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Abstract 

Labelling is an interesting branch in graph theory which has wide applications in transcriptome analysis,  

communication network, coding and decoding, knot theory in topology, psychology, data mining, golom rulers, 

etc. Arithmetic number labelling introduced in 2022 by Uma Maheswari and Purnalakshimi, included Python 

program coding to generate the n arithmetic numbers. This paper deals with Arithmetic number labelling of 

Jelly fish graph, Tad pole graph, Shrub, Banana tree and Olive tree. In this paper, Python program coding to 

generate the vertices of a tadpole graph is presented. Suitable illustrations are given. 
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Introduction 

Graph labelling is assigning of labels represented by integers to the vertices [8][10], edges [7], faces [11] and blocks 
[6][7] of a graph. Open challenge is obtaining a vertex label, edge label, face label or block label for all graphs, 

under certain constraints. Labelled graphs are undeniably useful building blocks of mathematical models for a 

wide range of applications in medical [13}, crystallography [14] data science [15] and communication network [15]. 

Graph theoretical approach for comparison of observational galaxy distributions is an interesting and novel 

application [12]. These graph-based methods are used in gene regulatory networks and also in connectomics 

(nervous systems). 

 

I. PRELIMINARIES 

The definitions required for this paper are given below. 

 

Definition 1: Arithmetic number [1] 

A number ‘n’ is called an Arithmetic number if the arithmetic mean of its divisors, is an integer. 

For example, 15 is an arithmetic number since the arithmetic mean of its divisors 1,3,5 and 15 is an integer. 

Some of the Arithmetic numbers are 1,3,5,6,7,11,13, etc. 

 

Definition 2: Arithmetic number labelling [2] 

An Arithmetic number labelling of a graph 𝐺 is a one - to – one function 𝑓: 𝑉(𝐺) → 𝑊, (where 𝑊 is the set 

of whole numbers) that induces a bijection 𝑓∗: 𝐸(𝐺) → (𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛), defined by 
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𝑓∗(𝑢, 𝑣) = |𝑓(𝑢) − 𝑓(𝑣)|, ∀ 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺). A={A1,A2,…,An}is a set of Arithmetic numbers. 

The graph which admits Arithmetic number labelling is called Arithmetic number graph. 

 
Note: Arithmetic number graph is abbreviated as ANG. 

 

Definition 3: Jelly fish graph [4] 

 

The jelly fish graph, J (k, l) is got from a 4 - cycle u, v, w and t by joining the vertices w and t with an edge and 

appending k pendent edges to u and l pendent edges to v. 

 

Definition 4: Shrub graph [4] 

 

St (n1, n2, …, nk) is a Shrub graph got by connecting a vertex v0 to the central vertex of each of k number of 

stars. 

 

Definition 5: Banana tree [4] 

 

Banana tree graph Bt (n1, n2, …,nk) is a graph got by connecting a vertex v0 to one leaf of each of k numbers of 

stars. 

 

Definition 6 [4]: Let G be a graph with a fixed vertex v and let (Pk : G) be a graph got from k copies of the path 

Pk : u1,u2,…,uk by joining ui with the vertex v of the ith copy of G with an edge for 

1 ≤ i ≤ n. 

 

Definition 7: Olive tree [9] 

 

Olive tree graph (Tl) is a rooted tree consisting of l branches and ith branch is a path of length ‘i’. 

 

Definition 8: Tad pole graph [9] 

 

T(k, l) is a graph in which path Pl is attached to any one vertex of cycle Ck. 

 

MAIN RESULTS 

 

Theorem 1: For k, l ≥ 1, Jelly fish J (k, l) graph is ANG. 

Proof: 

J (k, l) is a jelly fish graph. 
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Let V (J (k, l)) = {u, v, w, t, ui, vj; 1 ≤ i ≤ k, 1 ≤ j ≤ l } and 

 

edges E (J (k, l)) = {uw, wv, ut, tv. wt, uui, vj ; 1 ≤ i ≤ k, 1 ≤ j ≤ l} 

 

Therefore J (k, l) has (k+l+4 ) number of vertices and (k+l+5) number of edges. 

The function f: V (J (k, l)) ⟶ {An} is defined as follows: 

f (u) = 0 

f (w) = 5 

f (t) = 13 

f (v) = 20 

f (ui) =A2i ; 1 ≤ i ≤ 2 

f (ui) = A2+I ; 3 ≤ i ≤ 5 

f (ui) = A4+I ; i = 6 

f (ui) = Ai+ 5 ; 7 ≤ i ≤ k 

f (vj) = f (v) + Ak+5+ j 1 ≤ j ≤ l 

 

Let f* be the induced edge labeling of f. 

