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Abstract  

Embedded system is considered as a variety of computer system has developed for certain dedicated application 

usually along real-time computing restraints. The recent and complex applications include multimedia 

streaming and signal processing makes dynamic memory allocation mandatory system. During the advancement 

of an embedded system, memory management becomes a major problem. The main difficult associated with 

memory allocation algorithm is decrease fragmentation, ELMM is proposed. First, the optimal clustering 

algorithm is utilized to separate and allocate the transient objects to heap memory which decrease memory 

fragmentation. Second, optimal signal-to-memory mapping algorithm is employed for hierarchical memory 

organization using evaluation of bounding windows. The proposed system computes the extra storage space 

using task monitoring algorithm. The results reveal that the proposed ELMM system could be obtained at a 

lower latency with minimal resource overhead and lower energy consumption. In the future, the presented 

technique can be developed for improving the efficiency which is utilized to improve the performance. 

Key Words: ELMM, Optimal Clustering Algorithm, Optimal Signal-To-Memory Mapping Algorithm, 

Embedded system, FPGA memory. 

 

1. Introduction 

The Embedded System configuration has developed into a noteworthy field of current PC application, and the 

heading of now a day PC improvement. Implanted framework can use in numerous areas, for example, 

computerization field, car field, Portable gear, aviation, weapon types of gear just as different viewpoints 

throughout everyday life, so the Embedded framework has a decent prospect of application[1][2]. So as to adjust 

expanding decent variety and intricacy of the application, utilizing implanted working frameworks in the 

inserted frameworks has turned into a heading for the upcoming development of installed frameworks. Since 

utilizing the Real-time Operating System(RTOS) can be all the more soundly and proficiently to convey the 

CPU asset and different assets, rearrange the structure of utilization programming, abbreviate the hour of 

framework advancement, guarantee the ongoing exhibition and unwavering  the system [3][4]. 

 

II. Background 

   Memory management is part of fundamental piece of any working framework. The Memory executives are 

dispensed or de allocates the piece of memory to the procedure according to the need [5]. In Static memory the 

executive is allotted at appropriate time and no progressions should be possible at run time [8], while in Dynamic 

memory, executive is allotted at run time. During procedure execution, memory allocation/de allocation should 

be possible in Dynamic memory, while in static administration this is not possible. The benefit of dynamic 

memory the executives requires less memory with safe administration [10]. Dynamic memory the executives 
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can be categorized into two types: 1) Manual Memory Management 2) Automatic Memory Management. In 

manual memory, the board developer can allocate or de-distribute memory physically according to the need, so 

its appeal is simpler, however, a little bit of leeway can cause bugs [7]. The board unit designates the memory 

if the article is out of extension while in programmed memory [9][6]. 

 

III. Methodology 

    The dynamic energy use of this technology depends significantly on the capability of the storages and the 

amount of the peripheral memory contained in the storage technology, as explained by the SRAM memories. 

In order to reduce dynamic energy consumption, it is possible to divide the address space of a computer's 

memory into several instances, each containing a portion of the address space that is frequently used [12]. To 

route read/write requests to the appropriate instances of memory, an interconnect, such as a bus or bespoke 

fabric, must be used when memory is divided into many units. In some cases, this link will negate the benefits 

of using split memory, as it consumes on-chip space and energy in and of itself. If many small memory modules 

are used instead of a single large memory module, more storage space will be required, resulting in an increase 

in cost. In order to maximize energy savings, the logically accessible address space must also be reorganized so 

that segments most frequently accessed are mapped to the same physical memory [13]. The majority of memory 

addresses utilised by the application are spread evenly throughout its address space; often and unusually, the 

same memory instances are mapped to the same memory instances, negating the advantage of split memory 

architecture. The challenge of finding the most appropriate memory arrangement in this situation becomes even 

more difficult. 

 

Fig.1 System architecture  

In general, this optimization method is not suitable for multi-core SoC systems since it is designed for single-

core systems with multiple on-chip memories, which is the primary focus of this optimization method. It is 

depicted in Figure 1 abstract system architecture for target platform, which is meant to be general in nature. In 

some cases, divided memories can also be referred to as scratchpad memories and are not divided [14]. In 

addition to the components that govern a system's communication with its environment, various other 

components of the system are mentioned as I/O interfaces, however, they do not contribute to the optimization 

process at all. 

