for GUI-

based software, including analog recording and object-based recording. Analog Recording is

the first form of graphical user interface testing. Using analog recording, individuals will

always have access to the GUI testing tools. The GUI testing tools are used to capture the

precise keystrokes, mouse movements, and other user actions and then save them to a file for

playback. Let's examine an illustration to comprehend the fundamental functionality of analog

recording. A second form of GUI testing is object-based recording. In this manner, the testing

tool can programmatically connect to the application that requires testing and observe each of

the specific user interface modules, such as a text box, icon, and hyperlink, as a separate object

[24].

Figure 1. GUI Testing Techniques

The first testing procedure for GUIs is manual testing. Manually utilizing the application is

the most straightforward method for GUI testing. Model-based Testing was necessary because

we knew that a model is a visual narrative of System performance that enables us to

comprehend and predict the performance or activity of the system. There are two categories

of GUI testing that can be performed with the aid of Automation tools. Throughout the

recording phase, the automation tool encapsulates the test processes. In addition, these

recorded test steps are implemented on the application under test during playback. The record

and replay method requires a test engineer to use a particular instrument to record a testing

session. The substantial advantage of the Record and replay method is that it does not require

coding expertise, which lowers the barrier for us to use it. The primary disadvantage of record-

and-playback tests is their vulnerability. Currently, hybrid tests represent an alternative

method for GUI testing. It is advantageous for non-technical users to record their sessions in

DOI : https://doi.org/10.56452/7-6-122

Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022)

International Journal of Mechanical Engineering

1104

order to develop a test case. And then, a user who is conversant with coding can technically

control these recorded tests [24].

Other Software Testing Methods used in Industry

White Box testing

During this testing, the internal workings of the system as well as its structure are made visible.

As a result, it is a very cost-effective method for locating and fixing issues, as defects are often

detected before they become a source of inconvenience as a result of using this method. Testing

in the white box is also sometimes referred to as testing in the clear box, white box analysis, or

just plain old box analysis. It is a technique for finding flaws in which the tester is provided

with comprehensive information regarding the operation of the various program components.

This methodology is not utilized frequently for the purpose of debugging large systems and

networks; rather, it is utilized for the purpose of developing applications for the internet. Some

examples of different kinds of white box testing include control structure testing, basic path

testing, and loop testing [19].

Figure 2. WHITE BOX TESTING

Black Box testing

It is claimed that a piece of technology is a "black box" when the one who makes use of it is

unable to fully comprehend it or obtain access to its inner workings. This method of testing

satisfies the requirements that the programme lays out for its output and supports the program's

specifications, but it does not collect any information about the underlying structure of the

programme. Finding out how well the system fulfils the requirements that have been

established for the system is the primary goal of this project. When carrying out black box

testing, very little or no information is gathered concerning the internal logical structure of the

system being tested. As a result, it focuses solely on investigating the most fundamental

component of the system. It ensures that each input is accepted properly and that outputs are

created in the appropriate manner at all times. There are many different kinds of black box

testing, some examples of which include the equivalence class partitioning test, the boundary

value analysis test, and the cause effect graphing test [20].

DOI : https://doi.org/10.56452/7-6-122

Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022)

International Journal of Mechanical Engineering

1105

Figure 3. BLACK BOX TESTING

Grey Box Testing

In recent years, a third testing method known as "grey box testing" has been jointly considered

alongside the other two methods. It is defined as testing a software package while

simultaneously having some knowledge of the software's core logic and the code that underlies

it. It favors white box testing over black box testing and makes use of the system's own

information structures and algorithms for developing test cases. Black box testing is also

performed. This approach involves performing reverse engineering in order to determine

boundary values. Because it does not require the tester to have access to the application's

internal ASCII text file, grey box testing is objective and does not intrude on the user

experience [21].

Figure 4. GRAY BOX TESTING

Manual Vs Automated Testing

The testing of software can be carried out using one of two primary approaches:

Testing Software by Hand Is Called "Manual Software Testing," and it's exactly what it

sounds like: the process of testing software by hand, either by one person or by several people

working together. Automated Software Testing is the process of producing test scripts that

can then be run automatically, repetitively, and through a great deal of iteration automated

software testing is the process of producing test scripts that can then be run automatically.

