
Copyrights @Kalahari Journals Vol.7 No.2 (February, 2022)

International Journal of Mechanical Engineering

4424

ISSN: 0974-5823 Vol. 7 No. 2 February, 2022

International Journal of Mechanical Engineering

Implementation of Efficient Load aware Memory

Management (ELMM) Algorithm
K.Siva Sundari#, R.Narmadha*

#Department of Electronics and Communication Engineering, Sathyabama Institute of Science and

Technology, Chennai, India

1Kalasiva2029@gmail.com

* Department of Electronics and Communication Engineering, Sathyabama Institute of Science and

Technology, Chennai, India

2narmadha.enc@sathyabama.ac.in

Abstract

Embedded system is considered as a variety of computer system has developed for certain dedicated application

usually along real-time computing restraints. The recent and complex applications include multimedia

streaming and signal processing makes dynamic memory allocation mandatory system. During the advancement

of an embedded system, memory management becomes a major problem. The main difficult associated with

memory allocation algorithm is decrease fragmentation, ELMM is proposed. First, the optimal clustering

algorithm is utilized to separate and allocate the transient objects to heap memory which decrease memory

fragmentation. Second, optimal signal-to-memory mapping algorithm is employed for hierarchical memory

organization using evaluation of bounding windows. The proposed system computes the extra storage space

using task monitoring algorithm. The results reveal that the proposed ELMM system could be obtained at a

lower latency with minimal resource overhead and lower energy consumption. In the future, the presented

technique can be developed for improving the efficiency which is utilized to improve the performance.

Key Words: ELMM, Optimal Clustering Algorithm, Optimal Signal-To-Memory Mapping Algorithm,

Embedded system, FPGA memory.

1. Introduction

The Embedded System configuration has developed into a noteworthy field of current PC application, and the

heading of now a day PC improvement. Implanted framework can use in numerous areas, for example,

computerization field, car field, Portable gear, aviation, weapon types of gear just as different viewpoints

throughout everyday life, so the Embedded framework has a decent prospect of application[1][2]. So as to adjust

expanding decent variety and intricacy of the application, utilizing implanted working frameworks in the

inserted frameworks has turned into a heading for the upcoming development of installed frameworks. Since

utilizing the Real-time Operating System(RTOS) can be all the more soundly and proficiently to convey the

CPU asset and different assets, rearrange the structure of utilization programming, abbreviate the hour of

framework advancement, guarantee the ongoing exhibition and unwavering the system [3][4].

II. Background

 Memory management is part of fundamental piece of any working framework. The Memory executives are

dispensed or de allocates the piece of memory to the procedure according to the need [5]. In Static memory the

executive is allotted at appropriate time and no progressions should be possible at run time [8], while in Dynamic

memory, executive is allotted at run time. During procedure execution, memory allocation/de allocation should

be possible in Dynamic memory, while in static administration this is not possible. The benefit of dynamic

memory the executives requires less memory with safe administration [10]. Dynamic memory the executives

mailto:1Kalasiva2029@gmail.com
mailto:2narmadha.enc@sathyabama.ac.in

Copyrights @Kalahari Journals Vol.7 No.2 (February, 2022)

International Journal of Mechanical Engineering

4425

can be categorized into two types: 1) Manual Memory Management 2) Automatic Memory Management. In

manual memory, the board developer can allocate or de-distribute memory physically according to the need, so

its appeal is simpler, however, a little bit of leeway can cause bugs [7]. The board unit designates the memory

if the article is out of extension while in programmed memory [9][6].

III. Methodology

 The dynamic energy use of this technology depends significantly on the capability of the storages and the

amount of the peripheral memory contained in the storage technology, as explained by the SRAM memories.