       Static Power Optimization as an alternative for the optimisation model presented in this section which is 

aimed to reduce the dynamic energy use of a subsystem. SRAM low-power operation modes, as discussed in 

previous Section, provide significant optimization potential in this area. The application dependency graph (GD) 

is the most important input for determining a guided power mode activation schedule in guided power mode. 

The memory access frequency is collected and the locality of reference patterns between code and data profiles, 

which is unique to code and data profiles, is also encoded [15]. Optimal deployment, based upon the concept of 

static power decrease, maximises the time of the single memory blocks while limiting mode transitions. In 

accordance with the memory assignment Principle, this involves a memory subsystem with several memory 

blocks, each of which allows the operational mode in each memory block to be configured independently. As 

regards the binding method for the embedded software, application profiles coupled with any locality concept 

should, if possible, be able to map to the same storage instance [16]. This is crucial if a productive timetable is 

to succeed. Thus, highly linked code and data profiles should be stored in the same memory block and assigned 

the same or closely related C 2 C vector configuration memory. 
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Fig. 2 Extended abstract target system architecture 

    Other than that, the number of operation mode activations and deactivations, combined with the time and 

energy consumed as a result, could more than outweigh the savings that would be realised by operating in low-

power mode for a longer period of time. This optimization method is focused on a single-core SoC with on-chip 

memory, just like the previous one. Simplified system architecture is shown in Figure 2, which shows the 

optimization strategy in more detail. Both the static power optimization system model and the dynamic energy 

optimization system architecture described in Figure 2 contain two components which differ from the static 

energy optimization system architecture [17]. Both are necessary to take static power optimisation into account. 

    As a first stage, the degree of power consumption may be limited to a certain maximum value which can be 

justified by any co-processor. This is especially the case for designs with mixed signals which incorporate 

auxiliary components particularly sensitive to peak power. 

 

Fig. 3 Low-power mode transition graph 

   The second point is that support for low-power memory mode operations is included [18]. When a memory 

resource is employed in the system, it works for any memory in one of the operating modes, or in a transition 

between two of these conditions Figure 3 shows the states and transitions of the different operational modes of 

SRAM. 

 

Fig. 4 Two-stage workflow for static energy minimization 
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    Pictured in Figure 4 is the whole workflow for this two-stage implementation. It is intended to serve as a 

high-level summary representation of the procedure [19]. In addition to the solutions that have been proposed 

in the literature, it is feasible to estimate the amount of money that could be saved by reducing both dynamic 

and static energy use. Using a heuristic clustering method in stage 1 reduces the size of gigantic design spaces, 

followed by the formulation of a Mixed-Integer Quadratic Program MIQP in stage 2, allowing for handling of 

enormous design spaces. 

Efficient Load aware Memory Management (ELMM)  

   It is a memory subsystem optimization proposal that is based on STT-RAM blocks. The proposed method is 

based on two properties of this memory technology that can be optimized. The needed logic to access SRAM 

memory results in a higher dynamic energy consumption [20]. The trade-off between STT-RAM write-

operation and energy and latency is first and foremost. The task of identifying an energy-optimal collection of 

STT-RAM memories is characterised as an allocation and binding problem. As a result, the allocation of 

memory blocks of various dimensions is critical for energy usage during the reading and typing process, 

especially when combined with application segment binding and memory access speed considerations. 

   In addition to the operating frequency of the memory subsystem, it affects the overall system performance 

because the assignment of different operating voltage levels to different memory blocks in a single memory 

block influences the overall system performance [21]. It is feasible to trade higher system frequency for a less 

energy-efficient design based on the defined system boundaries. According to the 4 MiB STT-RAM memory 

operation mode in the 45 nm node, the maximum frequency of operations varies between 48 and 57 MHz, 

according to the penetration energy/latency compensation curve given in Figure 5. 

 

Fig. 5 Performance trade-off of a STT-RAM memory of 4 MiB on a 45 nm node 

    The write operation impacts different memory sizes offers even more design opportunities from frequencies 

of approximately 40MHz to more than 100MHz for smaller memories with only a few thousand bytes or less 

of store capacity [21]. The energy consumption varies simultaneously, which helps explain why it is not easy 

to develop a decent or even perfect solution in this field. Through the optimization approach described, 

different operating voltage levels and memory influence can be taken into account in STT-RAM memories, 

giving a realistic way to include these components at the same time. 

