

Copyrights @Kalahari Journals Vol. 6 No. 3 (October-December, 2021)

 International Journal of Mechanical Engineering

855

ISSN: 0974-5823 Vol. 6 No. 3 October-December, 2021

International Journal of Mechanical Engineering

Single Cycle 32-bit RISC-V ISA Implementation

and Verification

Hyogeun An

Department of Information and Communication Engineering, Hanbat National University, Daejeon, 34158, South Korea

ahnhyogean@gmail.com

Sudong Kang

Department of Information and Communication Engineering, Hanbat National University, Daejeon, 34158, South Korea

sudongkang@gmail.com

Dennis A. N. Gookyi

Department of Information and Communication Engineering, Hanbat National University, Daejeon, 34158, South Korea

dennisgookyi@gmail.com

Guard Kanda

Department of Information and Communication Engineering, Hanbat National University, Daejeon, 34158, South Korea

guardkanda@gmail.com

Kwangki Ryoo*

Department of Information and Communication Engineering, Hanbat National University, Daejeon, 34158, South Korea

kkryoo@gmail.com

Abstract

Background/Objectives: This paper provides an insight

into the internal verification of a 32-bit single cycle

processor that implements the Reduced Instruction Set

Computer Five Instruction Set Architecture.

Methods/Statistical analysis: This paper accesses the

internal operation and information of a RISC-V 32-bit

single cycle processor using a Field Programmable Gate

Array board. The internal components such as the

register file, the Program Counter, the instruction

memory, and the data memory are displayed on

peripherals such seven-segment display, text LCD, dot

matrix, and LEDs. The hardware structures were realized

using Verilog Hardware Description Language and

synthesized using Xilinx Integrated Synthesis

Environment 14.3 that incorporates ISE Simulator for

simulation purposes.

Findings: With the recent trend of increasing demand and

scope in the market for Internet of Things ubiquitous

platforms, low-cost System-on-Chip devices are currently

been deployed as sensors. Processor cores that implement

the RISC-V ISA are suitable for low-cost SoCs due to

their use of minimal hardware resources. The RISC-V

ISA is fairly new but is taking over the open-source

market and it is therefore important for hardware

designers in the computer architecture field to

understand the architecture of the ISA. This paper

outlines the steps in implementing a single cycle 32-bit

RISC-V ISA using Verilog HDL. The uniqueness of this

work is in the verification of each instruction in the ISA.

The verification is achieved using an FPGA device with

peripherals such as seven-segment display, text LCD, dot

matrix, keypad, and LEDs. These peripherals are used to

display contents from the RISC-V processor core such as

the register file, PC, instruction memory, and data

memory. This work is vital because it enables researchers

who are new to the RISC-V ISA quickly understand the

internal operation of a processor core during real world

operation on an FPGA board.

Improvements/Applications: The synthesis report of the

RISC-V single cycle processor core with the various

peripheral modules utilized 6834 Look-up-Tables at a

maximum frequency of 64 MHz. This indicates that the

core is suitable for low-cost IoT SoC devices and can serve

as tutorial material for the computer architecture course.

Keywords: RISC-V ISA, Single Cycle Processor, FPGA,

IoT, SoC, Hardware Verification.

Copyrights @Kalahari Journals Vol. 6 No. 3 (October-December, 2021)

 International Journal of Mechanical Engineering

856

1. Introduction

The Central Processing Unit (CPU) is an electronic circuit

designed specifically to execute instructions called programs.

The CPU executes many forms of instructions such as

arithmetic and logic instructions as well as memory access

instructions. These instructions which are specific to each

CPU vendor are collectively known as the ISA. The ISA

describes a specific instruction set that can be compiled by

dedicated compilers and translated into machine codes. There

are many systems in today's society that require very large

computations such as deep learning and image-based

processing. Therefore, the demand for embedded systems

requiring low power, low cost, and high performance is also

increasing. The paper in [1] gives an example of a system that

efficiently recognizes vehicle license plate using an

embedded systems and AI. In addition, the usability of IoT is

gaining popularity and increasing user convenience based on

its applicability in real life. Using the Lora module, paper [2]

designed a system that broadcasts kindergarten school bus

location notifications to users on SMS or apps on mobile

devices. Among them, processors are indispensable

components. But the commercially available ISAs belong to

companies such as Intel and AMD which include the x86

family of ISAs [3], [4]. These ISAs are patented and cannot

be used without license that cost a lot of money and thereby

preventing researchers in academia and hobbyist from using

them. Moreover, the licenses prevent designers from

implementing the ISAs but instead limits them to use the

processor cores provided by the companies. This prevents

competition, innovation, and sometimes trust issues as

companies could imbed malicious circuitry in the processor

for spying [5].