 

 
 

f*(uw) = 5 

f*(ut) = 19 

f*(wv) = 15 

f*(tv) = 1 

f*(uui) = A2i ; 1 ≤ i ≤ 2 

f *(uuj) = A2+I ; 3 ≤ i ≤ 5 

f*(uuj) = A4+I ; i = 6 

f* (uui) = Ai+5 ; 7 ≤ i ≤ m 

f*(vvj) = Ak+5+ j : 1 ≤ j ≤ l 

 
A1, A2,…Ak+l+5 are the induced distinct edge labels. Hence the jelly fish graph is ANG. 

 

Example 1: Arithmetic number labelling for Jelly fish J (8,6). 
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1 2 (𝑖−1) 

 
 
 

Fig 1: Jelly fish graph J (8,6) 

Thus we have proved that Jelly fish graph J(8,6) is ANG. 

Theorem 2: For all n1, n2,…,nk ≥ 1, Shrub St (n1,n2,…,nk) is ANG. 

 

Let v, vi, vij ; 1 ≤ i ≤ k, 1 ≤ j ≤ ni be the vertices of Shrub St (n1,n2,…,nk), 

Then E [St (n1, n2,…,nk)] = {vvi, vi vij: 1 ≤ i ≤ k, 1 ≤ j ≤ l} 

f: V (St (n1,n2,…,nk)) ⟶ {An} is defined as follows: 

 

f (v0,0) = A1 

f (vi,0) = f (v)+ Ai+1 ; 1 ≤ i ≤ k 

f (vi,j) = 𝐴𝑘+ 𝑛1+ 𝑛2+⋯+ 𝑛(𝑖−1) 
+ 𝑗 + 1 + 𝑣i ; 1 ≤ i ≤ k, 1 ≤ j ≤ ni 

The edge labelling f* is given below: 

f* (vvi) = Ai+1 ; 1 ≤ i ≤ k 

f* (vvij) = 𝐴𝑘+ 𝑛 + 𝑛 +⋯+ 𝑛 + 𝑗 + 1 ; 1 ≤ i ≤ k, 1 ≤ j ≤ ni 

 
A1, A2,…𝐴𝑘+𝑛1+ 𝑛2+⋯𝑛𝑚+1 are the induced distinct edge labels . 

 
Example 2: The Shrub graph St (2,3,4,5) is ANG. 
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Fig 2: Shrub graph St (2,3,4,5) 

Thus we have proved that Shrub graph St (2,3,4,5) is ANG. 

Theorem 3: Banana tree graph Bt (k,k,k,…,k) (l times) is ANG. 

Let V (Bt (k,k,…,k)) = {v,vi, ui, ui j; 1 ≤ i ≤ l, 2 ≤ j ≤ k} 

Let f: V (Bt (k,k,k,…,k)) ⟶ {An} is defined as follows: 

 

f (v0,0) = 0 

f (v1,i) = Ai 

f (ui,0) = 𝐴𝑙+(𝑖−1)𝑘(𝑖−1) +1 

f (ui j) = 𝐴𝑙+(𝑖−1)𝑘(𝑖−1) + 1 +𝑗 + ui 

Induced edge labeling f* is given below: 

 

f* (vvi) = Ai 

f* (ui vi) = Al+i ; 1 ≤ i ≤ m 

f* (ui ui j) = 𝐴𝑙+(𝑖−1)𝑘(𝑖−1) + 1 +𝑗 ; 1 ≤ i ≤ l, 2 ≤ j ≤ k 

A1,A2 ,…, Am+mn are the induced distinct edge labels. 
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Example 3: Arithmetic number labelling of Banana tree graph Bt (4,4,4,4,4,4). 
 

 

 
Fig 3: Banana tree Bt (4,4,4,4,4,4) 

Thus we have proved that Banana tree Bt (4,4,4,4,4,4) is ANG. 

