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Abstract: 

 

In this paper  E-glass/epoxy fully elliptic spring elements 

were analytically modeled based on classical laminate 

theory (CLT) and strain energy methods. The mid-plane 

symmetric laminated spring element has amajor 

axis/minor axis ratio (a/b ratio) of 1.5. The mechanical 

properties such as spring rate, point of contraflexure, 

stress and strain distributions under uniaxial loading 

have been computed and analyzed.The effect of variables 

such as a/b ratio, width, thickness, volume fraction of 

fibres (Vf) and laminate configuration on the spring 

stiffness have been studied. In the experimental part 

spring elements of various configurations were 

fabricated using filament winding technique. The spring 

elements were loaded along the minor axis using an 

Universal Testing Machine. It was found to exhibit linear 

stiffness in the desired range of deflection. A close 

matching between theoretical and experimental values 

was observed. Based on these studies, the geometric 

parameters and laminate configuration of the spring 

element were optimized.  

 

 

KEYWORDS: FRP, composite, elliptic spring element, 

bending strain energy, Castiglianos theorem. 

 

INTRODUCTION  

 

Polymer Matrix composites find lot of application in various 

disciplines of  engineering due to their light weight, inherent 

damping and superior fatigue properties. Composite 

products are very vital to the light weighting of automotive  

vehicles. Commonly used products are composite drive 

shaft, instrument cluster, bumpers, battery covers and body 

panels. In addition to these, composite suspension springs 

such as monocoque leaf springs  and fully  elliptic springs 

have started gaining importance. Leaf springs can be used 

for rigid axle suspension and fully  elliptic springs can be 

used in place of  steel  helical coil springs  for  independent 

suspension.   The spring elements studied in the  current 

work are intended to replace the conventional front 

suspension steel helical coil springs of the light motor 

vehicles (LMV).The proposed spring elements can be 

stacked over each other to form a complete spring. The 

major advantages of using the composite suspension springs 

are:  

(ii). Superior vehicle ride characteristics owing to lower 

unsprung mass. 

(iii) The higher inherent damping.  

(iii) Superior fatigue characteristics. 

 

So et al (1)  have  developed theoretical formulation for 

composite circular springelements bases bending strain 

energy  (So et al, 1991).  Castigliano’s theorem   was used 

to compute the spring deflection 

 

Mahdi et al (2) have studied the influence of ellipticity ratio 

on performance of woven roving wrapped composite 

elliptical springs has been investigated both experimentally 

and numerically. This study demonstrated that composites 

semi-elliptical spring can be used for light and heavy trucks 

and meet the requirements, together with substantialweight 

saving. The results showed that the ellipticity ratio 

significantly influenced the spring rate and failure loads. 

Composite elliptic spring with ellipticity ratios of a/b 2.0 

displayed the highest spring rate. 

 

Abdul Rahim Abu Talib et al (3) have developed  finite 

element models to optimize the material and geometry of the 

composite semi-elliptical spring based on the spring rate, log 

life and shear stress parameters. The influence of the 

ellipticity ratio on the performance of woven roving–

ISSN: 0974-5823                                                                                      Vol. 6 No. 3 October-December, 2021 

mailto:1msn.auto@psgtech.ac.in


 

Copyrights @Kalahari Journals  Vol. 6 No. 3 (October-December, 2021) 

 International Journal of Mechanical Engineering  

 

479 

wrapped composite elliptical springs was investigated both 

experimentally and numerically.  

 

Amol Bhanage and K. Padmanabhan (4)  have evaluated the 

fatigue characteristics of GFRP leaf springs. It was found 

that the linear elastic stresses from Finite element analysis 

can be used directly to calculate fatigue damage. Also it is  

shown that, design and simulation stresses satisfying 

maximum stress failure criterion; hence design is safe 

 

The authors Shivaji M. Mane  and  S B. Bhosale  (5) have  

compared the experimental results of   static performance of  

semi-elliptic spring elements with  FEA analysis and found 

them to agree well. 

 

Papacz et al (6) have studied the dynamic performance of  

steel and composite leaf elliptic springs. It is concluded that 

composite leaf springs have superior vibration absorption 

properties compared to steel spring.   

