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ABSTRACT 

The magnetic order on the formation of localized magnetic moment for the Anderson model using the exact diagonalization 

technique on a four interacting electronic system in two dimension (2-D) was studied in this research work. 

The result obtained shows remarkable degree of agreement with experimental and other theoretical technique discussed in the 

literature. 

Our result establish a spin singlet ground state and the first excited state was always a singlet for all the lattice system studied. 

While increasing the value of t favours Anti-ferromanetism (AFM) to Ferromagnetism (FM) magnetic order, increasing u shows 

magnetic instability with a coexistence of Anti-ferromagnetism (AFM) and Ferromagnetism(FM), while increasing the values of 

V, a constant hybridization or semiconducting gap (i.e. ∆ ~ 0.21) is obtained 
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INTRODUCTION 

One of the most important challenges in theoretical physics is to develop a quantitative understanding of the process by which 

electrons interacts with each other using the various electronic states to acts on a given Hamiltonian. When an electron interacts 

with each other, it is accelerated by the surface potential well in which it can gain up to a few electron-Volts of kinetic energy. 

However, to adsorb on a surface the atomic state of the interacting system, referred to as the adsorbate hereafter, must lose sufficient 

energy to prevent it from escaping from the surface potential well. This lost energy can be dissipated into various channels, for 

example lattice vibrations (phonons), chemiluminescence (photons), exo-electrons (electrons ejected from the surface) and electron 

– hole pairs (electronic excitations within the surface). Phenomena such as chemiluminescence and exo-electron excitation require 

substantial amounts of energy to be transferred to a single electron and are therefore generally only seen in extremely exothermic 

reactions such as the oxidation of alkali metal surfaces [1]. The lower energy dissipation channels of phonon and electron-hole pair 

excitation, however, 

are expected to be ubiquitous.  

The purpose of this research is to ascertain the level of electrons excitation in relation to generation of localized magnetic order. 

The Anderson model [2] plays an important role in this regard.  Despite its simplicity and many years of study, the physics of the 

Anderson model remains unknown [3]; surprisingly simple facts, such as whether it hosts antiferromagnetic or ferromagnetic ground 

state, though resolved but are still under investigation in higher dimensions.. Recently, the limit of infinite dimensions has allowed 

considerable progress, and provided insight into its behaviour in lower dimensions. The focus here is the 2D system, and we aim to 

survey its phase diagram, concentrating on magnetism, as we varied the Hamiltonian’s parameters.. 

A metal contains a sea of mutually-repelling electrons in close proximity to each other; strangely, their interactions are usually 

unimportant, and merely manifest themselves solely as a renormalization of the electron's mass. Effective electron masses vary from 

close to the vacuum value (in f-electron metals, such as Cerium), to being hundreds or thousands of times the bare mass in heavy-

fermion materials such as CeCu2Si2, where there is a large effective electronic interaction in the tight f -electron orbitals. The 

ordinary behaviour of these electrons is described by the Fermi liquid theory of Landau[4]; non-interacting electrons fill up modes 

in momentum space, yielding a Fermi surface the locus of points in momentum-space that are filled last. At low temperature, the 

properties of the system depend only on small excitations around this surface. Here we discuss one of the more successful many-

body theories: Fermi-liquid theory proposed by [4,5,6,7,8]. However, it is useful to begin by considering a model which is the 

simplest possible for a system of fermionic electrons, namely the free-electron model. We investigate some properties of this model 

and acknowledge its unexpected successes as an explanation of the metallic state before moving on to realise the explanation for 

this success, leading to Fermi-liquid theory itself. 
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The Notion of the Quasiparticle with respect to the success of the free-electron model can be explained via an argument based on 

the idea of adiabatic continuity [9]. Let us first start with the now familiar non-interacting electron gas in its ground state, constructed 

as explained above. We imagine we have a knob which we can use to tune the interactions between the electrons from off (which 

is obviously the point we begin at) to an interaction strength which represents the realistic situation for electrons. Let us start to 

adiabatically turn the interactions on and allow the system to slowly evolve. The ground state of an interacting electron gas may be 

constructed by the adiabatic ‘turning-on’ of interactions between the free electrons of the non-interacting system’s ground state. 

Furthermore, any arbitrary excited state of the interacting system could be constructed by exciting a number of electrons of the non-

interacting gas into a state above the Fermi surface, leaving an equal number of holes behind, and then allowing the system to evolve 

adiabatically by turning our knob to a directly corresponding excited state of the interacting system. The crux of all this is that the 

free electron model’s success is explained by the fact that, although wavefunctions of the interacting system are markedly different 

from those of the free-electron system from which they are adiabatically derived, the wavefunctions’ labels (that is, momentum and 

spin) remain robust during the adiabatic transition. The one-to-one correspondence of the non-interacting system’s electron 

configuration (whether excited or not) to that of the interacting system provides the realistic theoretical predictions which previously 

were puzzling. The new interacting system is made up of fermionic particles (therefore there exists a Fermi surface) which we shall 

call quasiparticles. These particles are not exact eigenstates of the system; hence they have a finite lifetime. Where in the non-

interacting case we talked of free electrons being labeled via their momenta k and spin   , we now talk of fermionic quasiparticles 

which share these labels. 