The licensing issue associated with commercial processor is

solved by the design of a new ISA known as RISC-V [6], [7]

by the computer architecture group in University of

California, Berkeley. The RISC-V ISA is an open-source ISA

available for implementation under the free Berkeley open-

source license. The RISC-V project started in 2010 and has

rapidly grown with their board of directors that come from

companies such as NVIDIA and Google. There are a number

of open-source processors that implement the RISC-V ISA

which include Rocket [8], Berkeley Out of Order Machine

(BOOM) [8], PICORV32 [9] and many more. These

processors are complex with pipelined structures that achieve

high throughput with low hardware footprint [10]. These

processors are therefore difficult to understand by researchers

seeking information about the RISC-V ISA architecture. This

paper therefore implements a 32-bit single cycle RISC-V ISA

core with peripherals to monitor the internal operations of the

processor.

The objectives of this paper are as follows

 The paper illustrates design and implementation of

the control and datapath for a 32-bit single cycle RISC-V ISA

core using Verilog HDL

 Hardware controllers for peripherals such as seven-

segment display, text LCD, dot matrix, LEDs, and keypad are

added to monitor the internal activities of the processor core.

This is done to provide an easy way to input instruction and

observe the internal data of components such as the register

file, PC, instruction memory, and data memory.

 A verification platform is built and loaded onto an

FPGA board for inputting instruction and observing the data

in the internal architecture of the processor

The rest of this paper is organized as follows: Section 2

discusses some related works, Section 3 gives an introduction

to the RISC-V ISA, Section 4 illustrates the design and

implementation of the 32-bit single cycle RISC-V ISA,

Section 5 describe the verification module for testing the

processor core, Section 6 present the hardware resource

utilized by the processor core together with the peripheral

modules while the conclusion of the paper is discussed in

Section 7.

2. Related Work

Since the introduction of the RISC-V ISA in the last decade,

several processor cores have been proposed and implemented

for different reasons. Most the processor cores are meant for

academic use while a few others are commercial. The

academic processor cores are designed with interfaces for

easy integration into an SoC. This is good for advances

hardware engineers to quickly assemble an SoC but very

difficult for beginners to understand the working of the

processor core. This section therefore explores RISC-V

processor cores with input/output peripherals that enable a

designer to gain understanding of the internal operation of the

processor cores.

The authors of [11] implemented the RISC-V ISA with

instruction which include environment call, break, status

registers, control, branch, memory, and arithmetic logic. A

total of 38 instructions were simulated using ModelSim and

Quartus-II simulators. This work only resulted to functional

simulation without real hardware implementation on an

FPGA board. This makes it difficult to know if the processor

will work in the real world.

The authors of [12] proposed an Integrated Machine Code

Monitor (iMCM) and implemented together with a RISC-V

processor on an FPGA. The iMCM monitors functions

according to the verification method of the RISC-V

processor. A total of 27 compressed RISC-V ISA instructions

were monitored through simulations and FPGA evaluation.

The verification of the processor instruction is through a

terminal to displays only the memory related commands and

the results of the program trace in hexadecimal values. This

makes it difficult to understand the actual internal operations

of the processor under evaluation.

The work that comes close to this paper is proposed by [13].

The author of [13] proposed and implemented a fully

synthesizable RISC-V processor core on an FPGA device to

text LCD display port. A user inputs Assembly code which is

converted to machine code and executed by the processor

with the results displayed on the text LCD. The text LCD

shown only current PC value and the results of executed

RISC-V instruction. The work of [13] is extended with

peripherals such as seven-segment display, LEDs, dot matrix,

and keypad to form the basis of this paper. The displays show

the internal content of the processor which include the PC,

register file, instruction memory, and the data memory. These

displayed values are shown for each RISC-V instruction

Copyrights @Kalahari Journals Vol. 6 No. 3 (October-December, 2021)

 International Journal of Mechanical Engineering

857

which makes it easy to understand the internal operation of a

typical RISC-V processor core.