Obtaining the appropriate ratio of software testing an efficient method for testing software often

consists of a variety of different sorts of tests that are carried out in a manner that combines

both manual and automated testing. The quality criteria of the application will dictate the mix

of tests to be performed as well as the total number of tests. Each approach, whether it be

automatic or manual, is applied according to the circumstances [22].

Manual testing is most effectively utilized for tests that call for spontaneity and inventiveness,

in addition to a significant amount of subjectivity, user interface or usability testing, and

exploratory/ad hoc testing. Automated testing is most effective when applied to tests that are

specific and repeatable.

DOI : https://doi.org/10.56452/7-6-122

Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022)

International Journal of Mechanical Engineering

1106

Table 1: Comparison between Manual and Automation Testing [23]

Manual Testing Automation Testing

The simple low-level type for each QA runs

all tests without using any software

A QA uses special tool for running the tests.

A time-consuming process if it is done Time-saving, less manual effort, QA can re-

run same tests again and again

Can be repetitive and boring Helps to avoid repetitive tasks as QA

delegates them to computer.

It is suitable for any software products It is suitable for stable system and used

mainly for regression

It helps to define whether automation setting

is possible or necessary

100% automation is not possible in this

scenario

Due to this, the industry is mainly tried to opt automation testing as means of assisting software

developers with the testing of their products for generating high-quality test cases. Throughout

the past several years, the use of manual testing has been supplemented by the investigation of

numerous methodologies for the development of automated tests. The objective of this

investigation was to complement manual testing. Even if there is some evidence to suggest that

autonomously generated test suites may cover even more code than those manually written by

engineers, this does not imply that these tests are effective at locating software flaws. This does

not necessarily imply that these evaluations are beneficial. Through comparative research, the

advantages and disadvantages of manual testing versus automated code coverage-directed test

development should be determined. This is due to the fact that automated code coverage-

directed test creation and manual testing are two inherently distinct techniques, and each has

its own unique set of inherent limitations.[11]

In this study, we doctrinally reviewed the automated test creation and compare it to test suites

prepared manually by industrial engineers for 61 programmes from an actual industrial train

control system. Using a real-world industrial train control system, a comparison is conducted.

To achieve this, the information collected by the genuine industrial train control system (or

their websites). This system contains software that was developed using IEC 61131-3 [10], a

language frequently employed in the safety-critical industry for the creation of control

software. This language was used to develop the included software for this system. According

to the results of our case study, automated test generation can accomplish code coverage

comparable to that of manual testing conducted by industrial engineers in a fraction of the time

required by manual testing [21-22].

Automated test generation has the potential to reduce testing time by approximately 90% when

designing software in conformance with IEC 61131-3. Even if complete code coverage is

achieved, there is no guarantee that automatically generated test suites are superior to manually

created test suites in terms of their ability to detect errors. 56% of test suites developed with

COMPLETEEST detected fewer defects than test suites developed manually by industrial

engineers. This distinction was discovered across all software categories. As a consequence,

our case study led us to this conclusion. It appears that manually written tests can detect specific

categories of bugs (such as logical replacement, negation insertion, and timer replacement)

more effectively than computer-generated tests can [22]. When comparing manual tests to

computer-generated tests, this is the case. If, in addition to structural characteristics, the

DOI : https://doi.org/10.56452/7-6-122

Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022)

International Journal of Mechanical Engineering

1107

identification of these specific modifications was used as the coverage criterion by the

automated test generation tool, we could generate more effective test suites.[2]

CONTINUOUS INTEGRATION AND TESTING WITH GUI VISUAL INTERFACE

The software development discipline known as "continuous delivery" refers to the practise of

producing high-quality software that can be deployed into production at any time. This is a

possibility at any time. However, despite the fact that written instructions on how to put it into

practise can be found in relevant research, there have been a great deal of difficulties in doing

so. The examination procedure is one of these most difficult obstacles. On the one hand, the

relevant corpus of academic research has uncovered a number of Continuous Delivery testing

challenges. According to a number of sources, Continuous Testing is the aspect of Continuous

Delivery that is deemed to be absent.

