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Abstract 

 

Background/Objectives: This paper provides an insight 

into the internal verification of a 32-bit single cycle 

processor that implements the Reduced Instruction Set 

Computer Five Instruction Set Architecture.  

Methods/Statistical analysis: This paper accesses the 

internal operation and information of a RISC-V 32-bit 

single cycle processor using a Field Programmable Gate 

Array board. The internal components such as the 

register file, the Program Counter, the instruction 

memory, and the data memory are displayed on 

peripherals such seven-segment display, text LCD, dot 

matrix, and LEDs. The hardware structures were realized 

using Verilog Hardware Description Language and 

synthesized using Xilinx Integrated Synthesis 

Environment 14.3 that incorporates ISE Simulator for 

simulation purposes. 

Findings: With the recent trend of increasing demand and 

scope in the market for Internet of Things ubiquitous 

platforms, low-cost System-on-Chip devices are currently 

been deployed as sensors. Processor cores that implement 

the RISC-V ISA are suitable for low-cost SoCs due to 

their use of minimal hardware resources. The RISC-V 

ISA is fairly new but is taking over the open-source 

market and it is therefore important for hardware 

designers in the computer architecture field to 

understand the architecture of the ISA. This paper 

outlines the steps in implementing a single cycle 32-bit 

RISC-V ISA using Verilog HDL. The uniqueness of this 

work is in the verification of each instruction in the ISA. 

The verification is achieved using an FPGA device with 

peripherals such as seven-segment display, text LCD, dot 

matrix, keypad, and LEDs. These peripherals are used to 

display contents from the RISC-V processor core such as 

the register file, PC, instruction memory, and data 

memory. This work is vital because it enables researchers 

who are new to the RISC-V ISA quickly understand the 

internal operation of a processor core during real world 

operation on an FPGA board. 

Improvements/Applications: The synthesis report of the 

RISC-V single cycle processor core with the various 

peripheral modules utilized 6834 Look-up-Tables at a 

maximum frequency of 64 MHz. This indicates that the 

core is suitable for low-cost IoT SoC devices and can serve 

as tutorial material for the computer architecture course. 

 

Keywords: RISC-V ISA, Single Cycle Processor, FPGA, 

IoT, SoC, Hardware Verification. 
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1. Introduction  

 

The Central Processing Unit (CPU) is an electronic circuit 

designed specifically to execute instructions called programs. 

The CPU executes many forms of instructions such as 

arithmetic and logic instructions as well as memory access 

instructions. These instructions which are specific to each 

CPU vendor are collectively known as the ISA. The ISA 

describes a specific instruction set that can be compiled by 

dedicated compilers and translated into machine codes. There 

are many systems in today's society that require very large 

computations such as deep learning and image-based 

processing. Therefore, the demand for embedded systems 

requiring low power, low cost, and high performance is also 

increasing. The paper in [1] gives an example of a system that 

efficiently recognizes vehicle license plate using an 

embedded systems and AI. In addition, the usability of IoT is 

gaining popularity and increasing user convenience based on 

its applicability in real life. Using the Lora module, paper [2] 

designed a system that broadcasts kindergarten school bus 

location notifications to users on SMS or apps on mobile 

devices. Among them, processors are indispensable 

components. But the commercially available ISAs belong to 

companies such as Intel and AMD which include the x86 

family of ISAs [3], [4]. These ISAs are patented and cannot 

be used without license that cost a lot of money and thereby 

preventing researchers in academia and hobbyist from using 

them. Moreover, the licenses prevent designers from 

implementing the ISAs but instead limits them to use the 

processor cores provided by the companies. This prevents 

competition, innovation, and sometimes trust issues as 

companies could imbed malicious circuitry in the processor 

for spying [5]. 

The licensing issue associated with commercial processor is 

solved by the design of a new ISA known as RISC-V [6], [7] 

by the computer architecture group in University of 

California, Berkeley. The RISC-V ISA is an open-source ISA 

available for implementation under the free Berkeley open-

source license. The RISC-V project started in 2010 and has 

rapidly grown with their board of directors that come from 

companies such as NVIDIA and Google. There are a number 

of open-source processors that implement the RISC-V ISA 

which include Rocket [8], Berkeley Out of Order Machine 

(BOOM) [8], PICORV32 [9] and many more. These 

processors are complex with pipelined structures that achieve 

high throughput with low hardware footprint [10]. These 

processors are therefore difficult to understand by researchers 

seeking information about the RISC-V ISA architecture. This 

paper therefore implements a 32-bit single cycle RISC-V ISA 

core with peripherals to monitor the internal operations of the 

processor. 