 The material of this paper is structured as follows: In the next section we briefly introduce the model Hamiltonian, and present our 

results in Section 3. Discussion, Concluding remark and comparison with experimental results and other theoretical techniques were 

offered in Section 4. 

 

2.0 MODEL AND METHODOLOGY 

Considering, materials where “quantum impurity ions” are put on a lattice. Generalizing the single channel impurity Anderson 

model (2.1) to a lattice of localized orbital, f, and one obtains the so-called periodic Anderson model (PAM). The PAM as proposed 

by [9,10] is given by 
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annihilate local f electrons. t  represents hopping matrix element, ij  denotes nearest neighbour interactions. Ef is the energy of 

the localized f orbital, while U and  V stands for onsite coulomb repulsion and hybridization respectively. 

 

3.0 RESULTS  

CALCULATION FOR A SYSTEM OF 4-ELECTRONS ON A 2X2 SQUARE LATTICE (2-D) USING THE PERIODIC 

ANDERSON HAMILTONIAN.  

 Consider the periodic Anderson Hamiltonian (2.1), for a system of four interacting electrons on a 2x2 square lattice 

(2-D), leads to the extended  Hamiltonian with seventy basis electronic states having 36 states with net spin 0, 32 states with net 

spin ±1, and 2 states with net spin ±2. 

Numerical analyses carried out to obtain the series coefficients for the ground state energies in order to determine the magnetic 

phase transition and Hybridization gap are given in Fig. 4.1, 4.2 and 4.3 respectively. 
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Fig. 4.1: Graph of Singlet (Es) and Triplet (Et) state energies plotted against U; showing  the transition between Es and Et for a 

system of 4 electrons on 2 x 2 square lattice sites using the PAM (2-D). 

 

Fig. 4.2: Graph of Singlet (Es) and Triplet (Et) state energies plotted against t, showing the ferromagnetic alignment between Es and 

Et for a system of 4 electrons on 2 x 2 square lattice sites using PAM (2-D). 

 

Fig. 4.3: Graph of Singlet (Es) and Triplet (Et) state energies plotted against V;  showing a hybridization gap between Es and Et for 

a system of 4 electrons on 2 x 2 square lattice sites using PAM (2-D). 
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4.0 DISCUSSION OF RESULTS. 

From the computations of Fig 4.1 shows that as U is increased, there is a magnetic instability in the system. This results obtained 

here are in agreement with some theoretical [11,12] and experimental results [13]. Horiuchi et al [11] applied a Variational Cluster 

Approach (VCA) based on the self-energy functional theory to Anderson model at quarter filling (2-D) and obtained magnetic 

instability of the AFM ordered state, and as U→∞, the gaps between Es  and Et tends smoothly and merge, indicating the  system 

tends to the non interacting band insulator or magnetic instability. 

Perez and Araujo [12] study the magnetic and superconducting instabilities with the infinite coulomb repulsion U in the random 

phase approximation (RPA), and found that AFM occur in a very small region as U→∞, as both AFM and superconductivity are 

controlled by the same interaction parameter U, which in turn, depends on hybridization only. This result is in qualitative agreement 

in this study as U→∞. 

Using the muon-spin relaxation experiment (μSR) [13] found superconductivity at the boundary of AFM and FM in CeCu2Si2 at 

atmospheric pressure. The phase transition is studied in several samples of CeCu2Si2 with varying Cu stoichiometries, where Cu 

excess tends to favour superconductivity and with Cu deficiency favouring AFM. Thus in CeCu2Si, there appear to be competition 

between magnetism and superconductivity as superconductivity is found  between the boundary of AFM and FM which is related 

to magnetic instability in this study. 

 In Fig. 4.2 shows that, as the values of t increases, the system that was initially AFM losses its properties and becomes FM, 

showing a smooth phase transition in agreement with experimental results obtained by Muller et al [14]. 

 Fig 4.3 shows that when the values of V increases, a constant hybridization or semiconducting gap (i.e. ∆ ~ 0.21) is obtained, this 

is in agreement with results obtained by Zhu and Zhu [15]. 

 

CONCLUSION 

 In this research, the Exact-Diagonalization technique has been employed to provide information on the behavior of four 

interacting electrons in 2-D lattices. The lattices considered in this thesis are small in size. It is not obvious that the results obtained 

for larger lattices in the literature are applicable here. the system studied is 4 electrons on a 2 X 2 square lattice for the PAM. Finite 

sized lattices with open boundary condition and periodic or cyclic boundary conditions were specifically considered, and the 

dynamics of the interacting electrons was described by the Hamiltonians used. 

In all these systems, even though the underlying solid state chemistry are rather different, the resulting phase diagrams are strikingly 

similar and robust. This similarity suggests that the overall feature of these phase diagrams is controlled by a single energy scale. 
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