 

 

Fig.6 Abstract target system architecture  
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   The use of shared memory variables and data structures is required due to a lack of accessible local storage 

space. This prevents the compiler from performing memory optimizations and allows the compiler to make the 

most efficient use of the processor registers available. This improves the efficiency with which CPU registers 

are utilised [22]. When accessing the shared memory pool, processor caches are bypassed in order to increase 

speed, which enhances performance overall. The data is promptly written back to shared memory after being 

requested by software, completing the transaction in the background. No matter the architecture of the processor, 

this algorithm can be executed. 

 

 

Fig. 7 Efficient Load aware Memory Management  

  

Explicit instructions to flush all local storage into memory can be processed by the processor. During the 

development phase, it allows for unrestricted data flow between software and hardware. Shared memory, which 

guarantees data consistency and assures that it is preserved throughout the transaction by preventing data from 

being delayed in the processor's local memory [23]. 

   As mapped memory access time is much greater than unmapped memory access time, using mapped memory 

instead of unmapped memory may result in a significant reduction in performance. To make these schemes as 

efficient and feasible as possible, factors such as processor bus speed, mapped memory speed, and mapped 

memory access logic speed must be considered [24]. 

 

 IV. Results and Discussion  

    Using the Xilinx tool, the suggested ideal energy-efficient load-aware dynamic memory management system 

(ELMM) is implemented. Dynamic memory management is applied to and is simulated using the suggested 

optimal energy efficient load aware dynamic memory management system (ELMM). The basic memory of a 

computer is the heap, and a memory assignment capacity can dispense a touching square of memory of a specific 

size from it and return its position. To access that memory block, this location is stored in a pointer variable. 

The application retains the memory that is gradually released and restores it to the system.  
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Table 1 Memory Management User Environment Settings 

Table 2 illustrates several important types of device usage statistics. The macro statistics declares about adder/ 

subtractor value, comparator value, multiplexer value, RAM and Register value. The miscellaneous presents a 

bond index value of aggregated term and number of buffer, simulation start-up time. The net statistics gives 

active sets, ground value, and power supply and pad input/output. Finally site usage represents input and output 

buffer value.   

Device Usage Statistics 

Macro Statistics Miscellaneous Statistics Net Statistics Site Usage 

Adder/Subtractor =8 AGG_BONDED_IO=70 NumNets_Active=2031 BUFG=1 

Comparator = 24 AGG_IO=70 NumNets_Gnd=1 CARRY4=42 

Multiplexer = 152 NUM_BSFULL=460 NumNets_Vcc=1 FF_INIT=17 

RAMs = 7 NUM_BUFG=1 NumNodesofType_Active_

PAD 

INPUT=33 

IOB_INBUF=37 

Register = 746 NUM_STARTUP=1 NumNodesofType_Active_

PAD 

OUTPUT=37 

IOB_OUTBUF=33 

Table.2 Device usage Statistics 

       The Figure 8 shows the simulated output for new memory size. In building the memory maps for each 

exhibit, our structure precisely relates to those pieces of clusters strongly got to, whose task to the on-chip layer 

yields the most notable benefit in terms of powerful vitality 

 

Fig.8.Simulation results 

 

     Columns 1 of Table 3 display binary input values and binary output values, respectively. The memory sizes 

are handled as follows: the cross sections of the many clusters in the application are continually allocated to the 

ELMM in a certain order, increasing the memory size with discrete sums, while the typical number of gets to 

each exhibit component is decreased. 

User Environment 

OS  Microsoft Windows 7 , 64-bit 

CPU Model Intel(R) Core(TM) i3-3220 CPU @ 3.30GHz 

CPU Speed 3292 MHZ 
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Binary Input Binary Output 

00100100 00000000100000000000100000000 

00111000 00000000100010001000000000000 

10000001 10000000000000000000000000001 

00000000 00000000000000000000000000000 

00001001 00000000000000001000000000001 

01000000 00001000000000000000000000000 

01100011 00001000100000000000000010001 

00000000 00000000000000000000000000000 

00001101 00000000000000001000100000001 

01000101 00001000000000000000100000001 

Table.3 Proposed EL MM Binary Input and Output values 

 

V. Conclusion 

  This work proposes the ELMM system, which is the best energy-efficient load-aware dynamic memory 

management. The separation of temporary objects into heap memory and the reduction of memory 

fragmentation are both achieved through the use of an ideal clustering method. Also suggested is a signal-to-

memory mapping technique that is best for hierarchical memory structure and computes bounding windows. 

The energy usage is decreased by computing the additional storage after the mapping process using the task 

monitoring technique. The experimental findings show that the suggested ELMM system outperforms existing 

techniques in terms of efficiency. 
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