 

P.K. Mallick (7) has investigated the Static Mechanical 

Performance of Fully elliptic Composite Springs elements.   

It was found that the primary failure mode in composite 

elliptic spring elements was interlaminar shear which 

occurred at or near the minor diameter. The spring elements 

are capable of absorbing large deformations, yet exhibit a 

linear behavior until the first interlaminar shear failure 

occurs. Both spring rate and maximum failure increase with 

increasing wall thickness 

 

Tse et al (8) have formulated analytical expressions based 

on the principle of minimum potential energy are presented 

which describe the stiffnesses of mid-surface symmetric, 

woven composite circular springs with extended flat contact 

surfaces subject to unidirectional line and surface-loading 

configurations. Comparison studies of the results obtained 

from both the analytical and numerical models are made 

with experimental data, and the results are found to be 

satisfactory. The semi-included angle of the flat contact 

surface is vital parameter to spring stiffnesses of the 

composite spring.. 

 

Reid et al (9) have investigated the large deflection of 

composite circular springs with extended flat contact 

surfaces. Woven fibre/epoxy composite circular springs of  

range of different radii and thicknesses were fabricated and 

tested. FEA was used for theoretical analysis. Theoretical 

studies agree well with  experimental results. The angular 

position of the zero-strain location increases linearly with 

the semi-included angle in the surface-loading 

configuration. However, it is always in the vicinity of 45 

degree in the line-loading configuration 

 

Tse et al (10) have developed analytical solution for circular 

composite spring element  based on bending strain energy 

principles. The theoretical model was validated with 

experimental results. 

 

NahitOztoprak  et al (11) have studied the mono-composite 

leaf spring systems with different material configurations 

using three-dimensional FEM. The analysis results 

demonstrated that all the proposed designs experience stress 

levels below the yielding. Comparison of the predicted 

results with the experimental test results for the 

manufactured prototypes showed good agreement in terms 

of the load-displacement response 

 

 

Zheng Yinhuan et al (12) have analysed the characteristics 

of a composite leaf spring made from glass fiber reinforced 

plastics using the ANSYS software. Considering interleaf 

contact, the stress distribution and deformation are obtained.  

 

Anil Antony Sequeira et al (13) have carried out a 

Comparative Analysis of Helical Steel Springs with 

Composite Springs Using Finite Element Method’ and 

found  the results are closely matching. The load- deflection 

and stress – strain curves were plotted and found to be 

linear.  

 

Mehdi Bakhshesh and Majid Bakhshesh (14) have replaced 

helical steel spring has by composite helical springs. 

Numerical results have been compared with experimental 

results and found to be in good agreement. Displacement in 

composite helical spring is more than that of steel spring and 

has the least value when fiber is oriented in the direction of 

loading. 

 

  Based on the above literature survey it is clear that glass 

fibre / epoxy matrix composite are most suitable for spring 

applications. The suspension system requirements are 

largely dependent on the type of vehicle. Generally, the 

spring stiffness varies from 20 N/mm to 40 N/mm.  

This paper deals with the analytical formulation for the 

estimation of static mechanical properties of spring 

elements. The detailed theoretical formulation for composite 

elliptic spring elements has been presented.The results 

obtained from the theoretical analysis and the discussion are 

also presented.  

 

Analytical Formulation of Composite Fully Elliptic 

Spring Elements 

The typical isometric view of   composite elliptic spring 

element is shown in Fig.1 
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Fig.  1 Composite elliptic spring element 

The theoretical formulation was carried out based on the 

following assumptions.  

(i) Due to the bi-axial symmetry of the spring element, 

only one quadrant has been considered for the analysis. 

 (ii) The work done by the external loads on the 

spring element is absorbed in the form of bending strain 

energy. The effects of shear and axial strain energy are 

negligible. 

The approach involves the following steps: 

 (i) The expression for bending strain energy (Ub) of 

one quadrant (0-90°) of the spring element has been derived. 

 (ii)Castigliano’s first theorem was applied to 

calculate the spring deflection (  at the required point and 

the associated stiffness. 