3. RISC-V ISA Technical Specification

The RISC-V ISA is a load-store ISA based on the principles

of RISC. The load-store ISA format typically divide

instructions into two groups which include memory access

(where only store and load instructions have access to

memory) and ALU operations (where the operands are in

registers). The simplicity of the RISC-V ISA design makes it

possible execute instructions in just one clock cycle.

RISC-V has a base ISA which is referred to as RISC-V 32-

bit Integer (RV32I) which is compulsory for any

implementation. The RV32I instructions which include loads,

stores, control flow, and integer computations. The RV32I

instructions can be extended to include multiplication and

division (RV32IM), atomic operations (RV32IA), single

precision floating point (RV32IF), and double precision

floating point (RV32ID). These extensions are optional to

implement. It must be noted that the RISC-V ISA also allows

for data widths of 64-bit and 128-bit as shown in Table 1 but

this paper implements a data width of 32-bit.

Table 1: Summary of RISC-V ISAs

ISA Description

RV32/64/128I Base Integer Instruction Set

RV32/64/128M Extension for Integer Multiplication

and Division Instructions

RV32/64/128A Extension for Atomic Instructions

RV32/64/128F Extension for Single-Precision

Floating-Point Instructions

RV32/64/128D Extension for Double-Precision

Floating-Point Instructions

There are a total of 32 registers used by the RISC-V ISA out

of which 31 are general purposed registers (register x1 to x31)

while one register (register x0) is hardware wired to a

constant 0. In addition to the 32 registers, a special register is

used to store the address of the current instruction known as

the PC register. The width of the registers could be 32-bit, 64-

bit, or 128-bit depending on the implementation.

The RISC-V ISA consists of six main instruction formats

which include, R-type (register-register instructions), I-type

(loads and jump-and-link instructions), S-type (store

instructions), B-type (branch instructions), U-type (load-

upper-immediate instructions), and J-type (jump

instructions). Figure 1 illustrates the various instruction

format [14], [15] where funct stands for function, opcode

stands for operation code, imm stands for immediate, rd

stands for destination registers, rs1 stands for source register

1, and rs2 stands for source register 2.

Figure 1. RISC-V 32-bit Instruction Format

The RISC-V RV32I which is implemented in this paper

consist of a total of 39 instructions. This paper implements 37

of the 39 instructions which are illustrated in Figure 2.

Copyrights @Kalahari Journals Vol. 6 No. 3 (October-December, 2021)

 International Journal of Mechanical Engineering

858

Figure 2. RISC-V RV32I Base Instruction Set

4. RV32I ISA Single Cycle Processor Hardware

Architecture

The hardware architecture for the RV32I ISA was designed

by expanding on an architecture implemented in the RISC-V

book [15]. The authors of [15] implemented a basic RISC-V

hardware architecture capable of executing a total of seven

instructions which include load doubleword (ld), store double

word (sd), add, sub, and, or, and branch if equal (beq). This

architecture was expanded to execute a total of 37 instructions

and formed the basis of this work. Since the main objective

of this work is to help researchers understand the inner

workers of the RISC-V processor, the implementation of the

RV32I ISA is simplified. The hardware architecture of the

RV32I ISA implementation is shown in Figure 3. The

architecture is a single cycle design which means it is capable

of fetching, decoding, and executing the 37 RISC-V

instructions in just a single cycle using components such as

the PC, ALU, register file, instruction memory, data memory,

and some basic logic gates. This section examines each

component of Figure 3.

Copyrights @Kalahari Journals Vol. 6 No. 3 (October-December, 2021)

 International Journal of Mechanical Engineering

859

Figure 3. The Hardware Architecture of the RV32I ISA Design

4.1. Program Counter Register

The PC is a special register inside the processor that stores

the address of the next processor instruction. The PC register

in the RV32I ISA is has a data width of 32-bit. The instruction

is the machine code which is in the instruction memory.

Generally, in the design of a CPU, the PC is usually increased

by 4 during the normal instruction execution. The increased

by a factor 4 is because most CPUs are byte addressable. For

simplicity of the memory design, this work increases the PC

by a factor of 1 to fetch all 32-bit instruction in the instruction

memory. When executing B-type (branch), U-type (load-

upper-immediate), and J-type (jump), the PC register stores

the calculated value of the jump addresses. The output of the

PC register is assigned to the instruction memory, register

file, or the ALU depending on the type of instruction

performed. Figure 4 shows a diagram of the PC register

input/output signals.