Visual GUI testing (VGT) is the third iteration of GUI-based testing methods [25]. It is a tool-

driven technique for interacting with and asserting the behaviour of a given System Under Test

(SUT) using image recognition. The advantage of VGT is its adaptability to any GUI-based

system. Due to the relative immaturity of VGT technologies and instruments, however, studies

have reported robustness issues with VGT. In particular, Alegroth et al. [26] discovered that

faulty image recognition could lead to false test results. Evidently, efficient and effective

implementation of test automation in the software industry, particularly for VGT, may be

difficult. Particularly, based on the authors' experience, when VGT and GUI test automation

are not properly planned, designed, or implemented by test engineers, the efforts have resulted

in disappointments and various negative outcomes (such as test artifacts becoming less useful

or even unusable for regression testing).

We investigated a broad range of testing issues and evaluate a vast array of proposals,

methodologies, approaches, methods, frameworks, tools, and solutions. We attempted to

determine whether Continuous Testing is the missing component of Continuous Delivery by

examining the various definitions of Continuous Testing and the testing phases and levels that

are part of Continuous Delivery. In addition, we reviewed the various implementations of

Continuous Testing. We have reviewed a number of problems have not yet been resolved. [6]

We've observed that the first-generation VGTs are almost extinct (i.e., they're rarely used) and

that, when test teams want to conduct automated GUI testing, they use the second-generation

tools. The adoption of VGT (3rd generation) instruments is beginning to increase in the

industry. To determine the type of GUI or VGT testing instruments to be selected and used

[27], the industry considers a number of factors, such as the type of GUI being tested ("native",

web, or mobile application). There are many commercial and open-source utilities available

for each of the aforementioned GUI types. Such a discussion is beyond the scope of this paper,

but interested readers can consult online resources such as [28].

VISUAL GUI SECURITY TESTING IN INDUSTRIAL PRACTICES

An external security testing team almost always conducts a security assessment of the

application at the project's conclusion, either following or in conjunction with user acceptance

testing. Visual GUI security testing in industry ensures that only authorized personnel can

access the program and features made available to them based on their security level by

utilizing a variety of testing tools for security checks. Abbot, Jemmy, JFC Unit, Jacareto, and

Marathon are industry-standard Java GUI testing utilities [29]. Moreover, encryption and

decryption are the security techniques used for assessing the security of visual GUI techniques.

By encrypting the application, utilising a variety of software, hardware, and firewalls, among

other measures, the security testing is done to determine whether there has been any

DOI : https://doi.org/10.56452/7-6-122

Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022)

International Journal of Mechanical Engineering

1108

information leakage. Due to the proliferation of cyber-physical systems (CPS), testing

automation applications have become an integral part of every production systems engineering

(PSE) endeavour. In light of new attack vectors against CPSs, which have arisen in part as a

result of growing connectivity, security considerations must be incorporated into each phase of

the PSE process. Increased connectivity has contributed to the emergence of novel attack

vectors against CPSs. Numerous valuable assets, such as system configurations and production

information, are susceptible to information theft and subversion due to the absence of adequate

security measures [12].

Therefore, software testing in industry has become an activity of paramount importance as they

usually adopt other software testing techniques like manual or automated. Automated testing

techniques provide efficiency but the security features are not much effective in automated

(Table 2). In addition, because there are insufficient safety systems in place, the significance

of software testing has increased there. The only method for businesses to protect themselves

from the dangers posed by these threats is to conduct routine security checks on the software

testing techniques they use. On the other hand, these efforts may be doomed to failure if there

is insufficient expertise in the field of security or if there is insufficient funding to cover

security-related expenditures [14].

This includes data flows, assets, entities, hazards, and mitigation strategies. The German-

developed VDI/VDE 2182 recommendation functions as its foundation. The structure of the

framework includes a default testing method model. Users are able to modify this model in

order to better align the inspection objective with the environment in which they conduct

software testing. In particular, the testing technique being considered for the production of the

default model conforms to the ISO/IEC/IEEE 29119 set of software testing standards and is

based on the best practises observed by a prominent system integrator. It ensures the default

model is accurate and trustworthy. In addition, we developed a programme capable of

automating the construction of attack-defence trees by using formal models of a company's

software testing procedure as a starting point [16]. A structure in the shape of a tree was utilised

to achieve this objective. The findings of the illustrated security analysis provide guidance, are

intended to raise awareness in the industrial sector, and are intended to facilitate the efficient,

effective, and timely execution of security studies [6].

TESTING TOOLS AND ITS CRITERIA FOR INDUSTRIAL PRACTICES

A series of procedures known as testing are carried out to evaluate the calibre of software [12].

