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Abstract 

Machine learning-based image analysis combined with a Wireless Sensor Network (WSN) in 

an Internet of Things (IoT) framework can be a powerful approach for identifying structural 

deformities and slope instabilities in opencast mines. Slope failures cause massive casualties 

and devastating societal and economic implications, thereby jeopardizing access to sustainable 

development. Slope stability assessment, which has potential long-term benefits for sustainable 

development, remains a difficulty for practitioners and researchers. In this study, an automated 

machine learning approach was proposed for the first time for model generation and slope 

stability assessments of circular mode failure. Slope failures have disastrous implications in 

many nations, hence slope stability assessment is of great importance in geotechnical and 

geological engineering research. In this paper, ML approach is developed for improving slope 

stability prediction. The suggested technique has the potential for both short-term geo hazard 

severity mitigation and long-term sustainable development goals. 
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1. Introduction 

The geotechnical engineers are confronted with a significant challenge every day in the form 

of slope failure in open-pit mines. At the moment, the open cast mining accounts for the 

majority of the total production. Mining using open pits, also known as open cast mining, is 

the simplest and most cost-effective technique of mining. This method also allows for high 

levels of mechanization and higher productivity. The slope angle of the production benches 

that are not abandoned during the lifetime of the mine is directly proportional to the amount of 

profit that may be made from open-pit mining. The demand for a wide variety of minerals is 

steadily increasing, which has resulted in an increase in the level of mechanization and intensity 

of open-pit mining operations. As a direct consequence of this, the open-pit mining operations 
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are getting deeper each day. As a result, a substantial quantity of overburden must be excavated 

and deposited in a space that is as small as possible in order to produce steep high wall slopes. 

These high wall slopes have failed horribly, which has a negative impact on the working 

personnel and machinery that have been placed there. There are a lot of different factors that 

can influence the slope's level of stability[1,2,3]. Geology, groundwater, and geometry are the 

three components that make up these factors. The geometry depicts the pit slope angle and 

depth, but the geology indicates the cohesiveness, internal angle of friction, and structural 

discontinuities among the various strata. Groundwater factors on the slope of the pit, including 

rainfall and the water table, are thought to have caused the disaster.  The Indian mining industry 

is plagued by a high rate of slope failures, which can be attributed to the industry's lackluster 

approach to slope design[4,5]. It is possible to avoid this scenario by having competent 

individuals do routine monitoring and by employing computational heuristics and numerical 

modelling in order to make a prediction of the state of the slope just before it fails. When 

designing the slopes of the pit, keep in mind that stability and steepness of slopes are like two 

sides of the same coin. 

The collapse of the slope was brought on by an increase in the shear force that was present in 

the plane where the failure occurred. The failure of a slope is the result of the interaction of 

two forces: the driving force, which contributes to the collapse of the slope, and the resisting 

force, which offers resistance to the failure. The stability of the slope can be stated in the form 

of a factor of safety. It is certain that a failure will take place if the driving force of the slope 

plain is larger than the resisting force of that plain. This will result in the plain being 

unsuccessful. In order to satisfy the growing demand for minerals, the excavation process in 

open pit mines is being stepped up to match the demand. As a direct consequence of this, open 

pit mines are getting deeper on a daily basis. This type of operation generates a substantial 

quantity of garbage that needs to be disposed of in a relatively small space. As the mining 

activity progresses, the production of waste material and dumping will begin, which will cause 

the high wall slopes and failure of the dump. 

 

2. Overview of an ML approach in slope stability prediction 

To improve slope stability prediction in the presence of structural deformity, machine learning 

(ML) techniques can be employed [6, 7, 8, 9, 10]. Here is an overview of an ML approach that 

can be developed for this purpose: 

 Data Collection: Gather a dataset that includes information on slope characteristics 

(e.g., slope angle, geological properties, soil parameters), structural deformity features 

(e.g., crack patterns, bulges), and stability indicators (e.g., slope failures, displacement 

measurements). Ensure that the dataset contains examples of slopes with varying 

degrees of deformity and stability outcomes. 

 Feature Engineering: Preprocess and engineer relevant features from the collected data. 

This may involve transforming or normalizing numerical data, encoding categorical 

variables, and creating new features based on domain knowledge. For example, you 

could derive features related to the size, orientation, or density of structural deformities. 