In order to reduce dynamic energy consumption, it is possible to divide the address space of a computer's

memory into several instances, each containing a portion of the address space that is frequently used [12]. To

route read/write requests to the appropriate instances of memory, an interconnect, such as a bus or bespoke

fabric, must be used when memory is divided into many units. In some cases, this link will negate the benefits

of using split memory, as it consumes on-chip space and energy in and of itself. If many small memory modules

are used instead of a single large memory module, more storage space will be required, resulting in an increase

in cost. In order to maximize energy savings, the logically accessible address space must also be reorganized so

that segments most frequently accessed are mapped to the same physical memory [13]. The majority of memory

addresses utilised by the application are spread evenly throughout its address space; often and unusually, the

same memory instances are mapped to the same memory instances, negating the advantage of split memory

architecture. The challenge of finding the most appropriate memory arrangement in this situation becomes even

more difficult.

Fig.1 System architecture

In general, this optimization method is not suitable for multi-core SoC systems since it is designed for single-

core systems with multiple on-chip memories, which is the primary focus of this optimization method. It is

depicted in Figure 1 abstract system architecture for target platform, which is meant to be general in nature. In

some cases, divided memories can also be referred to as scratchpad memories and are not divided [14]. In

addition to the components that govern a system's communication with its environment, various other

components of the system are mentioned as I/O interfaces, however, they do not contribute to the optimization

process at all.

 Static Power Optimization as an alternative for the optimisation model presented in this section which is

aimed to reduce the dynamic energy use of a subsystem. SRAM low-power operation modes, as discussed in

previous Section, provide significant optimization potential in this area. The application dependency graph (GD)

is the most important input for determining a guided power mode activation schedule in guided power mode.

The memory access frequency is collected and the locality of reference patterns between code and data profiles,

which is unique to code and data profiles, is also encoded [15]. Optimal deployment, based upon the concept of

static power decrease, maximises the time of the single memory blocks while limiting mode transitions. In

accordance with the memory assignment Principle, this involves a memory subsystem with several memory

blocks, each of which allows the operational mode in each memory block to be configured independently. As

regards the binding method for the embedded software, application profiles coupled with any locality concept

should, if possible, be able to map to the same storage instance [16]. This is crucial if a productive timetable is

to succeed. Thus, highly linked code and data profiles should be stored in the same memory block and assigned

the same or closely related C 2 C vector configuration memory.

Copyrights @Kalahari Journals Vol.7 No.2 (February, 2022)

International Journal of Mechanical Engineering

4426

Fig. 2 Extended abstract target system architecture

 Other than that, the number of operation mode activations and deactivations, combined with the time and

energy consumed as a result, could more than outweigh the savings that would be realised by operating in low-

power mode for a longer period of time. This optimization method is focused on a single-core SoC with on-chip

memory, just like the previous one. Simplified system architecture is shown in Figure 2, which shows the

optimization strategy in more detail. Both the static power optimization system model and the dynamic energy

optimization system architecture described in Figure 2 contain two components which differ from the static

energy optimization system architecture [17]. Both are necessary to take static power optimisation into account.

 As a first stage, the degree of power consumption may be limited to a certain maximum value which can be

justified by any co-processor. This is especially the case for designs with mixed signals which incorporate

auxiliary components particularly sensitive to peak power.

Fig. 3 Low-power mode transition graph

 The second point is that support for low-power memory mode operations is included [18]. When a memory

resource is employed in the system, it works for any memory in one of the operating modes, or in a transition

between two of these conditions Figure 3 shows the states and transitions of the different operational modes of

SRAM.

Fig. 4 Two-stage workflow for static energy minimization

Copyrights @Kalahari Journals Vol.7 No.2 (February, 2022)

International Journal of Mechanical Engineering

4427

 Pictured in Figure 4 is the whole workflow for this two-stage implementation. It is intended to serve as a

high-level summary representation of the procedure [19]. In addition to the solutions that have been proposed

in the literature, it is feasible to estimate the amount of money that could be saved by reducing both dynamic

and static energy use. Using a heuristic clustering method in stage 1 reduces the size of gigantic design spaces,

followed by the formulation of a Mixed-Integer Quadratic Program MIQP in stage 2, allowing for handling of

enormous design spaces.