GUI software testing always takes place at one of the following four test levels: unit testing

(also known as component testing) when the target is a standalone software component,

integration testing when the target is a standalone subset of a software system, system testing

when the target is a standalone software system, and acceptance testing when the target is a

standalone software system and the objective is to determine whether the software system as a

whole is acceptable to the end-user. [13]

Taking into account the numerous considerations that must be made prior to selecting a tool, it

is possible that selecting the best tool for software testing with VGT could be a difficult task at

times. The success of test automation depends on a variety of fundamental factors, one of which

is the choice of a testing instrument. To achieve this, one must first become familiar with the

breadth of testing and the testing methodology, and then select the appropriate testing tool to

meet the requirements of automating the test suite for a specific product and release. A testing

instrument can be used to test desktop applications, mobile applications, or any combination

of the three [15]. A testing instrument may also include any testing capabilities, such as unit

testing, regression testing, and integration testing, and so on. The following testing tools were

selected for evaluation based on a set of inclusion and exclusion criteria that were applied to

DOI : https://doi.org/10.56452/7-6-122

Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022)

International Journal of Mechanical Engineering

1109

the testing tools that have received the most attention in the relevant scholarly literature and

are also among the most popular choices among industry practitioners. These instruments are

briefly described, followed by a table-based comparison of their benefits and drawbacks. The

comparison is founded on a variety of factors, including reusability, dependability, and price

[18]. Table 2 explores the automation tools being used by the industry as given below:

Table 2: Automation Tools being used by Industry (with their ratings)

NAME RATINGS

SELENIUM 9.5

APPIUM 9.5

ROBUST FRAMEWORK 9.3

CUCUMBER 9.1

CYPRESS 9

GUAGE 8.5

DOJO TOOLKIT 7.8

WATIR 7.6

TOX 7

SERENITY 7

TESTSIGMA 6.9

CARINA 6.9

NOX 6.8

GALEN 6.6

Figure 5. Automation Tools Ratings

From the table 2, it has been seen most of the automation tools being used in the industry is

“Selenium” and it has high rating for them as it supports in enhancing the software testing

experiences.

0
1
2
3
4
5
6
7
8
9

10

RATINGS

RATINGS

DOI : https://doi.org/10.56452/7-6-122

Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022)

International Journal of Mechanical Engineering

1110

CONCLUSION AND RECOMMENDATIONS

From the paper, it has been observed the VGT software testing has become an essential phase

for many industries. It ensures that the software that has been released to the public is free of

bugs and side effects. Automated testing tools are preferred over manual testing methods by

software evaluators because they reduce testing-phase costs and save time and being used by

industry very well this time. Also the VGT for software testing seems easier for the

industrialists and many industry it is being used. This is done to meet market requirements and

time constraints. When the proper testing tool is selected, software testers will be able to select

the best tools for testing apps with simplicity, saving them both time and money. There is no

single ideal testing tool, but that compromises can be made to select the best GUI testing tools

based on the scope of the project, the testing budget, the platform of the application, and the

programming language used to develop the project. Based on the results of this study, we

recommend utilising Test Complete and Ranorex as testing tools for all platforms. Since both

of these programmes require licences, when evaluating a large project, the testing budget

should be considered. While selenium is recommended for web testing and has the benefit of

being open source, appium should only be used to test mobile applications. For the study, it is

also suggested that future work encompass additional tools and criteria. Depending on the

environment and budget, Selenium Webdriver, UFT, Ranorex, RFT, JMeter, and Appvance are

the most frequently used tools, as determined by the review. However, there is no single

method or framework that can enable fully automated web testing and meet all requirements.

CCS concepts include software engineering, creation, and management, as well as software

verification and validation.

This study will assist industrial professionals in selecting the optimal tool for a specific project,

and it will also enable researchers to compare additional tools using more criteria where VGT

testing techniques can be very much helpful. A high-quality, client-requirement-compliant

software, frameworks and tools for automating software testing must be used appropriately in

industries for enhancing their practical experience. Despite the fact that there have been

numerous research studies on software testing and automated testing technologies, detailed

standards are necessary. A variety of functional, load, and management testing tools have been

analysed and compared based on similar properties, such as platform support, scripting

language employed, browser compatibility, etc. Although manual testing tools are also

available, this article focuses exclusively on web-based automated testing solutions. This study

examines the pertinent literature to identify and summarise the available free source and paid

automated web testing technologies, as well as the challenges they face. The quality for

software testing is the most important aspect in every software engineering projects, hence, we

recommend taking into account the project's scale, testing budget, and target platform when

selecting a testing tool.