Theorem 4: (Pk: K1,l) is ANG for all k > 1 and l ≥ 1 

Let V ((Pk: K1,l)) = { vi, uiui j ; 1 ≤ i ≤ k , 1 ≤ j ≤ l} 

 

and E ((Pk: K1,l)) = {vivi+1,vjuj,ujujm ; 1 ≤ i ≤ k – 1, 1 ≤ j ≤ k, 1 ≤ m ≤ l} 
 

f: V ((Pk: K1,l))⟶{An} is defined as follows: 

 

f (v1,0) = 0 

f (vi,0) = A i-1 + Vi-1 

f (ui,0) = A k-1+i+ f(vi) 

f (ui j) = A2k-4+3i+j+ f(ui) ; 1 ≤ i ≤ k, 1 ≤ j ≤ l 

The induced edge labeling f* is given below: 
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f* (vivi+1) = Ai ; 1 ≤ i ≤ k-1 

f*(vj uj) = An-1+j ; 1 ≤ j ≤ k 

f*(ui uj j) = A2n-4+3i+j ; 1 ≤ i ≤ k , 1 ≤ j ≤ l 

A1,A2,…,Akl+2k-1 are the induced distinct edge labels. 

 
Example 4: Arithmetic number labelling of (P6 ; K1,3). 

 

 

Fig 4: (P6: K1,3) 

 

Thus we have proved that (P6: K1,3) is ANG. 

 

Theorem 5: Olive tree graph (Tl) is ANG. 
 

Let f: V(Tl) ⟶ {An} be defined as follows: 

f (v1,0) = 0 

f (v1,1) = A1 

f (v1,2) = A2 

f (v1,j) = Aj for all j 

f (vi,j) = Al+(l-1)+ …+(i-1) times +j +v(i-1),j 

The induced edge labeling f* is given below: 

f*(v1,1) = A1 

f*(v1,2) = A2 
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f*(v1,j) = Aj for all j 

f*(vi,j) = Al+(l-1)+ …+(i-1) times +j ; 1≤ i ≤ l , 1≤ j ≤ l – 1 

A1,A2 … Al+(l-1)+ …+(i-1) times +j are the induced distinct edge labels. 

Example 5: Arithmetic number labelling of Olive tree graph (T6). 

Let f: V(Tk) ⟶ {An} is defined as follows: 

f (v1,0) = 0 

f (v1,1) = A1 

f (v1,2) = A2 

f (v1,j) = Aj for all j 

f (vi,j) = Ak+(k-1)+ …+(i-1) times +j +v(i-1),j 

The induced edge labeling of f* is given below: 

f*(v1,1) = A1 

f*(v1,2) = A2 

f*(v1,j) = Aj for all j 

f*(vi,j) = Ak+(k-1) + …+(i-1) times +j ; 1≤ i ≤ k , 1≤ j ≤ k – 1 

A1,A2 … Ak+(k-1) + …+ (i-1) times +j are the induced distinct edge labels. 
 

 

 

Fig 5: Olive tree (T6) 
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Thus we have proved that Olive tree T6 is ANG. 

Theorem 6: Tad pole graph T(3,k) is ANG. 

Let f: V(T (3,k)) ⟶ {An} is defined as follows: 

f(v1) = 0 

f(v2) = 6 

f(v3) = 5 

f(v4) = A2+v3 

f(Vi) = Ai+ v(i-1) for all 5 ≤ i ≤ k 

The induced edge labeling of f* is given below: 

 

f*(v1v2) = 6 

f*(v2v3) = 1 

f*(v1v3) = 5 

f*(v3 v4) = A2 

f*(v(i-1)vi) = Ai ; 5 ≤ i ≤ k 

A1,A2 … An are the induced distinct edge labels. 

 

Example 6: Arithmetic number labelling of Tadpole graph T (3,7). 
 

 

Fig 6: Tad pole graph T(3,7) 

Thus we have proved that Tadpole graph is ANG. 

Python program coding to generate n Arithmetic numbers in general was already given in [2]. For the sake of 

completeness, we give the link below: 

 

https://colab.research.google.com/drive/1eZcI5io92XOplEJpYiWDH0w84Qrgpxz5?usp=sharing 

https://colab.research.google.com/drive/1eZcI5io92XOplEJpYiWDH0w84Qrgpxz5?usp=sharing
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Python program coding link to generate the vertex labels of a Tadpole graph is given below: 

https://colab.research.google.com/drive/1c8gUKU6VTtKyyGC2eEgxVGO9XbyYhXtF?usp=sharing 

 
 
 

https://colab.research.google.com/drive/1c8gUKU6VTtKyyGC2eEgxVGO9XbyYhXtF?usp=sharing
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Conclusion: 

 

Arithmetic number labelling for Jelly fish, Tadpole graph, Shrub, Banana tree graph, Pn,k1,m and Olive tree 

graph is given in this paper. Python program coding to generate the vertex labels of a Tadpole graph is given. 

Many researchers are inspired by the applications of graph labelling in software programming, cryptography, 

psychotherapy etc. There is further scope for research on Arithmetic number labelling for more graphs with 

applications to diverse fields. 
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