Figure 4. PC Register Input/Output Signals

4.2. ALU Architecture

The ALU is responsible for performing arithmetic and logical

operations. The ALU is a fundamental basic block of every

processor. The ALU cannot store data on its own, it must go

through a register. The built-in ALU designed in this work

has three 32-bit inputs and one 32-bit output. The inputs

consist of a data from the PC (JAL instruction execution) and

data from the instruction memory (R-type instruction from

the register). A multiplexer is used to route the signals to the

input of the ALU. The internal circuitry of the ALU can

perform 10 operations which include AND, OR, ADD, SLL,

XOR, SUB, SLT, SRL, SRA, and NOR. The output signal is

assigned to the PC register, the data memory, and the Data

Modification Module depending on the instruction type.

Figure 5 shows the architecture of the ALU.

Copyrights @Kalahari Journals Vol. 6 No. 3 (October-December, 2021)

 International Journal of Mechanical Engineering

860

Figure 5. ALU Architecture

4.3. Register File Architecture

The RV32I ISA consist of a total of 32 32-bit registers for

holding data. A register is a memory device that temporarily

remembers the data that the processor needs to process the

instruction. The registers are few but are directly connected

to the ALU which makes the computation and storage of

intermediate data very fast. The register file implemented in

the work consist of five inputs and two outputs. The input

labeled ina, inb, and ind each of 5-bit width select the register

to write to or read from depending on the instruction type.

Two multiplexors with select signals from the instruction are

used to route data to selected registers. The internal

architecture of the register file is made up 32x32 memory.

The value of ina, inb determines the address of the 32-bit

output ports outa, outb. The output signals are assigned to the

Data Modification Module which in goes to the PC register

depending on the type of instruction. Figure 6 shows the

input/output logic of the register file implemented in this

work.

Figure 6. Register File Architecture

4.4. Data Modification Module

The Data Modification Module is responsible for the division

of data into bytes, handling of signed and unsigned numbers,

and some computation of values. Data Modification Module

consist of seven inputs and three outputs. The three input

labeled othercon, opcode, and imm serve as control signals

for activating the Data Modification Module. The signal

labeled otherina and otherinb are data from the register file

and the signal labeled memdata is from data memory. The

internal circuitry of the Data Modification Module consists of

logic that converts 32-bit data into the signed format and logic

that divides 32-bit data into 8-bit, 16-bit, and 24-bits. The

output signals labeled otherouta and otheroutb are assigned to

the ALU while the output signal labeled otherreg is assigned

to the register file. Figure 7 shows the architecture of the Data

Modification Module.

Copyrights @Kalahari Journals Vol. 6 No. 3 (October-December, 2021)

 International Journal of Mechanical Engineering

861

Figure 7. Data Modification Module Architecture

4.5. Instruction Memory

The instruction memory is responsible for storing 32-bit

machine code (instructions). The instruction memory

implemented in this work is made up of 32-bit data width with

a depth of 512. This memory is read only and therefore only

needs an address port to get access to a particular instruction.

The PC output port provides the address of an instruction to

be read from the instruction memory. The 32-bit instruction

from the output of the instruction memory is assigned to

modules such as the PC, register file, ALU, data memory, and

Data Modification Module. The 32-bit output serve as control

signal for activating the values modules depending on the

type of instruction to execute. Figure 8 illustrates the

input/output signal of the instruction memory.

Figure 8. Instruction Memory Input/Output

4.6. Data Memory

The data memory is responsible for storing data that is not

instruction or machine code. This data is usually generated

when the processor operational. This memory is a type of

Random-Access Memory (RAM) in which data can be read

and written. RISC-V is little endian which means that when

storing data in memory, the Least Significant Byte (LSB) is

stored first. The data memory consists of four inputs and one

output. The 32-bit output of the instruction memory is

assigned to the Data Modification. Figure 9 shows the

input/output signals of the data memory.