REFERENCES

1. Albarka, U. M., &Zhanfang, C. (2019). A study of automated software testing:

Automation tools and frameworks. https://doi.org/10.5281/ZENODO.39247

2. Enoiu, E., Sundmark, D., Causevic, A., &Pettersson, P. (2017).A comparative study of

manual and automated testing for industrial control software. 2017 IEEE International

Conference on Software Testing, Verification and Validation (ICST).

3. Kassab, M., DeFranco, J., &Laplante, P. (2016). Software testing practices in industry:

The state of the practice. IEEE Software, 1–1. https://doi.org/10.1109/ms.2016.87

https://doi.org/10.5281/ZENODO.39247
https://doi.org/10.1109/ms.2016.87

DOI : https://doi.org/10.56452/7-6-122

Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022)

International Journal of Mechanical Engineering

1111

4. Kumari, B., Chauhan, N., & Tech Scholar, M. (n.d.). A comparison between manual

testing and automated testing. Jetir.org. Retrieved June 25, 2023, from

https://www.jetir.org/papers/JETIR1812949.pdf

5. Sehgal, M., Sharma, S., & Mam, D. G. (n.d.). Manual & Automated Testing. Ijert.org.

Retrieved June 25, 2023, from https://www.ijert.org/research/manual-automated-

testing-IJERTV2IS4067.pdf

6. Mascheroni, M. A., &Irrazábal, E. (2018). Continuous testing and solutions for testing

problems in continuous delivery: A systematic literature review. Computación y

Sistemas, 22(3). https://doi.org/10.13053/cys-22-3-2794

7. Okezie, F., Odun-Ayo, I., & Bogle, S. (2019). A critical analysis of software testing

tools. Journal of Physics. Conference Series, 1378(4), 042030.

https://doi.org/10.1088/1742-6596/1378/4/042030

8. Vos, T. E. J., Marin, B., Escalona, M. J., & Marchetto, A. (2012). A methodological

framework for evaluating software testing techniques and tools. 2012 12th

International Conference on Quality Software.

9. Gadwal, A. S., & Prasad, L. (2020). Comparative review of the literature of automated

testing tools. Unpublished. https://doi.org/10.13140/RG.2.2.36836.19848

10. Garousi, V., Felderer, M., Kuhrmann, M., Herkiloğlu, K., & Eldh, S. (2020). Exploring

the industry’s challenges in software testing: An empirical study. Journal of Software

(Malden, MA), 32(8). https://doi.org/10.1002/smr.2251

11. Causevic, A., Sundmark, D., & Punnekkat, S. (2010). An industrial survey on

contemporary aspects of software testing. 2010 Third International Conference on

Software Testing, Verification and Validation.

12. Konka, B. B. (n.d.). Master of science thesis in software engineering and management.

Core.ac.uk. Retrieved June 27, 2023, from

https://core.ac.uk/download/pdf/16333079.pdf

13. Bäckström, K. (n.d.). Industrial surveys on software testing practices: A literature

review. Helsinki.Fi. Retrieved June 27, 2023, from

https://helda.helsinki.fi/bitstream/handle/10138/340855/Kim_Backstrom_thesis_2022

.pdf?sequence=2&isAllowed=y

14. Garousi, V., Keleş, A. B., Balaman, Y., Güler, Z. Ö., & Arcuri, A. (2021). Model-based

testing in practice: An experience report from the web applications domain. The

Journal of Systems and Software, 180(111032), 111032.

https://doi.org/10.1016/j.jss.2021.111032

15. Reine De Reanzi, S., & Ranjit Jeba Thangaiah, P. (2021). A survey on software test

automation return on investment, in organizations predominantly from Bengaluru,

India. International Journal of Engineering Business Management, 13,

184797902110620. https://doi.org/10.1177/18479790211062044

16. Wang, Y., Mäntylä, M. V., Liu, Z., & Markkula, J. (2022). Test automation maturity

improves product quality—Quantitative study of open source projects using continuous

integration. The Journal of Systems and Software, 188(111259), 111259.

