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Abstract.  

Background/Objectives: Synchronous Reluctance Motor  for electric vehicle have torque ripple affecting vibration 

noise which is related user convenience. 

Methods/Statistical analysis: Synchronous reluctance motors without permanent magnets do not have permanent 

magnets inside the rotor. Moreover, the rotor has a complex structure with many segments and barriers. Therefore, 

parameters that affect the inner shape of the rotor were selected. This paper represents that how the magnitude of 

torque ripple changes as the set design parameters are changed, and carry out electromagnetic field analysis through 

2D Finite Elements Method. 

Findings: Synchronous reluctance motors without permanent magnets do not have permanent magnets inside the rotor 

and have a structurally complex structure. Therefore, design parameters that affect the motor characteristics were 

selected according to the shape of the inside of the rotor. Analyze how the magnitude of torque ripple changes as the set 

design parameters are changed, and conduct electromagnetic field analysis through FEM analysis. The design 

parameters such as barrier, segment thickness, segment angle are varying to analyze the motor characteristic, 

especially torque ripple. Additionally, by changing the design of rotor structure, motor characteristic can be 

represented like field flux density, flux path. Small barrier thickness and segment thickness are saturated the part of 

rotor interrupting the flux flow and it will make the inductance saturation. Also, the influence of inductance which 

changes as changing the parameter must be analyzed. In this paper, the optimal design parameter, to make minimum 

torque ripple, is represented.  

Improvements/Applications: By structurally changing the shape, the user's convenience is improved through the 

optimal rotor structure with minimum torque ripple. 
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1. INTRODUCTION 

Synchronous Reluctance Motor (SynRM) complicated the rotor structure to maximize the reluctance torque and caused 

difficulty in manufacturing. Previously, it was not widely commercialized due to its weak mechanical stiffness. However, 

recently SynRM is used as a motor for electric vehicles that is thermally advantageous such as the BMW i3 model and can 

exhibit high efficiency even in high-speed areas. In general, when using SynRM, it is basic to design to have a high saliency 

ratio and to design with multi-layer barriers to achieve high torque[1,2]. However, in practice, the multi-layered barrier type is 

vulnerable to mechanical rigidity, so it must be designed in consideration of the mechanical strongness[3,4]. SynRM has the 

advantage of being able to represent a variety of rotor shapes, which allows designers to optimize for cost and ease of 

manufacture[5,6,7]. In particular, SynRM is generally low efficient and power factor than IPMSM. Because there is no 

permanent magnet in the rotor and it has a complex structure rotor shape affecting inductance[8,9,10]. SynRM has received a 

lot of attention as a device suitable for high-speed operation because of its simple and robust structure. In order for the motor to 

produce an target torque, an appropriate level of reluctance torque must be used, and for this purpose, a design to improve the 

saliency ratio through the rotor shape design is required. 

2. SPECIFICATION AND ANALYZING FLOW CHART 

2.1. BASE MODEL 

2.1.1. Specification 

SynRM is an electric motor that operates by maximizing the use of reluctance torque using a saliency ratio with d-and q- axis 

inductance. The difference and ratio of the d-, q-axis inductance affect the reluctance torque and power factor (1), (2). 

Therefore, in order to design the saliency ratio according to the d-, q-axis inductance, the analysis is carried out by changing 

the size of the barrier and segment. It is difficult to manufacture because the rotor structure becomes complicated, but the 

structure is advantageous in terms of manufacturing because it has a simple shape and there is no permanent magnet inside the 
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Figure 1. Base Model 

The specification about SynRM can be seen in Table 1. For 1.5kW motor, the rated torque is 9.55Nm and the base speed is 

1,500rpm, also it is 4 poles, 18 slots.. The rotor and stator diameter ratio is 0.61.The number of parallel circuits is one, the 

phase resistance is 2.62, and it is in the form of Y connection. The coil uses 0.724ф winding based on bare copper wire. The 

air gap is 0.9mm and  it has a five-layers barrier to produce reluctance torque effectively. The thickness of the segment and the 

barrier is 1.16mm and 2.32mm, respectively. The rib thickness was designed 0.5mm. To maximize utilization efficiency of 

reluctance torque, the design parameter of segments and barriers is varied. 