The notations used  in the theoretical formulation are at the 

end of this manuscript  

The methodology of analytical formulation is given in the 

following diagram 

 DR JN PLEASE CUT  PASTE THE FLOW 

CHART HERE 

The spring element is subjected to load (P) along its minor 

axis. The forces and moments acting on one quadrant of the 

spring element is given in Fig. 2. The mid-plane stress and 

moment resultants shown in Fig. 3 

 
Fig 2Idealized one quadrant of the spring element showing the forces and moments 
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Fig. 3 The mid-plane stress and moment resultants 

According to Classical Lamination Theory (CLT) for composite laminates the constitutive equation for an anisotropic laminate is 

given by  

   N
M

A B

B D
ij ij

ij ij









                (1) 

Elements of constitutive matrices are given as 
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(hk- hk-1) = z (thickness of each layer) 

         N A B         .   (2) 

         M B D          (3) 

From equation 2 

              1 1A N A B      

or 

             
 

     
1 1

A N A B
          (4) 

Substituting equation 4  in equation 3  

                   M B A N A B D  
 

    
1 1

           (5) 

 let 
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

 









1

1
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                 (5a) 

and equation 4 becomes 

              * *A B N             (6) 

and equation 5 becomes 

         M  N   * *C D   

           
 

 
1 1

* * *D D CM  N    

            M  N  
1 1* * *D D C            (7) 

Substituting equation 7 in equation 6 

 

                      
 

 * * * * * *A B D B D C N   M  N
1 1

 

                  



 


 


 * * * * * *A B D C B D -   N   M

1 1

        

(8) 

let 

         

     

     

   

' * * * *

' * *

' * *

' *

A A B D C

B B D

C D C

D D

 





 





  

 

 

1

1

1

1

            (9) 

 The equations  8 and 7 can be re-written as 

            ' 'A B  N   M           (10) 

         

 

 N   M  ' 'C D
           (11) 

 From equations 10 and 11 






























A B

C D

N

M

' '

' '
  

     (12) 

Strain Energy Expression 
The method of application of strain energy concepts to evaluate the stiffness of elliptic spring elements are given in the following.  

The elastic strain energy (Ub) is given by  

b i j ijU dv W dv

v

  
1

2
        (13) 

The strain energy density function is  

dU

dv
Wb

ij ij









  

1

2
               (14) 

Assuming in-plane stress acting on the laminate, the strain at the  kth lamina can be given as  
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     
k z                 (15) 

The stress at the kth lamina is given by  

        k Q z k                (16) 

Now the strain energy function 'W' becomes 

    W z 
T

  
1

2
          k

Q z              (17) 

 

The strain energy density function for a cross-sectional area having width ‘L’ of a shell is given in the following. 

'W W L dz

kh

kh

k

n

kh

kh

k

n

i L dzij j 

 

       

11

1

2
11

  (18) 

           'W z 
k

Q z 
h

h

k

n
T

k

k

    

 

            L dz  
1

2
1 1

   
     

                     (19)  

All the matrices are independent of ‘z’. On integrating and substituting the limits, 'W  can be written as given in the following. 

               
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1
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1
2 1

1
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1
3 1
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2 2 3 3

   
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          (20) 

It is well known that 

         

          
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M i
Q h h h h
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
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
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1

2

1

2

2

1

2 3
1

3
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3
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 (21) 

Comparing equations 20 and 21, 'W  can be obtained as follows. 

        'W
L

N M  
2

     
T T

           (22) 

Now the strain energy for the curved element can be obtained by integrating 'W  within limits  1 to 2. 

       
bU

L
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M
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




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From equation 12  
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 By suitably re-arranging the terms, it can be obtained in the following form 

            
T T

T T

N M
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A B
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From  the eequations. 23 and 25 

b
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
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  (26) 

where 

 
  





R
a b

a b2 2 2 2sin cos 

    (27) 

‘R’-radius of one quadrant of ellipse at any ‘‘ between 0 and 90°, which is given by the above equation 27. 

 

Stiffness of the Spring Element 
As already stated, because of bi-axial symmetry of the 

spring element, only one quadrant need to be considered as 

shown in Fig. 2 To avoid bending-extension coupling 

stiffness matrix, the spring element was considered to be 

made up of mid-plane symmetric laminate. 

It is known that, for a symmetric laminate B = 0. 