 Labeling and Training Data Preparation: Define the stability condition labels for the 

dataset, such as stable or unstable, based on observed slope failures or displacement 

thresholds. Split the dataset into training and testing sets to evaluate the performance 

of the developed model. 

 ML Model Selection: Choose an appropriate ML model for slope stability prediction. 

Some suitable models for this task may include decision trees, random forests, support 

vector machines (SVM), or neural networks. Consider the characteristics of the dataset, 
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such as the number of features, sample size, and desired interpretability of the model, 

when selecting the algorithm. 

 Model Training and Validation: Train the selected ML model using the labeled training 

dataset. Apply appropriate model validation techniques, such as k-fold cross-validation 

or hold-out validation, to assess the model's performance. Optimize hyperparameters 

of the model to enhance its predictive capability. 

 Model Evaluation: Evaluate the trained ML model using the testing dataset to measure 

its predictive accuracy, precision, recall, or other suitable metrics. Assess the model's 

ability to correctly predict slope stability in the presence of structural deformity. 

 Interpretability and Insights: Analyze the ML model's feature importance or 

coefficients to gain insights into the influence of different features on slope stability. 

This can provide valuable information about the significance of structural deformity 

characteristics in predicting stability. 

 Model Deployment and Integration: Once satisfied with the model's performance, 

deploy it for practical use. This could involve integrating it into an existing monitoring 

system or decision-making framework for early warning or risk assessment of slope 

stability in the presence of structural deformity. 

It is important to note that the success of the ML approach depends on the availability of high-

quality data, appropriate feature selection, careful model development and validation, and 

domain expertise in interpreting the results[11,12,13,14,15]. Collaborating with geotechnical 

engineers and ML experts can ensure the effectiveness and reliability of the developed ML 

approach for improving slope stability prediction in the presence of structural deformity. 

 

3. Result Analysis 

Simulated slope design refers to the process of creating and evaluating slope designs using 

computer simulations and modeling techniques. It involves the use of software tools and 

numerical methods to analyze the stability and performance of slopes under various conditions. 

Here is an overview of the steps involved in simulated slope design: 

 Data Collection and Site Characterization: Gather information about the site where the 

slope is to be designed, including geological data, soil properties, groundwater 

conditions, and any other relevant information. This data helps in accurately 

representing the site conditions in the simulation models. 

 Selection of Simulation Software: Choose appropriate software tools or numerical 

models that are capable of simulating slope behavior. There are various options 

available, such as finite element analysis (FEA) software, distinct element method 

(DEM) simulations, or slope stability analysis software. 

 Model Development: Set up the simulation model based on the selected software. This 

involves creating a digital representation of the slope geometry, incorporating material 

properties, defining boundary conditions, and applying appropriate loadings. The 

model should reflect the real-world conditions as closely as possible. 

 Stability Analysis: Perform stability analysis on the simulated slope to assess its 

stability under different loading and boundary conditions. The analysis typically 

involves calculating factors of safety or other stability indicators to determine if the 

slope is likely to fail or deform under specific circumstances. 

 Sensitivity Analysis and Optimization: Conduct sensitivity analyses to identify critical 

parameters that significantly affect slope stability. This helps in understanding the 

relative importance of various factors and optimizing the slope design accordingly. 
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Parameter optimization techniques, such as genetic algorithms or gradient-based 

methods, can be employed to find the best combination of design variables that 

maximize stability. 

 Performance Evaluation: Evaluate the performance of the simulated slope design over 

time. This can involve analyzing the long-term behavior of the slope under different 

scenarios, such as changes in groundwater conditions, seasonal variations, or the 

influence of external factors. The analysis may include assessments of deformation, 

displacement, stress distribution, and other performance criteria. 

 Iterative Design: Based on the results of the simulations and performance evaluations, 

refine the slope design iteratively. Adjust the slope geometry, reinforcement strategies, 

or other design aspects to improve stability, minimize deformations, and enhance long-

term performance. 

 Documentation and Reporting: Document the simulated slope design process, including 

the input data, simulation models, analysis results, and design recommendations. This 

information is valuable for communicating the design rationale, justifying design 

decisions, and facilitating future monitoring and maintenance activities. 

Simulated slope design provides valuable insights into slope behavior, allowing engineers to 

optimize designs, predict potential failures, and develop mitigation strategies. It helps in 

assessing the stability of slopes under different conditions, reducing risks, and ensuring the 

safety and longevity of engineering structures[16,17,18]. 