The objectives of this paper are as follows 

 The paper illustrates design and implementation of 

the control and datapath for a 32-bit single cycle RISC-V ISA 

core using Verilog HDL 

 Hardware controllers for peripherals such as seven-

segment display, text LCD, dot matrix, LEDs, and keypad are 

added to monitor the internal activities of the processor core. 

This is done to provide an easy way to input instruction and 

observe the internal data of components such as the register 

file, PC, instruction memory, and data memory. 

 A verification platform is built and loaded onto an 

FPGA board for inputting instruction and observing the data 

in the internal architecture of the processor 

The rest of this paper is organized as follows: Section 2 

discusses some related works, Section 3 gives an introduction 

to the RISC-V ISA, Section 4 illustrates the design and 

implementation of the 32-bit single cycle RISC-V ISA, 

Section 5 describe the verification module for testing the 

processor core, Section 6 present the hardware resource 

utilized by the processor core together with the peripheral 

modules while the conclusion of the paper is discussed in 

Section 7. 

 

2. Related Work  

 

Since the introduction of the RISC-V ISA in the last decade, 

several processor cores have been proposed and implemented 

for different reasons. Most the processor cores are meant for 

academic use while a few others are commercial. The 

academic processor cores are designed with interfaces for 

easy integration into an SoC. This is good for advances 

hardware engineers to quickly assemble an SoC but very 

difficult for beginners to understand the working of the 

processor core. This section therefore explores RISC-V 

processor cores with input/output peripherals that enable a 

designer to gain understanding of the internal operation of the 

processor cores. 

The authors of [11] implemented the RISC-V ISA with 

instruction which include environment call, break, status 

registers, control, branch, memory, and arithmetic logic. A 

total of 38 instructions were simulated using ModelSim and 

Quartus-II simulators. This work only resulted to functional 

simulation without real hardware implementation on an 

FPGA board. This makes it difficult to know if the processor 

will work in the real world. 

The authors of [12] proposed an Integrated Machine Code 

Monitor (iMCM) and implemented together with a RISC-V 

processor on an FPGA. The iMCM monitors functions 

according to the verification method of the RISC-V 

processor. A total of 27 compressed RISC-V ISA instructions 

were monitored through simulations and FPGA evaluation. 

The verification of the processor instruction is through a 

terminal to displays only the memory related commands and 

the results of the program trace in hexadecimal values. This 

makes it difficult to understand the actual internal operations 

of the processor under evaluation. 

The work that comes close to this paper is proposed by [13]. 

The author of [13] proposed and implemented a fully 

synthesizable RISC-V processor core on an FPGA device to 

text LCD display port. A user inputs Assembly code which is 

converted to machine code and executed by the processor 

with the results displayed on the text LCD. The text LCD 

shown only current PC value and the results of executed 

RISC-V instruction. The work of [13] is extended with 

peripherals such as seven-segment display, LEDs, dot matrix, 

and keypad to form the basis of this paper. The displays show 

the internal content of the processor which include the PC, 

register file, instruction memory, and the data memory. These 

displayed values are shown for each RISC-V instruction 
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which makes it easy to understand the internal operation of a 

typical RISC-V processor core. 

 

3. RISC-V ISA Technical Specification  

 

The RISC-V ISA is a load-store ISA based on the principles 

of RISC. The load-store ISA format typically divide 

instructions into two groups which include memory access 

(where only store and load instructions have access to 

memory) and ALU operations (where the operands are in 

registers). The simplicity of the RISC-V ISA design makes it 

possible execute instructions in just one clock cycle. 

RISC-V has a base ISA which is referred to as RISC-V 32-

bit Integer (RV32I) which is compulsory for any 

implementation. The RV32I instructions which include loads, 

stores, control flow, and integer computations. The RV32I 

instructions can be extended to include multiplication and 

division (RV32IM), atomic operations (RV32IA), single 

precision floating point (RV32IF), and double precision 

floating point (RV32ID). These extensions are optional to 

implement. It must be noted that the RISC-V ISA also allows 

for data widths of 64-bit and 128-bit as shown in Table 1 but 

this paper implements a data width of 32-bit. 