Referring to eqns. 9 and 5a 

 [ A' ]= [A]-1 

        [B' ]= 0 since [B*]= 0 

        [C' ]= 0 since [C*]= 0 

        [ D' ]= [D]-1 

The equation 26 becomes 
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Referring to the Fig. 3 the above equation can be written as  
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                (29) 
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All the stress resultants become zero due to symmetry. 

Similarly, the moment resultant Mx and Mx
also become 

zero. The spring is assumed to be made out of specially 

orthotropic laminate. 

Due to the above considerations the expression  (29) for 

‘Ub’ reduces to the following form. 

 

bU
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M 
2

2
11

1
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
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









1
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2
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22 66



    (30) 

Referring to Fig. 2, the moment M at any section of the spring  can be written as 

 M
b

M
P

R bH R      a  
2

cos sin                        (31) 

where, Hb is fictious and equal to zero. 

From the previous derivations, we know that the bending strain energy is given by  

bU
L

D M
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

1

2
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0
11
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 1
2 211

1
2

0

2

( ( cos ))

/






       (32) 

Since the variation of slope (rotation) is zero at 'B. ' 

bU

bM




 0  

bU
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
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1 1

2
1 0

11
0

2

L
D Mb

P
a R R d( ( cos ))

/




  
      (33) 

The above equation can be written as 

bM R d
P

a R 
P

0
2

0
2

0

2 0

2 2 2  

   

/ / /

cos         d R    d         (34) 

 The statically indeterminate bending moment ‘Mb’is given as follows: 
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Calculation of  Spring Deflection ()  
The deflection at the required point (at ‘A’- minor axis end) 

can be obtained using the Castigliano's first theorem, which 

states that the 'Partial derivative of the strain energy (Ub) 

with respect to the applied load gives the vertical deflection 

in the direction of application of the force'   i.e.
bU

P




 . 

The equation (27) for ‘R’ and the expression (35) for ‘Mb’ 

can be substituted in expression for Ub(equation 32). The 

equation for Ub can be partially differentiated with respect to 

the applied load (P/2) to get the deflection (  at the 

required point. The stiffness (k) of the composite elliptic 

spring element can be calculated as follows: 

k= P/(2      

  

All the above evaluation of expressions were performed 

using a computer programme  

 Stress-Strain Calculations for Composite Elliptic Spring 

Elements 

 Strain calculations 
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It is well known that 
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The mid-plane strains 


 were assumed to be zero. 
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Since Mx and Mx
are zero, the above equation  becomes 
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   M M a RL b
P

    
1

2   cos         (43) 

The above expression for ‘M‘can be substituted in the eqn. 2.42 and the strains can be evaluated. 

Stress calculations 

It is well known that  
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Substituting equation 42 in equation 44 
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So the stresses in the 'x' direction becomes zero. The inplane 

shear stresses also become zero since it was assumed that 

the spring element was made up of specially orthotropic 

laminate. 

 

RESULTS AND DISCUSSION 

The results of the theoretical studies have been presented 

and discussed in this section. To start with the theoretical 

formulation is validated by comparing the results of So et al 

The following Table 1 gives the comparison between 

stiffness values for circular spring elements predicted by So 

et al  and the stiffness values predicted through present 

formulation. The results of present formulation agree well 

with the results of So et al. predicted for circular spring. The 

stiffness values of circular spring elements were evaluated 

through the present formulation by keeping the a/b ratio as 

1.0 
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Comparison of Spring Stiffness (N/mm) values  of circular spring 

element 

                        

Thickness 

in  (mm)  

Volume 

fraction of 

Fibers  (%)  

(Vf) 

Obtained    from 

reference  1    

(So et al) 

Present 

formulation  

2.49 29.17 27.28 28.8 

2.3 34.91 280.96 281.7 

7.59 30.84 704.93 706.2 

Table 1 Comparison between available and predicted results 

for circular spring elements 

Table 1 Comparison between available and predicted results 

for circular spring elements. Composite elliptic spring 

elements of Unidirectional Roving  laminate configuration 

having a/b ratio as 1.5 were fabricated by filament winding 

technique. The following Fig. 4 shows the  split mandrel 

used for the fabrication of the elliptic spring elements is 

given in the following. 