SLIDE 6.0 of Rocsience was used to carry out the slope failure analysis. The probabilistic and 

deterministic analysis is carried out in the SLIDE software using the limit equilibrium method. 

In probabilistic analysis probability of failure is found to be 8.6 % and the mean FOS is 2.076 

whereas the deterministic value of FOS is 1.978. Figure 1 indicates the simulated slope design.  

 

 

Fig 1. Simulated slope design 

 

3.1. Factor of Safety (FoS):  

The factor of safety is a measure of the stability of a slope or a soil mass. It is defined as the 

ratio of the resisting forces to the driving forces acting on the slope [19,20]. Mathematically, it 

is expressed as FoS = Resisting Forces / Driving Forces. 
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- Resisting Forces: These forces include the shear strength of the soil or rock mass, which is 

influenced by parameters such as cohesion and frictional resistance. The higher the shear 

strength, the greater the resisting forces against slope failure. 

- Driving Forces: These forces are the external forces acting on the slope, such as the weight 

of the soil or rock mass, groundwater pressure, and any additional applied loads. The higher 

the driving forces, the greater  the potential for slope failure. 

 

The factor of safety provides an indication of how close a slope is to failure. A factor of safety 

less than 1 indicates that the driving forces exceed the resisting forces, indicating an unstable 

slope. A factor of safety greater than 1 indicates a stable slope, with a higher value indicating 

a higher level of stability. 

3.2. Internal Angle of Friction (ϕ):  

The internal angle of friction is a geotechnical parameter that represents the shear resistance of 

a soil or rock material. It is defined as the angle between the shear plane and the normal to the 

shear plane. 

The internal angle of friction influences the shear strength of the soil or rock mass and plays a 

crucial role in slope stability analysis. A higher internal angle of friction corresponds to a higher 

shear strength and can contribute to a higher factor of safety. The relationship between the 

factor of safety and the internal angle of friction can be understood as follows: 

- Increasing the internal angle of friction typically leads to an increase in the shear strength of 

the soil or rock mass. This, in turn, can increase the resisting forces acting on the slope and 

contribute to a higher factor of safety. 

- Conversely, reducing the internal angle of friction decreases the shear strength of the soil or 

rock mass, reducing the resisting forces and potentially leading to a lower factor of safety. 

-It is important to note that the internal angle of friction is just one factor among several that 

influence the shear strength and stability of a slope. Other factors, such as cohesion, 

groundwater conditions, and slope geometry, also play significant roles in slope stability 

analysis. Factory of safety vs internal angle of friction is shown in Fig-2 and Probability 

distribution curve is shown in Fig-3. 

 

 

Fig 2. Factory of safety vs internal angle of friction 
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Fig 3. Probability distribution curve 

 

3.3. Machine Learning Model 

3.3.1 Logistic Regression 

LR (Logistic Regression) is a popular machine learning algorithm used for binary classification 

problems. Despite its name, logistic regression is a statistical model that is widely applied in 

machine learning due to its simplicity and interpretability[21,22,23]. Here's an overview of 

how the LR algorithm works: 

1. Model Representation: In logistic regression, the goal is to predict a binary outcome, 

typically denoted as 0 or 1. The algorithm models the probability of the positive outcome (class 

1) using a logistic function (also known as the sigmoid function). 

2. Hypothesis Function: The logistic regression hypothesis function calculates the probability 

of the positive outcome based on the input features. It uses a linear combination of the feature 

values, weighted by coefficients (also known as weights or parameters), and passes the result 

through the logistic function. The hypothesis function is given by: 

   hθ(x) = σ(θ^T * x) 

   where: 

   - hθ(x) is the predicted probability of the positive outcome for input features x. 

   - σ is the logistic (sigmoid) function that maps the linear combination to a value between 0 

and 1. 

   - θ is the vector of coefficients (weights) that are learned during the training process. 

   - x is the vector of input features. 

3. Cost Function: Logistic regression uses the maximum likelihood estimation to estimate the 

optimal values of the coefficients θ. The cost function, also known as the log-loss or cross-

entropy loss function, measures the difference between the predicted probabilities and the 

actual class labels. The goal is to minimize the cost function to find the best-fitting coefficients. 

4. Gradient Descent: To minimize the cost function and find the optimal values of θ, an 

optimization algorithm such as gradient descent is used. Gradient descent iteratively updates 
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the coefficients by taking steps proportional to the negative gradient of the cost function. The 

learning rate determines the size of the steps taken during each iteration. 