Copyrights @Kalahari Journals Vol. 6 No. 3 (October-December, 2021)

 International Journal of Mechanical Engineering

862

Figure 9. Data Memory Input/Output

4.7. General Flow of RISC-V ISA

The typical operation of the RISC-V processor consists of

five steps which include instruction fetch, decode, execute,

memory access, and writeback. Figure 10 shows the flow of

a typical RISC-V processor operation. In the information

fetch stage, the PC output the address to the instruction

memory which make available the 32-bit instruction or

machine code. The decode stage group the instruction code

and sent to the various modules as control signals. In the

execute stage, the various modules which the ALU, register

file, and Data Modification Module are used to perform the

instruction. In the memory access stage, data is read or stored

in the data memory depending on the type of instruction. The

writeback stage stores value in the register file depending on

the type of instruction.

Figure 10. General Flow of RISC-V Instruction

Execution

5. Hardware Verification Module of RISC-V Processor
A verification module is proposed to observe the

functionality of the RISC-V RV32I processor core. This

module is important because it enables observers to easily

understand the RISC-V ISA by observing real internal values

when an instruction is operating. To observe the internal

operation of the processor core, various peripherals are used

to access real-time values from components such as registers,

PC registers, data memory, and instruction memory during

normal operation of the processor. Figure 11 shows the

various peripheral used to observe the internal operation of

the RISC-V processor. The peripherals and with their

functionalities are shown in Table 1.

Figure 11. RISC-V Processor Verification Peripherals

Table 1: Functionalities of RISC-V Processor Verification Peripherals

Peripheral Functionality

(a) Push Button
USER SW1 button is used to increment of the PC by 1 while USER SW2 button is used

to increment the address of the instruction memory.

(b) Text LCD

First row 2-4 displays status. First row 8-15 display user value entered. The second row

2-5 display the current instruction. Second row 7-14 displays the current value in the

instruction memory.

(c) LEDs Eight LEDs are used to display the current PC value.

(d) 7-Segment Display The last two segments display the address of the instruction memory

(e) Dot Matrix
The Dot matrix is used to display data stored in the instruction memory, data memory

and register file.

(f) Keypad
The del button is used to delete an entered value. The ins button is used to insert an

entered value. Button 1 to 9 are used for entering the machine code.

(g) Dip Switch The first five are used to set the register and data memory address.

5.1. Processor Verification on an FPGA Board

The RV32I single cycle processor was verified on an FPGA

board designed by HANBACK Electronics. The test board is

equipped with Virtex-4 XC4VLX80 FPGA device. The

peripherals for observing the operation of the processor

include, push buttons, text LCD, LEDs, 7-segment display,

dot matrix, keypad, and dip switch. Controller modules were

designed for each of the peripherals. Figure 12 shows the

connections of the peripheral to the FPGA device. From the

figure, the Test_module consist of the various peripheral

controllers which are also connected to the processor.

Copyrights @Kalahari Journals Vol. 6 No. 3 (October-December, 2021)

 International Journal of Mechanical Engineering

863

Figure 12. Connections of Peripheral to the FPGA Device

Figure 13 shows the flow chart for checking RISC-V

processor instructions on the FPGA board. When the FPGA

is powered up, all registers and memory locations are

initialized to zero. The user uses the keypad to insert a

instruction that starts with the Operation Code (OPCODE).

The USER SW2 button is used to set the instruction address

shown in seven segments before entering the instruction data.

The desired number of buttons are used to insert the

instruction code. By entering all the values of the instruction

code, it is stored in FPGA instruction memory at the address

previously specified. The USER SW1 button is used to

manually increase the value of the PC which is shown on the

LED. The dip switch is used to display values from the

register file, instruction memory, and data memory on the dot

matrix. Figure 14 illustrates the output of ADD UPPER

IMMEDIATE TO PC (AUIPC) instruction on the FPGA

board.

Figure 13. RISC-V Processor Verification Flow Chart

Copyrights @Kalahari Journals Vol. 6 No. 3 (October-December, 2021)

 International Journal of Mechanical Engineering

864

Figure 14. Display of AUIPC RISC-V Instruction of an

FPGA Board

5.2. Hardware Synthesis Results of RISC-V Verification

Module

The processor core together with the peripheral controllers

was synthesized using Xilinx Virtex4 FPGA device which

resulted in 6834 LUTs at a maximum frequency of 64 MHz

as shown in Table 2. Don et al. [13] designed a RISC-V

processor with Text LCD peripheral for verification. When

this work is compared to that of [13], this work consumed

more LUTs because of the use of several peripheral

controllers for the processor internal state verification than

that of reference [13] but achieved twice the frequency of

reference [13].