Efficient Load aware Memory Management (ELMM)

 It is a memory subsystem optimization proposal that is based on STT-RAM blocks. The proposed method is

based on two properties of this memory technology that can be optimized. The needed logic to access SRAM

memory results in a higher dynamic energy consumption [20]. The trade-off between STT-RAM write-

operation and energy and latency is first and foremost. The task of identifying an energy-optimal collection of

STT-RAM memories is characterised as an allocation and binding problem. As a result, the allocation of

memory blocks of various dimensions is critical for energy usage during the reading and typing process,

especially when combined with application segment binding and memory access speed considerations.

 In addition to the operating frequency of the memory subsystem, it affects the overall system performance

because the assignment of different operating voltage levels to different memory blocks in a single memory

block influences the overall system performance [21]. It is feasible to trade higher system frequency for a less

energy-efficient design based on the defined system boundaries. According to the 4 MiB STT-RAM memory

operation mode in the 45 nm node, the maximum frequency of operations varies between 48 and 57 MHz,

according to the penetration energy/latency compensation curve given in Figure 5.

Fig. 5 Performance trade-off of a STT-RAM memory of 4 MiB on a 45 nm node

 The write operation impacts different memory sizes offers even more design opportunities from frequencies

of approximately 40MHz to more than 100MHz for smaller memories with only a few thousand bytes or less

of store capacity [21]. The energy consumption varies simultaneously, which helps explain why it is not easy

to develop a decent or even perfect solution in this field. Through the optimization approach described,

different operating voltage levels and memory influence can be taken into account in STT-RAM memories,

giving a realistic way to include these components at the same time.

Fig.6 Abstract target system architecture

Copyrights @Kalahari Journals Vol.7 No.2 (February, 2022)

International Journal of Mechanical Engineering

4428

 The use of shared memory variables and data structures is required due to a lack of accessible local storage

space. This prevents the compiler from performing memory optimizations and allows the compiler to make the

most efficient use of the processor registers available. This improves the efficiency with which CPU registers

are utilised [22]. When accessing the shared memory pool, processor caches are bypassed in order to increase

speed, which enhances performance overall. The data is promptly written back to shared memory after being

requested by software, completing the transaction in the background. No matter the architecture of the processor,

this algorithm can be executed.

Fig. 7 Efficient Load aware Memory Management

Explicit instructions to flush all local storage into memory can be processed by the processor. During the

development phase, it allows for unrestricted data flow between software and hardware. Shared memory, which

guarantees data consistency and assures that it is preserved throughout the transaction by preventing data from

being delayed in the processor's local memory [23].

 As mapped memory access time is much greater than unmapped memory access time, using mapped memory

instead of unmapped memory may result in a significant reduction in performance. To make these schemes as

efficient and feasible as possible, factors such as processor bus speed, mapped memory speed, and mapped

memory access logic speed must be considered [24].

 IV. Results and Discussion

 Using the Xilinx tool, the suggested ideal energy-efficient load-aware dynamic memory management system

(ELMM) is implemented. Dynamic memory management is applied to and is simulated using the suggested

optimal energy efficient load aware dynamic memory management system (ELMM). The basic memory of a

computer is the heap, and a memory assignment capacity can dispense a touching square of memory of a specific

size from it and return its position. To access that memory block, this location is stored in a pointer variable.

The application retains the memory that is gradually released and restores it to the system.

Copyrights @Kalahari Journals Vol.7 No.2 (February, 2022)

International Journal of Mechanical Engineering

4429

Table 1 Memory Management User Environment Settings

Table 2 illustrates several important types of device usage statistics. The macro statistics declares about adder/

subtractor value, comparator value, multiplexer value, RAM and Register value. The miscellaneous presents a

bond index value of aggregated term and number of buffer, simulation start-up time. The net statistics gives

active sets, ground value, and power supply and pad input/output. Finally site usage represents input and output

buffer value.