Table 1. Specification 

Parameter Value Unit 

Rated Power 15 kW 

Rated Torque 9.55 Nm 

Base Speed 1,500 rpm 

Stator Inner/Outer Dia. 81.8/132 Φ 

Rotor Inner/Outer Dia. 36/80 Φ 

Stack length 123.3 mm 

Air gap 0.9 mm 

Series turns/phase 47 mm 

Coil Dia. (bare) 0.724 mm 

Reels 2 - 

Phase Resistance 2.62 Ω 

2.2. COMPARISON MODEL 

2.2.1. Design parameters in the rotor structure 

SynRM with saliency ratio and no permanent magnet in the rotor, this study attempts to analyze the electromagnetic field 

effect and torque ripple change depending on the shape of rotor with d-,q- axis inductance. Therefore, comparison model with 

different barrier thickness and rib thickness is represented and the differences is shown in Figure 2. It shows nine-models with 

different shape of rotor structure. Comparative analysis was carried out through 2D FEM analysis. 

 
Figure 2. Design parameter in the rotor structure 

The inductance and voltage equations in SynRM where the saliency ratio is important are as follows (3),(4),(5). Change the 

magnetic flux path depending on the barrier layer and perform torque and torque ripple analysis in the next section. SynRM 

model is described by the following equations. 
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𝝀𝒅 = 𝑳𝒅𝑰𝒅 ,  𝝀𝒒 = 𝑳𝒒𝑰𝒒        (5) 

 
2.2.2. Torque and Torque Ripple Comparison 

 

 
Figure 3. Comparison Torque and Torque ripple according to design parameters , @1,500rpm 

The operating points of all nine models were analyzed from the base speed operating points. The torque ripple was the 

lowest at 0.5mm for rib thickness and 5.36% for barrier thickness at 2.6mm. The highest rib thickness was 0.4mm and the 

barrier thickness was 7.52% at 2.6mm. As the lip thickness decreases, the magnetic path narrows.  

2.2.3. Inductance Comparison 

 

Figure 4. Comparison of inductance 

Figure 4 shows the saliency ratio and inductance values according to rib thickness and barrier thickness. As the barrier 

thickness increases, the saliency ratio tends to increase at high speed, and the d-axis inductance increases as the barrier 

thickness decreases. In addition, a design in consideration of voltage saturation is required, and also the influence of harmonics 

cannot be ignored. When the rib thickness is 0.5mm, the saliency is the largest, and as a result of comparing the previous 
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models, when the barrier thickness is 2.6mm, the smallest torque ripple is shown. 

 
Figure 5. Field analysis according to design parameter 

Figure 5 shows the result of the magnetic flux density distribution for each model through 2D FEM analysis. It can be seen 

that the magnetic flux path between the barriers is saturated. Moreover, as the magnetic flux path is narrow, the inductance and 

saturation increased, also the magnitude of the voltage increased.  

Table 2. Advanced Model Specification 

Parameter Value Unit 

Phase Current 5 Arms 

Current Angle 51 deg 

Torque 9.5 Nm 

Torque Ripple 5.36 % 

Vab 334.78 Vrms 

P3 1721.5 W 

Core Loss 73.36 W 

Copper Loss 148.2 W 

Power Factor 86.89 % 

The specification of the improved design model is shown in Table 2. As a result, the value of the torque ripple decreased, but 

due to the increased barrier thickness, the current value for producing the same torque increased slightly. It can be confirmed 

from the previously analyzed results that the increased amount of current affects the saliency pole ratio. 

3. CONCLUSION 

In this paper, torque ripple and flux field analysis was conducted according to the barrier thickness and rib thickness. As a 

result, the torque ripple improved by about 0.5% from 5.38% to 4.86%. Although the effect is small, it is represented that the 

torque ripple can be improved by comparing the inductance according to the barrier and rib thickness. Therefore, it is judged 

that the improvement design can be proceeded by using a design that reduces torque ripple by applying a skew and a method 

of applying a notch. 
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