Table 1: Summary of RISC-V ISAs 

ISA Description 

RV32/64/128I Base Integer Instruction Set 

RV32/64/128M Extension for Integer Multiplication 

and Division Instructions 

RV32/64/128A Extension for Atomic Instructions 

RV32/64/128F Extension for Single-Precision 

Floating-Point Instructions 

RV32/64/128D Extension for Double-Precision 

Floating-Point Instructions 

 

There are a total of 32 registers used by the RISC-V ISA out 

of which 31 are general purposed registers (register x1 to x31) 

while one register (register x0) is hardware wired to a 

constant 0. In addition to the 32 registers, a special register is 

used to store the address of the current instruction known as 

the PC register. The width of the registers could be 32-bit, 64-

bit, or 128-bit depending on the implementation. 

The RISC-V ISA consists of six main instruction formats 

which include, R-type (register-register instructions), I-type 

(loads and jump-and-link instructions), S-type (store 

instructions), B-type (branch instructions), U-type (load-

upper-immediate instructions), and J-type (jump 

instructions). Figure 1 illustrates the various instruction 

format [14], [15] where funct stands for function, opcode 

stands for operation code, imm stands for immediate, rd 

stands for destination registers, rs1 stands for source register 

1, and rs2 stands for source register 2. 

 

 
 

Figure 1. RISC-V 32-bit Instruction Format 

 

The RISC-V RV32I which is implemented in this paper 

consist of a total of 39 instructions. This paper implements 37 

of the 39 instructions which are illustrated in Figure 2. 
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Figure 2. RISC-V RV32I Base Instruction Set 

4. RV32I ISA Single Cycle Processor Hardware 

Architecture  

 

The hardware architecture for the RV32I ISA was designed 

by expanding on an architecture implemented in the RISC-V 

book [15]. The authors of [15] implemented a basic RISC-V 

hardware architecture capable of executing a total of seven 

instructions which include load doubleword (ld), store double 

word (sd), add, sub, and, or, and branch if equal (beq). This 

architecture was expanded to execute a total of 37 instructions 

and formed the basis of this work. Since the main objective 

of this work is to help researchers understand the inner 

workers of the RISC-V processor, the implementation of the 

RV32I ISA is simplified. The hardware architecture of the 

RV32I ISA implementation is shown in Figure 3. The 

architecture is a single cycle design which means it is capable 

of fetching, decoding, and executing the 37 RISC-V 

instructions in just a single cycle using components such as 

the PC, ALU, register file, instruction memory, data memory, 

and some basic logic gates. This section examines each 

component of Figure 3. 
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Figure 3. The Hardware Architecture of the RV32I ISA Design 

 

4.1. Program Counter Register 

The PC is a special register inside the processor that stores 

the address of the next processor instruction. The PC register 

in the RV32I ISA is has a data width of 32-bit. The instruction 

is the machine code which is in the instruction memory. 

Generally, in the design of a CPU, the PC is usually increased 

by 4 during the normal instruction execution. The increased 

by a factor 4 is because most CPUs are byte addressable. For 

simplicity of the memory design, this work increases the PC 

by a factor of 1 to fetch all 32-bit instruction in the instruction 

memory. When executing B-type (branch), U-type (load-

upper-immediate), and J-type (jump), the PC register stores 

the calculated value of the jump addresses. The output of the 

PC register is assigned to the instruction memory, register 

file, or the ALU depending on the type of instruction 

performed. Figure 4 shows a diagram of the PC register 

input/output signals. 

 

 
 

Figure 4. PC Register Input/Output Signals 

4.2. ALU Architecture 

The ALU is responsible for performing arithmetic and logical 

operations. The ALU is a fundamental basic block of every 

processor. The ALU cannot store data on its own, it must go 

through a register. The built-in ALU designed in this work 

has three 32-bit inputs and one 32-bit output. The inputs 

consist of a data from the PC (JAL instruction execution) and 

data from the instruction memory (R-type instruction from 

the register). A multiplexer is used to route the signals to the 

input of the ALU. The internal circuitry of the ALU can 

perform 10 operations which include AND, OR, ADD, SLL, 

XOR, SUB, SLT, SRL, SRA, and NOR. The output signal is 

assigned to the PC register, the data memory, and the Data 

Modification Module depending on the instruction type. 

