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Abstract. The main aim of this paper is study the concept of asymptotically equivalent of random dynamical system, in the time 

space ( which is consider as a locally compact group with Harr measure ). The concept of asymptotically equivalent of random 

dynamical system is defined and some essential properties are proved. Further the relation between the asymptotically equivalent 

and omega limit set on ℝ , stable and eventually stable are given. 
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1. Introduction 

One of the furthermost imperative detections in mathematical physics through the past 50 years is that of finite-dimensional 

attractors in mathematical models for fluid dynamics. Nevertheless, all the analysis breaks down the instant one desires to yield 

random effects on the system under inquiry in justification. Especially, while imperiling the system to additive white noise, there 

is no chance that bounded subsets of the state space stay invariant. White noise impulsions the system out of every bounded set 

with probability one. 

     Attractors for deterministic systems are moderately fine studied. Temam [8] provides a comprehensive presentation. In the 

deterministic case altered notions of attractor have been hosted. The differences between them mainly concern speed of 

convergence to the attractor. This amounts essentially to the question whether certain points of the phase space are elements of the 

attractor. For stochastic systems a greater variety of definitions is possible. Two of them, completely different from the one of this 

paper, have been introduced previously. Brzezniak, Capinski and Flandoli [5], consider the O-limit set for 𝑡 ⟶ +∞ of the 

trajectories. Morimoto [6] and Schmalfug [7]f are concerned with attractors for the Markov semigroup generated by a stochastic 

differential equation. In this paper we think of the attractor as a subset of the phase space (as in [5]), instead of the space of 

probability measures. However, we define the attractor as the Omega-limit set at time 𝑡 =  0 of the trajectories "starting in 

bounded sets at time 𝑡 ⟶ +∞ (roughly speaking). Equivalently, we detect a random subset of the phase space which moves 

accordingly to the dynamics in a stationary manner, attracting all trajectories starting from deterministic or random initial 

conditions. While the definition of [5*] is of interests for systems with real noise, the notion developed here is useful for the white 

noise case as well.The notions of stabilities and attraction properties such as the attractors and the region of attraction are rather 

important to determine the behaviors of the deterministic  dynamical systems defined on a metric space [1],[2]. 

 

In [3] Shigeo KONO investigate the problem that to what extent the stability properties and the attraction properties are preserved 

through the asymptotic equivalence. 

 

In [9] Summary. A criterion for existence of global random attractors for RDS is established. Existence of invariant Markov 

measures supported by the random attractor is proved. For SPDE this yields invariant measures for the associated Markov 

semigroup. The results are applied to reaction diffusion equations with additive white noise and to Navier-Stokes equations with 

multiplicative and with additive white noise. 

In [11],[12] Mohammed Shanan Imran and Ihsan Jabbar Kadhim they introduce Non-autonomous invariant sets and attractors 

Random Dynamical System and Stability and Asymptotic stability of Closed Random Sets respectively.   

2. Attractors of  Random Dynamical System 

    The aim of this section is to study region of attraction, region of weak attraction. Also some types of stability of closed random 

sets  are defind and studied.  

 

Definition(2.1.1)[4]:The 5-tuple (ℝ, Ω, 𝐹, 𝑃, 𝜃) is called a metric dynamical system ( Shortly MDS) if  (Ω, 𝐹, 𝑃) is a probability 

space and  

(i) 𝜃: ℝ × Ω → Ω is (𝐵(ℝ) ⊗ 𝐹, 𝐹) −measurable, 

(ii) 𝜃(0, 𝜔) = 𝐼𝑑Ω, 
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(iii) 𝜃(𝑡 + 𝑠, 𝜔) = 𝜃(𝑡, 𝜃(𝑠, 𝜔)) and  

(iv) 𝑃(𝜃(𝑡)𝐹) = 𝑃(𝐹),  for every 𝐹 ∈ 𝐹 and every 𝑡 ∈ ℝ . 

 

Definition (2.1.2) [4]:A topological random dynamical  system  on  the topological space  𝑋 over  (or covering,  or extending) an 

MDS (ℝ, 𝛺, 𝐹, 𝑃, 𝜃) with time   is a mapping    𝜑: ℝ × 𝛺 × 𝑋 → 𝑋, with the following properties:  

    (i) 𝜑 is continuous 

    (ii) Cocycle property:  The mappings 𝜑(𝑡, 𝜔) ≔ 𝜑(𝑡, 𝜔,⋅): 𝑋 → 𝑋  form a cocycle over 𝜃(⋅), i. e.  they satisfy  

      𝜑(0, 𝜔) = 𝑖𝑑𝑋  for all 𝜔 ∈ 𝛺,                                            

𝜑(𝑡 + 𝑠, 𝜔) = 𝜑(𝑡, 𝜃(𝑠)𝜔) ∘ 𝜑(𝑠, 𝜔) for all  𝑠, 𝑡 ∈ ℝ, 𝜔 ∈ 𝛺.  