Table 2: Synthesis Results and Comparison

Design Processor Type and Peripherals Area (LUTs) Frequency (MHz)

[13] RV32I Processor, Text LCD 5578 32

This Work
RV32I Processor, Text LCD, LEDs, Dip Switch, Push

Buttons, 7-Segment, Dot Matrix, Keypad
6834 64

5. Hardware Verification Module of RISC-V Processor

This work provides an insight into the internal operation of a

RISC-V RV32I processor using an FPGA device and

input/output peripherals. This work can serve as teaching

material for the computer architecture course that will enable

students to understand the internal operation of a RISC-V

processor core. In the future, a user-friendly desktop/web

application will be designed to serve as an interface to the

FPGA and display the internal values of the RISC-V

processor core.

7. Reference

1. Ryu JW, Lee JH, An Efficient Vehicle License Plate

Recognition System Based on Embedded Systems, Journal of

Next-generation Convergence Technology Association. 2021

Feb. 5(1) 22-27.

2. Ryu HG, Ryu KK, Kindergarten school bus

notification service using IoT network, Journal of Next-

generation Convergence Technology Association. 2019 Mar.

3(1) 21-28.

3. Daniel D. Open hardware: Initial experience with

synthesizable open cores [dissertation]. [Uppsala]: Uppsala

Universitet; 2019.

4. Kim WY. "The Linux 'RISC-V' singularity in the

CPU world has begun to break through," [Online], Retrieved

25 January, 2021.

https://zdnet.co.kr/view/?no=20201201123035.

5. Swarup B, Michael SH, Mainak B, Seetharam N.

Hardware trojans attacks: Threat analysis and

countermeasures, Proceedings of the IEEE. 2014 Aug; 102(8):

1229-1247.

6. Andrew W, Yunsup L, David P, Krste A. The RISC-

V Instruction Set Manual, Volume I: Base User-Level ISA.

Technical Report UCB/EECS-2011-62, EECS Department,

University of California, Berkeley, May 2011.

7. Nari L. "SiFive to showcase RISC-V based PC in

October," [Online], Retrieved 26 February, 2021.

http://www.thelec.net/news/articleView.html?idxno=1584.

8. Krste A, Rimas A, Jonathan B, Scott B, David B,

Christopher C, Henry C, Daniel D, John H, Adam I, Sagar K,

Ben K, Donggyu K, John K. The Rocket chip generator.

Technical Report UCB/EECS-2016-17, EECS Department,

University of California, Berkeley, Apr 2016.

9. Clifford W. "PICORV32 – A size-optimized RISC-

V CPU," [Online], Retrieved 26 February, 2021.

https://github.com/cliffordwolf/picorv32.

10. Dennis ANG, Kwangki R. Selecting a synthesizable

RISC-V processor core for low-cost hardware devices,

Journal of Information Processing Systems. 2019

Dec. 15(6), 1406-1421.

11. Lee JB, Simulation and synthesis of RISC-V

processors, The Journal of the Institute of Internet,

Broadcasting and Communication. 2019 Feb. 19(1), 239-245.

12. Hiroaki K, Akinori K. An integrated machine code

monitor for a RISC-V processor on an FPGA, Artificial Life

Robotics. 2020 Mar. 25, 427–433.

13. Don KD, Ayushi P, Virk SS, Sajal A, Tanuj S, Arit

M, Kailash CR, Single cycle RISC-V micro architecture

processor and its FPGA prototype, Proceedings of 7th

International Symposium on Embedded Computing and

System Design. 2017 Dec. India.

14. Bucknell University Computer Science Department.

"RISC-V instruction reference (green sheet)," [Online],

Retrieved 26 February, 2021.

http://csci206sp2020.courses.bucknell.edu/files/2020/01/risc

v-card.pdf

Copyrights @Kalahari Journals Vol. 6 No. 3 (October-December, 2021)

 International Journal of Mechanical Engineering

865

15. David AP, John LH. Computer organization and

design: The hardware/software interface, RISC-V 5th edn,

Elsevier, 2017.