 
Fig 4 Mandrel used for the  fabrication of spring element and sample fabricated spring element 

 

These spring elements were subjected to static stiffness tests 

and the load-displacement curves were obtained. The tensile 

modulus of the laminate having 0.45 Vf  has been 

experimentally measured as 29.3 GPa. 

From Table 2, it can be observed that the theoretical and 

experimental stiffness values agree well with each other. 

However, it can be seen that as the thickness of the spring 

element increases, the difference (%) between the 

experimental and the theoretical stiffness values also 

increases. This is due to the fact that, transverse shear 

effects increase with the increase in thickness. However the 

desired spring element stiffness value is around 100N/mm 

only. In this range the difference is around 5% which quite 

acceptable for orthotropic materials 

 

Table 2 Comparison of theoretical and experimental stiffness values of elliptic spring elements (UDR spring element, a/b = 1.5 

and L=7.5 cm) 

Sl.No Thickness (mm) Stiffness (N/mm) Difference (%) 

  Theoretical Experimental  

1 

2 

3 

4 

 

3.0 

3.5 

4.0 

4.5 

 

79.9 

124.3 

181.0 

253.7 

 

76.0 

117.0 

168.0 

235.0 

4.87 

5.8 

7.1 

7.37 

 

Prediction of spring performance using the analytical 

models 

The variation of the stiffness of spring element with the 

increase in thickness is presented in  Fig. 5 The stiffness 

increases as the thickness increases. The increase in stiffness 

with thickness was found to be non-linear (cubic function). 

The results also illustrate the influence of a/b ratio on the 

stiffness of the spring elements. The circular spring element 

(a/b =1.0) has the highest stiffness. As the a/b ratio 

increases, the stiffness of the spring element reduces.  
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Fig. 5 Variation of stiffness with thickness of the spring element 

 

It can be observed from Fig. 5 that for an increase in a/b 

ratio from 1.0 to 1.5, the stiffness reduces by a factor of 

2.65. Similarly when the a/b ratio increases from 1.5 to 2.0, 

the stiffness reduces by a factor of 2.0. It can be observed 

that for a given spring element stiffness any increase in a/b 

ratio requires an increase in thickness. In the present study, 

the value of ‘b’ (semi-minor axis) has been kept constant as 

5.0 cm. This selection was based on the standard front 

suspension spring height. The Vfused is 0.45 and spring 

width is 7.5 cm. 

The variation of spring stiffness with a/b ratio for different 

types of laminate configurations is presented in Fig. 6. The 

different laminate configurations used in the study are listed 

in the Table 3.  From Fig. 6, it can be observed that  the 

laminate type-4 spring elements give the highest stiffness 

which is followed by laminate types-1, 3 and 2 respectively.  

The spring element of laminate type-1 configuration has a 

stiffness of about 150 N/mm for an a/b ratio of 1.5.  The Fig. 

5 gives an overall idea about the influence of laminate 

structure on the stiffness of spring elements. The stiffness 

characteristics are very much dependent upon the thickness, 

fibre orientation, Vf of each lamina and geometric position 

of the different lamina in the laminate. 

 

Table 3  Details of different laminates 

Laminate code Configuration Thickness 

(mm) 

Laminate -1 (WRM/UDR/WRM/UDR/WRM/UDR/WRM) 4.7 

Laminate -2 (UDR/WRM/UDR/WRM/UDR) 3.1 

Laminate -3 (UDR/WRM/UDR)s 3.6 

Laminate -4 (WRM/UDR/WRM/UDR)s 5.2 
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Fig. 6 Variation of spring element stiffness with type of the laminate 

 

The influence of Vf on the stiffness of different types of 

composite elliptic spring elements is shown in Fig. 7. The 

Vfis an important design factor as far as the energy 

dissipation properties of the spring element is concerned. 

Higher Vf  suppresses the inherent damping capacity of the 

polymer matrix, while lower Vfwill reduce the strength and 

stiffness of the laminate. Hence an optimum Vf should be 

selected for the desired damping and mechanical properties.  