Figure 5 shows the architecture of the ALU. 
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Figure 5. ALU Architecture 

 

4.3. Register File Architecture 

The RV32I ISA consist of a total of 32 32-bit registers for 

holding data. A register is a memory device that temporarily 

remembers the data that the processor needs to process the 

instruction. The registers are few but are directly connected 

to the ALU which makes the computation and storage of 

intermediate data very fast. The register file implemented in 

the work consist of five inputs and two outputs. The input 

labeled ina, inb, and ind each of 5-bit width select the register 

to write to or read from depending on the instruction type. 

Two multiplexors with select signals from the instruction are 

used to route data to selected registers. The internal 

architecture of the register file is made up 32x32 memory. 

The value of ina, inb determines the address of the 32-bit 

output ports outa, outb. The output signals are assigned to the 

Data Modification Module which in goes to the PC register 

depending on the type of instruction. Figure 6 shows the 

input/output logic of the register file implemented in this 

work. 

 

 
 

Figure 6. Register File Architecture 

4.4. Data Modification Module 

The Data Modification Module is responsible for the division 

of data into bytes, handling of signed and unsigned numbers, 

and some computation of values. Data Modification Module 

consist of seven inputs and three outputs. The three input 

labeled othercon, opcode, and imm serve as control signals 

for activating the Data Modification Module. The signal 

labeled otherina and otherinb are data from the register file 

and the signal labeled memdata is from data memory. The 

internal circuitry of the Data Modification Module consists of 

logic that converts 32-bit data into the signed format and logic 

that divides 32-bit data into 8-bit, 16-bit, and 24-bits. The 

output signals labeled otherouta and otheroutb are assigned to 

the ALU while the output signal labeled otherreg is assigned 

to the register file. Figure 7 shows the architecture of the Data 

Modification Module. 
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Figure 7. Data Modification Module Architecture 

 

4.5. Instruction Memory 

The instruction memory is responsible for storing 32-bit 

machine code (instructions). The instruction memory 

implemented in this work is made up of 32-bit data width with 

a depth of 512. This memory is read only and therefore only 

needs an address port to get access to a particular instruction. 

The PC output port provides the address of an instruction to 

be read from the instruction memory. The 32-bit instruction 

from the output of the instruction memory is assigned to 

modules such as the PC, register file, ALU, data memory, and 

Data Modification Module. The 32-bit output serve as control 

signal for activating the values modules depending on the 

type of instruction to execute. Figure 8 illustrates the 

input/output signal of the instruction memory. 

 

 
 

Figure 8. Instruction Memory Input/Output 

 

4.6. Data Memory 

The data memory is responsible for storing data that is not 

instruction or machine code. This data is usually generated 

when the processor operational. This memory is a type of 

Random-Access Memory (RAM) in which data can be read 

and written. RISC-V is little endian which means that when 

storing data in memory, the Least Significant Byte (LSB) is 

stored first. The data memory consists of four inputs and one 

output. The 32-bit output of the instruction memory is 

assigned to the Data Modification. Figure 9 shows the 

input/output signals of the data memory. 
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Figure 9. Data Memory Input/Output 

 

4.7. General Flow of RISC-V ISA 

The typical operation of the RISC-V processor consists of 

five steps which include instruction fetch, decode, execute, 

memory access, and writeback. Figure 10 shows the flow of 

a typical RISC-V processor operation. In the information 

fetch stage, the PC output the address to the instruction 

memory which make available the 32-bit instruction or 

machine code. The decode stage group the instruction code 

and sent to the various modules as control signals. In the 

execute stage, the various modules which the ALU, register 

file, and Data Modification Module are used to perform the 

instruction. In the memory access stage, data is read or stored 

in the data memory depending on the type of instruction. The 

writeback stage stores value in the register file depending on 

the type of instruction. 

 

 
 

Figure 10. General Flow of RISC-V Instruction 

Execution 

 

5. Hardware Verification Module of RISC-V Processor  
A verification module is proposed to observe the 

functionality of the RISC-V RV32I processor core. This 

module is important because it enables observers to easily 

understand the RISC-V ISA by observing real internal values 

when an instruction is operating. To observe the internal 

operation of the processor core, various peripherals are used 

to access real-time values from components such as registers, 

PC registers, data memory, and instruction memory during 

normal operation of the processor. Figure 11 shows the 

various peripheral used to observe the internal operation of 

the RISC-V processor.  The peripherals and with their 

functionalities are shown in Table 1. 