Device Usage Statistics

Macro Statistics Miscellaneous Statistics Net Statistics Site Usage

Adder/Subtractor =8 AGG_BONDED_IO=70 NumNets_Active=2031 BUFG=1

Comparator = 24 AGG_IO=70 NumNets_Gnd=1 CARRY4=42

Multiplexer = 152 NUM_BSFULL=460 NumNets_Vcc=1 FF_INIT=17

RAMs = 7 NUM_BUFG=1 NumNodesofType_Active_

PAD

INPUT=33

IOB_INBUF=37

Register = 746 NUM_STARTUP=1 NumNodesofType_Active_

PAD

OUTPUT=37

IOB_OUTBUF=33

Table.2 Device usage Statistics

 The Figure 8 shows the simulated output for new memory size. In building the memory maps for each

exhibit, our structure precisely relates to those pieces of clusters strongly got to, whose task to the on-chip layer

yields the most notable benefit in terms of powerful vitality

Fig.8.Simulation results

 Columns 1 of Table 3 display binary input values and binary output values, respectively. The memory sizes

are handled as follows: the cross sections of the many clusters in the application are continually allocated to the

ELMM in a certain order, increasing the memory size with discrete sums, while the typical number of gets to

each exhibit component is decreased.

User Environment

OS Microsoft Windows 7 , 64-bit

CPU Model Intel(R) Core(TM) i3-3220 CPU @ 3.30GHz

CPU Speed 3292 MHZ

Copyrights @Kalahari Journals Vol.7 No.2 (February, 2022)

International Journal of Mechanical Engineering

4430

Binary Input Binary Output

00100100 00000000100000000000100000000

00111000 00000000100010001000000000000

10000001 10000000000000000000000000001

00000000 00000000000000000000000000000

00001001 00000000000000001000000000001

01000000 00001000000000000000000000000

01100011 00001000100000000000000010001

00000000 00000000000000000000000000000

00001101 00000000000000001000100000001

01000101 00001000000000000000100000001

Table.3 Proposed EL MM Binary Input and Output values

V. Conclusion

 This work proposes the ELMM system, which is the best energy-efficient load-aware dynamic memory

management. The separation of temporary objects into heap memory and the reduction of memory

fragmentation are both achieved through the use of an ideal clustering method. Also suggested is a signal-to-

memory mapping technique that is best for hierarchical memory structure and computes bounding windows.

The energy usage is decreased by computing the additional storage after the mapping process using the task

monitoring technique. The experimental findings show that the suggested ELMM system outperforms existing

techniques in terms of efficiency.

References

[1] Lopriore, L., 2016. Memory protection in embedded systems. Journal of Systems Architecture, 63, pp.61-

69.

[2] Wang, Y., Xu, W., Yang, K. and Lin, J., 2012. Optimal energy-efficient power allocation for OFDM-based

cognitive radio networks. IEEE Communications Letters, 16(9), pp.1420-1423.

[3] Hjertström, A., Nyström, D. and Sjödin, M., 2012. Data management for component-based embedded real-

time systems: The database proxy approach. Journal of Systems and Software, 85(4), pp.821-834.

[4] Cheng, X.H., Gong, Y.M. and Wang, X.Z., 2009, March. Study of embedded operating system memory

management. In 2009 First International Workshop on Education Technology and Computer Science (Vol.

3, pp. 962-965). IEEE.

 [5] Ramanujam, J., Hong, J., Kandemir, M., Narayan, A. and Agarwal, A., 2005. Estimating and reducing the

memory requirements of signal processing codes for embedded systems. IEEE transactions on signal

processing, 54(1), pp.286-294.

 [6] Łabiak, G. and Borowik, G., 2009. Statechart Diagrams Implementation in FPGA Structures with

Embedded Memory Blocks. IFAC Proceedings Volumes, 42(21), pp.184-189.

[7] Wilson, P.R., Johnstone, M.S., Neely, M. and Boles, D., 1995, September. Dynamic storage allocation: A

survey and critical review. In International Workshop on Memory Management (pp. 1-116). Springer,

Berlin, Heidelberg.