 
Fig. 7 The effect of Vf on the stiffness of spring elements. 
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The stiffness increases linearly with Vf.  It is observed that 

an increase in Vffrom 0.4 to 0.6 results in about 43% 

increase in stiffness for all spring elements irrespective of 

laminate configuration. The results shown in Fig. 7 were 

obtained for an a/b ratio of 1.5 and the thickness of the UDR 

spring element as 4.5 mm. Other parameters were kept 

identical. 

The variation of spring element stiffness with its width is 

shown in Fig. 8. One way of increasing the spring stiffness 

(according to the vehicle requirements) is to increase the 

thickness of the spring element. However, this could lead to 

undesirable transverse shear effects, which could affect the 

performance of the spring. The stiffness increases linearly 

with the width of the spring element. This result assumes 

greater importance, since the spring stiffness can be 

increased considerably without increasing the thickness or 

Vf.  

 
Fig. 8 Change in the spring element stiffness with the width 

 

If the space is not a constraint for fixing the suspension 

system, the best way to enhance the stiffness of the spring 

element is to increase its width. By increasing the width, 

load bearing area of the spring element also increases. This 

will reduce the magnitude of the stress acting on the 

laminate, leading to an increase in the fatigue life of the 

spring element. The results of the Fig. 8 were obtained for a 

Vf of 0.45 and an a/b ratio of 1.5. 

Variation of bending moment along the one quadrant (0-

90°) of spring elements having different a/b ratios is 

presented in the Fig. 9. It can be observed that the bending 

moment increases as the a/b ratio increases. For the same 

load, higher bending moment results in higher bending 

strain energy. 

 
Fig. 9 Variation of bending moment along the one quadrant of different spring elements 
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From these curves (Fig.9), the point of contraflexure (where 

the bending moment becomes zero) can be clearly obtained. 

The point of contraflexure was found to be of great 

importance in the development of composite elliptic springs. 

At these locations it is preferable to fix high damping 

elastomers (or rubber inserts), so that the  damping capacity 

of the composite spring suspension system can be increased. 

The point of contraflexure tends to be closer to the major 

axis as the a/b ratio increases. The results of Fig. 9 were 

obtained for a Vf of 0.5 keeping other parameters to be the 

same. 

The variation of bending stress (for one quadrant) with the 

spring element width is given in Fig. 10. It can be observed 

that the stresses decrease as the spring width increases. 

These results were obtained for an a/b ratio of 1.5 keeping 

other parameters to be the same. 

 
Fig. 10  Influence of width of the spring elements on the laminate stress. 

 

The 

effect of variation of spring element thickness on the 

laminate stresses is shown in  Fig.11 As the thickness 

increases, the load bearing area of the spring element also 

increases leading to the reduction in laminate stress. A Vf of 

0.5, a/b ratio of 1.5 and a width of 7.5 cm were used in 

obtaining the results of Fig. 11.

 
Fig 11  Stress variation along one quadrant of the UDR spring element for different 
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 laminate thickness 

The strain variation along one quadrant of the spring 

element is given in Fig. 12. It can be observed that as the a/b 

ratio increases the laminate strain also correspondingly 

increases. 

 

 
Fig. 12 Strain distribution along  the one quadrant of the spring element for 

different a/b ratios. 

 

Typical stress variation across the thickness of laminate 

type-1 spring element has been shown in Fig13. Because of 

symmetry, the stress variation through half of thickness 

alone has been presented. In the present analysis, the WRM 

lamina has been considered as individual 0° and 90° plies. 

The topmost ply corresponds to 0° lamina of woven roving 

mat , which takes proportionately higher stresses. The 

topmost lamina is immediately followed by the 90° lamina 

of WRM. The 90° lamina takes proportionately less stress. 

It can be observed from Fig. 13 that the stress distribution 

through the laminate thickness is not linear. The stresses are 

discontinuous at the interface of two laminae and the stress 

gradient in two adjoining laminae is also different. The 

stress distribution within each ply varies linearly. The UDR 

lamina takes the maximum stresses owing to its orientation 

of fibres in the direction of the applied stress. 

 
Fig. 13 Stress variation across the thickness of the laminate type-1 at 

major axis end. 
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Referring to the Fig. 13, the type of stress variation across 

the thickness of the laminate could be attributed to the 

following facts. 