 

 
 

Figure 11. RISC-V Processor Verification Peripherals 

Table 1: Functionalities of RISC-V Processor Verification Peripherals 

Peripheral Functionality 

(a) Push Button 
USER SW1 button is used to increment of the PC by 1 while USER SW2 button is used 

to increment the address of the instruction memory. 

(b) Text LCD 

First row 2-4 displays status. First row 8-15 display user value entered. The second row 

2-5 display the current instruction. Second row 7-14 displays the current value in the 

instruction memory. 

(c) LEDs Eight LEDs are used to display the current PC value. 

(d) 7-Segment Display The last two segments display the address of the instruction memory 

(e) Dot Matrix 
The Dot matrix is used to display data stored in the instruction memory, data memory 

and register file. 

(f) Keypad 
The del button is used to delete an entered value. The ins button is used to insert an 

entered value. Button 1 to 9 are used for entering the machine code. 

(g) Dip Switch The first five are used to set the register and data memory address. 

 

5.1. Processor Verification on an FPGA Board 

The RV32I single cycle processor was verified on an FPGA 

board designed by HANBACK Electronics. The test board is 

equipped with Virtex-4 XC4VLX80 FPGA device. The 

peripherals for observing the operation of the processor 

include, push buttons, text LCD, LEDs, 7-segment display, 

dot matrix, keypad, and dip switch. Controller modules were 

designed for each of the peripherals. Figure 12 shows the 

connections of the peripheral to the FPGA device. From the 

figure, the Test_module consist of the various peripheral 

controllers which are also connected to the processor. 
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Figure 12. Connections of Peripheral to the FPGA Device 

 

Figure 13 shows the flow chart for checking RISC-V 

processor instructions on the FPGA board. When the FPGA 

is powered up, all registers and memory locations are 

initialized to zero. The user uses the keypad to insert a 

instruction that starts with the Operation Code (OPCODE). 

The USER SW2 button is used to set the instruction address 

shown in seven segments before entering the instruction data.  

The desired number of buttons are used to insert the 

instruction code. By entering all the values of the instruction 

code, it is stored in FPGA instruction memory at the address 

previously specified. The USER SW1 button is used to 

manually increase the value of the PC which is shown on the 

LED. The dip switch is used to display values from the 

register file, instruction memory, and data memory on the dot 

matrix. Figure 14 illustrates the output of ADD UPPER 

IMMEDIATE TO PC (AUIPC) instruction on the FPGA 

board. 

 

 
 

Figure 13. RISC-V Processor Verification Flow Chart
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Figure 14. Display of AUIPC RISC-V Instruction of an 

FPGA Board 

 

5.2. Hardware Synthesis Results of RISC-V Verification 

Module 

The processor core together with the peripheral controllers 

was synthesized using Xilinx Virtex4 FPGA device which 

resulted in 6834 LUTs at a maximum frequency of 64 MHz 

as shown in Table 2. Don et al. [13] designed a RISC-V 

processor with Text LCD peripheral for verification. When 

this work is compared to that of [13], this work consumed 

more LUTs because of the use of several peripheral 

controllers for the processor internal state verification than 

that of reference [13] but achieved twice the frequency of 

reference [13]. 

 

Table 2: Synthesis Results and Comparison 

Design Processor Type and Peripherals Area (LUTs) Frequency (MHz) 

[13] RV32I Processor, Text LCD 5578 32 

This Work 
RV32I Processor, Text LCD, LEDs, Dip Switch, Push 

Buttons, 7-Segment, Dot Matrix, Keypad 
6834 64 

 

5. Hardware Verification Module of RISC-V Processor  

 

This work provides an insight into the internal operation of a 

RISC-V RV32I processor using an FPGA device and 

input/output peripherals. This work can serve as teaching 

material for the computer architecture course that will enable 

students to understand the internal operation of a RISC-V 

processor core. In the future, a user-friendly desktop/web 

application will be designed to serve as an interface to the 

FPGA and display the internal values of the RISC-V 

processor core.   
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