https://doi.org/10.1016/j.jss.2022.111259

17. Hogan, M. D., Carnahan, L. J., Carpenter, R. J., Flater, D. W., Fowler, J. E.,

Frechette, S. P., Gray, M. M., Johnson, L. A., McCabe, R. M., Montgomery, D.,

Radack, S. M., Rosenthal, R., & Shakarji, C. M. (2001). Information technology

measurement and testing activities at NIST. Journal of Research of the National

Institute of Standards and Technology, 106(1), 341–370.

https://doi.org/10.6028/jres.106.013

https://www.jetir.org/papers/JETIR1812949.pdf
https://www.ijert.org/research/manual-automated-testing-IJERTV2IS4067.pdf
https://www.ijert.org/research/manual-automated-testing-IJERTV2IS4067.pdf
https://doi.org/10.13053/cys-22-3-2794
https://doi.org/10.1088/1742-6596/1378/4/042030
https://doi.org/10.13140/RG.2.2.36836.19848
https://core.ac.uk/download/pdf/16333079.pdf
https://helda.helsinki.fi/bitstream/handle/10138/340855/Kim_Backstrom_thesis_2022.pdf?sequence=2&isAllowed=y
https://helda.helsinki.fi/bitstream/handle/10138/340855/Kim_Backstrom_thesis_2022.pdf?sequence=2&isAllowed=y
https://doi.org/10.1016/j.jss.2021.111032
https://doi.org/10.1177/18479790211062044
https://doi.org/10.1016/j.jss.2022.111259
https://doi.org/10.6028/jres.106.013

DOI : https://doi.org/10.56452/7-6-122

Copyrights @Kalahari Journals Vol.7 No.6 (June, 2022)

International Journal of Mechanical Engineering

1112

18. Wohlin, C. (2013). Empirical software engineering research with industry: Top 10

challenges. 2013 1st International Workshop on Conducting Empirical Studies in

Industry (CESI).

19. Nidhra, S. (2012). Black box and white box testing techniques - A literature review.

International Journal of Embedded Systems and Applications, 2(2), 29–50.

https://doi.org/10.5121/ijesa.2012.2204

20. RedStone Software. (N.d.). Black-box vs. White-box Testing: Choosing the Right

Approach to Deliver Quality Applications Retrieved June 25, 2023, from

https://www.cs.unh.edu/~it666/reading_list/Defense/blackbox_vs_whitebox_testing.p

df

21. Testing, W. is G. (n.d.). Gray Box Testing. Idc-online.com. Retrieved June 22, 2023,

from https://www.idc-

online.com/technical_references/pdfs/information_technology/Gray_Box_Testing.pdf

22. Kumari, B., Chauhan, N., & Tech Scholar, M. (2018). A comparison between manual

testing and automated testing. Jetir.org. Retrieved June 24, 2023, from

https://www.jetir.org/papers/JETIR1812949.pdf

23. What are the Benefits of Automation Testing? (2019, November 6). UTOR. https://u-

tor.com/topic/automation-testing-benefits

24. GUI testing. (n.d.). Www.javatpoint.com. Retrieved July 5, 2023, from

https://www.javatpoint.com/gui-testing

25. Alegroth, E., Nass, M., & Olsson, H. H. (2013). JAutomate: A tool for system- and

acceptance-test automation. 2013 IEEE Sixth International Conference on Software

Testing, Verification and Validation.

26. Alégroth, E., Feldt, R., & Ryrholm, L. (2015). Visual GUI testing in practice:

challenges, problems and limitations. Empirical Software Engineer, 20(3), 694–744.

https://doi.org/10.1007/s10664-013-9293-5

27. Raulamo, P., Mäntylä, M. V., & Garousi, V. (2017). Choosing the right test automation

tool: a Grey literature review. In International Conference on Evaluation and

Assessment in Software Engineering (pp. 21–30).

28. Banerjee, I., Nguyen, B., Garousi, V., & Memon, A. (2013). Graphical user interface

(GUI) testing: Systematic mapping and repository. Information and Software

Technology, 55(10), 1679–1694. https://doi.org/10.1016/j.infsof.2013.03.004

29. Atif, M., Memon, M. L., & Soffa, M. E. (n.d.). Plan generation for gui testing.

30. Britton, T., Jeng, L., Carver, G., Cheak, P., & Katzenellenbogen, T. (2013). Reversible

Debugging Software.

https://u-tor.com/topic/automation-testing-benefits
https://u-tor.com/topic/automation-testing-benefits
https://www.javatpoint.com/gui-testing