Copyrights @Kalahari Journals Vol.7 No.2 (February, 2022)

International Journal of Mechanical Engineering

4431

 [8] Wang, Y., Xu, W., Yang, K. and Lin, J., 2012. Optimal energy-efficient power allocation for OFDM-based

cognitive radio networks. IEEE Communications Letters, 16(9), pp.1420-1423.

[9] Ye, L., Gniady, C. and Hartman, J.H., 2011, July. Energy-efficient memory management in virtual machine

environments. In 2011 International Green Computing Conference and Workshops (pp. 1-8). IEEE.

 [10] Masmano, M., Ripoll, I., Crespo, A. and Real, J., 2004, July. TLSF: A new dynamic memory allocator for

real-time systems. In Proceedings. 16th Euromicro Conference on Real-Time Systems, 2004. ECRTS

2004. (pp. 79-88). IEEE.

[11] Goens, A., Castrillon, J., Odendahl, M. and Leupers, R., 2016. An optimal allocation of memory buffers

for complex multicore platforms. Journal of Systems Architecture, 66, pp.69-83.

[12] Chang, D., Lin, I., Yong, L.: Rohom: Requirement-aware online hybrid on-chip memory management for

multicore systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

36(3) (2017).

[13] J. Park, H. Seo and B. Kong, "Conditional-Boosting Flip-Flop for Near-Threshold Voltage Application",

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 2, pp. 779-782, 2017.

[14] S. Lapshev and S. Hasan, "New Low Glitch and Low Power DET Flip-Flops Using Multiple C-Elements",

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 10, pp. 1673-1681, 2016.

[15] Y. Li, H. Wang, R. Liu, L. Chen, I. Nofal, Q. Chen, A. He, G. Guo, S. Baeg, S. Wen, R. Wong, Q. Wu and

M. Chen, "A 65 nm Temporally Hardened Flip-Flop Circuit", IEEE Transactions on Nuclear Science, vol.

63, no. 6, pp. 2934-2940, 2016.

[16] N. Kulkarni, J. Yang, J. Seo and S. Vrudhula, "Reducing Power, Leakage, and Area of Standard-Cell ASICs

Using Threshold Logic Flip-Flops", IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 24, no. 9, pp. 2873-2886, 2016.

[17] F. Balasa, N. Abuaesh, C. Gingu, I. Luican and H. Zhu, "Energy-aware memory management for embedded

multidimensional signal processing applications", EURASIP Journal on Embedded Systems, vol. 2017,

no. 1, 2016.

[18] Se-Jun Kwon, Sang-Hoon Kim, Hyeong-Jun Kim &Jin-Soo Kim 2017, LZ4m: A Fast Compression

Algorithm for In-Memory Data‟, in IEEE International Conference on Consumer Electronics (ICCE).

[19] YunchengGuo, Yu Hua 2018, „DFPC-Dynamic Frequent Patten Compression scheme in NVM based main

memory‟, in Design, Automation & Test in Europe Conference, pp. 1622-1627.

[20] EshaChoukse&MattanErez 2018, „Compress points: An Evaluation Methodology for Compressed memory

systems‟, IEEE Computer Architecture Letters, pp. 126-129

[21] David Kaeli 2017, Dual Dictionary compression for last level cache‟, IEEE international conference on

computer design, pp. 353-360.

[22] Sparsh Mittal 2016, A survey of Architectural approaches for data compression in cache & main memory

systems‟, in IEEE transactions on parallel & distributed systems, pp. 1524-1536.

[23] Enemali, G, Adetomi, A & Arslan, T 2017, ‘FAReP: Fragmentation Aware Replacement Policy for Task

Reuse on Reconfigurable FPGAs’, IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), pp. 202-206.

[24] Kim, Y 2013, ‘Power-efficient configuration cache structure for coarse-grained reconfigurable

architecture’ Journal of Circuits, Systems and Computers, vol. 22, no. 03, pp.1350001.