5. Training: During the training phase, the LR algorithm iteratively adjusts the coefficients 

using the gradient descent algorithm. The algorithm updates the coefficients until convergence, 

where the cost function is minimized or reaches a predefined threshold. 

6. Prediction: Once the LR model is trained and the coefficients are determined, it can be used 

to predict the probability of the positive outcome for new input data. The predicted probability 

can be converted into a binary classification by applying a threshold. For example, if the 

threshold is set at 0.5, probabilities above 0.5 are classified as class 1, while those below 0.5 

are classified as class 0. 

Logistic regression is a linear model, which means it assumes a linear relationship between the 

input features and the logarithm of the odds of the positive outcome[24,25]. If the relationship 

between the features and the outcome is more complex, techniques like feature engineering, 

polynomial features, or using more advanced models may be necessary. 

 

3.3.2 Support Vector Classifier 

SVC (Support Vector Classifier), also known as SVM (Support Vector Machine) for 

classification, is a popular machine learning algorithm used for both binary and multi-class 

classification problems[26,27]. SVC works by creating a hyperplane in a high-dimensional 

feature space to separate different classes of data points. SVC is a powerful algorithm that is 

effective in handling complex decision boundaries and works well with both linearly separable 

and non-linearly separable data. However, it can be sensitive to the choice of kernel function 

and the regularization parameter, which may require tuning for optimal performance. 

Here's a description of how SVC works: 

 Data Representation: SVC operates on a labeled dataset, where each data point is 

represented by a set of features and assigned a class label (e.g., 0 or 1 for binary 

classification). The algorithm learns patterns in the feature space to classify new, 

unseen data points. 

 Feature Space and Hyperplane: SVC maps the input features into a higher-dimensional 

feature space using a kernel function. In this space, the algorithm tries to find an optimal 

hyperplane that best separates the data points of different classes. The hyperplane is a 

decision boundary that maximizes the margin, which is the distance between the 

hyperplane and the nearest data points from each class. 

 Margin and Support Vectors: Support vectors are the data points that lie closest to the 

hyperplane and play a crucial role in defining the hyperplane. The margin is the region 

between the support vectors of different classes. SVC aims to find the hyperplane that 

maximizes this margin, as it provides better generalization and robustness to new data. 

 Kernel Trick: SVC utilizes the kernel trick to implicitly map the input features into a 

higher-dimensional space without explicitly computing the transformation. The kernel 

function measures the similarity between pairs of data points in the high-dimensional 

space. Common kernel functions include linear, polynomial, radial basis function 

(RBF), and sigmoid. The choice of the kernel function depends on the characteristics 

of the data and the complexity of the decision boundary. 

 Optimization: The goal of SVC is to find the optimal hyperplane that separates the data 

with the maximum margin. This is formulated as an optimization problem that 

minimizes the classification error while maximizing the margin. The optimization is 

typically solved using quadratic programming or convex optimization techniques. 
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 Soft Margin and Regularization: In cases where the data is not perfectly separable or 

contains outliers, SVC allows for a soft margin by introducing a regularization 

parameter (C). This parameter controls the trade-off between maximizing the margin 

and allowing some misclassifications. A higher value of C allows fewer 

misclassifications, but the margin may become smaller, while a lower value of C 

prioritizes a larger margin at the cost of potentially more misclassifications. 

 Prediction: Once the SVC model is trained, it can be used to classify new, unseen data 

points by evaluating which side of the hyperplane they belong to. The decision is made 

based on the sign of the classification function, which depends on the learned 

coefficients and the kernel function. ML  based comparison accuracy is shown in Figure 

4. 

 

 

Figure 4: ML comparison accuracy 

4. Conclusion 

It is revealed that numerical modelling and three-dimensional techniques are utilized for the 

analysis of slope stability of various geological structures. But in the case of complex 

geological structures, these methods are impotent whereas soft computing methods like 

artificial neural networks and machine learning are more proficient. The proposed hybrid 

stacking ensemble which had already been trained by the synthetic data was applied to 

simulated cases of the slopes to accelerate the performance of ML algorithms. Simulated slope 

design allows engineers to evaluate different design options, predict potential failure 

mechanisms, and optimize slope configurations before implementing them in the field. It helps 

in minimizing risks, enhancing safety, and reducing the costs associated with slope instability. 
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