 (i) Orientation of fibre. 

 (ii) Vf of each lamina. 

 (iii) Geometric position of the lamina in the 

laminate. 

The typical strain variation across the thickness of the 

laminate type-1 spring element has been given in Fig. 14.  

 
Fig. 14 The strain variation across the thickness of the laminate type-1 at the 

major axis end. 

 

It can be observed that unlike  the stress variation, the strain 

variation was found to be continuous and linear throughout 

the laminate thickness. The difference in the moduli of each 

lamina can account for the variation in the stress amplitude 

(Fig. 13) despite the linear variation of strain. 

Conclusions  
The stiffness values of the spring elements obtained by 

theoretical analysis and experimental studies agree well. The 

validity of the formulation was verified with already 

available results in the literature for circular composite 

spring elements. They agree well. From the present study it 

can be understood that the spring element stiffness is very 

much influenced by the following major spring parameters: 

 (a) Laminate thickness. 

 (b) a/b ratio. 

 (c) Width of the spring. 

 (d) Fibre volume fraction. 

 (e) Laminate configuration. 

The spring element stiffness increases in a non-linear 

(cubical) fashion with the increase in the thickness. The 

spring element stiffness reduces with the increase in the a/b 

ratio. When the a/b ratio was increased from 1.0 to 1.5, the 

stiffness reduces by a factor of 2.65 irrespective of laminate 

configurations. Similarly the stiffness reduces by a factor of 

2.0 when the a/b ratio was increased from 1.5 to 2.0. The 

stiffness increases linearly with the increase in width of 

spring element. 

The stiffness varies linearly with the variation in the 

increase in Vf . The increase in Vf from 0.4 to 0.6 results in 

an increase in the stiffness by about 43%. The bending 

moment acting along the one quadrant increases with the 

increase in a/b ratio. From the bending moment results, the 

point of contraflexure can be  identified for each a/b ratio. 

The stress which act along the one-quadrant of the spring 

element decreases as the width of the spring element 

increases. Similarly the laminate stress decreases as the 

thickness of the spring element increases. The spring 

laminate is subjected to maximum stress at the ends of their 

major and minor axis.  

This stress distribution across the thickness of the laminate 

is mainly dependent upon the following variables: 

 (i) Direction of fibre orientation in the lamina. 

 (iii) Geometric position of the individual ply within 

the laminate. 

 (iv) Vfof each lamina. 

 

General Comments: 

1. Equation part need to be reduced sir,  

2. Over all paper is excellent sir , we should remove 

the terminology or oror in-between the equations.  
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GLOSSARY 

 

A, B, D = Constitutive matrices of the laminate 

 E11, E22 = Young’s Modulus in the principal material directions 

 M, MB  = Bending moment  

  P = Uniaxial load 

  G12 = Shear modulus with reference to principal axes 

  h = Thickness of the shell 

  L = Width of the shell 

  M =Moment resultants 

  N =Stress resultants 

  Q = Lamina stiffness matrix referring to principal axes 

  R =Radius of the midplane of the shell 

  S = Lamina compliance matrix referring to principal axes 

  Ub =Strain energy  

   =Vertical displacement of the spring 

  V =Volume of the shell 

  W = Strain energy density function  

  W’ = Strain energy density function for the  crosssectional area 

  z =Distance from the mid-surface 

   = Strain 

  ° = Mid-plane strain 

     = Mid-surface curvature 

  12 =Major Poisson ratio 

   = Stress 

  a = Semi-major axis 

  b = Semi-minor axis 

   = Angle from semi-major axis 

  R = Radius of elliptic spring element at any given angle ‘‘ 

c 

 

 

 

Idealization of glass fibre/epoxy fully elliptic spring elements 
as a quadrant  

Computation of [A], [B] and  [D] matrices for required laminate 
structures 

Calculation of bending strain energy of the quadrant (Ub) 
and radius of the quadrant 

Calculation of bending strain energy of the quadrant (Ub)  in 
terms of [D] elements 

Calculation of deflection at semi-minor axis by the application 

of Castigliano’s theorem
bU

P




  

Computation of spring element stress- strain relationships 
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