                   

Definition (2.1.3) [4]:Let (𝛺, 𝐹) be a measurable space and (𝑋, 𝑑) be a metric space which is considered a measurable space with 

Borel 𝜎 − algebra 𝐵(𝑋). The set-valued function  𝑀: 𝛺 → 𝐵(𝑋), 𝜔 ⟼ 𝑀(𝜔) , is said to be random set if for each 𝑥 ∈ 𝑋 the 

function 𝜔 ⟼ 𝑑(𝑥, 𝑀(𝜔))is measurable. If 𝑀(𝜔)is connected closed (compact) for all 𝜔 ∈ 𝛺, it is called a random connected 

closed(compact) set. 

 

Proposition (2.1.4) [4]: Let the  set-valued function 𝑀: 𝛺 → 𝐵(𝑋)  take values  in the subspace of closed subsets of a Polish space 

(complete, separable, second countable) 𝑋.  Then: 

(i) M is a random closed set if and only if for all open sets  𝑈 ⊂ 𝑋  the set {𝜔: 𝑀𝜔 ∩ 𝑈 ≠ ∅} is measurable. 

(ii) If 𝑀 is a random closed set then  𝑔𝑟𝑎𝑝ℎ(𝑀)  ∈ 𝐹⨂𝐵.    

Definition (2.1.5)[4]: Let  𝑀: 𝜔 ⟼ 𝑀(𝜔) be a multifunction. We call the multifunction  

                                   𝜔 ⟼ 𝛾𝑀
𝑡 (𝜔) ≔ ⋃ 𝜑(𝜏, 𝜃−𝜏𝜔)𝑀(𝜃−𝜏𝜔)𝜏≥𝑡                         

the tail (from the moment 𝑡) of the pull back trajectories emanating from 𝑀.  

Definition (2.1.6) [4]:Let (𝜃, 𝜑)  be a measurable  RDS and  𝑀 ⊂ 𝛺 × 𝑋 a set. 

(i) 𝑀 is called forward invariant if for  𝑡 > 0 

                              𝑀(𝜔) ⊂ 𝜑(𝑡, 𝜔)−1𝑀(𝜃(𝑡, 𝜔))   𝑃 −a.s.  

equivalently  

                               𝜑(𝑡, 𝜔)𝑀(𝜔) ⊂ 𝑀(𝜃(𝑡, 𝜔)) 𝑃 −a.s. 

(ii)   𝑀 is called  invariant if for all 𝑡 ∈ 𝑃 

𝑀(𝜔) = 𝜑(𝑡, 𝜔)−1𝑀(𝜃(𝑡, 𝜔))  𝑃 −a.s a.s., 

for  two-sided time equivalent to  

𝜑(𝑡, 𝜔)𝑀(𝜔) = 𝑀(𝜃(𝑡, 𝜔))   𝑃 −a.s a.s. 

Definition (2.1.7)[4]: Let  𝑀: 𝜔 ⟼ 𝑀(𝜔) be a multifunction. We call the multifunction  

                        𝛤𝑀(𝜔) = ⋂ 𝛾𝑀
𝑡 (𝜔)̅̅ ̅̅ ̅̅ ̅̅

𝑡>0 = ⋂ ⋃ 𝜑(𝜏, 𝜃−𝜏𝜔)𝑀(𝜃−𝜏𝜔)𝜏≥𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑡>0   

the (pull back) omega-limit set of the trajectories emanating from 𝑀  

Theorem (2.1.8)[4]: For every random set 𝑀 in, where  

𝛤𝑀
+(𝜔) = {𝑦 ∈ 𝑋: ∃ 𝑎 𝑠𝑒𝑞. {𝑡𝑛}𝑖𝑛 𝑅+ , 𝑡𝑛 ⟶ +∞ 𝑎𝑛𝑑 {𝑥𝑛} ∈ 𝑀(𝜃−𝑡𝑛

𝜔)𝑤𝑖𝑡ℎ 𝜑(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑥𝑛 ⟶ 𝑦} 

 

Definition(2.1.9)[4]: (universe of sets) Let 𝔇 be a family of random closed sets, if {𝐷2(𝜔)} possesses the property 𝐷2(𝜔) ⊂
𝐷1(𝜔) for all 𝜔 ∈ Ω, then 𝐷2 ∈ 𝔇. Then 𝔇 is called the universe of sets. 

 

Definition(2.1.10):[4] Let 𝔇 be a universe. A random closed set A(ω) from 𝔇 is said to  

attracting in 𝔇 if 

𝑙𝑖𝑚𝑡→+∞ 𝑑𝑋{𝜓(𝑡, 𝜃−𝑡𝜔)𝐷(𝜃−𝑡𝜔) | 𝐴(𝜔)}  =  0, 𝜔 ∈ Ω , for all 𝐷 ∈ 𝔇. 

 

  Proposition(2.1.11): Let 𝔇 be a universe .A random closed set A(ω) from 𝔇 is  an attractor of the RDS (𝜃, 𝜓) in 𝔇 if and only 

if 
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𝛤𝐷,𝜓(𝜔) ≠ ∅ and 𝛤𝐷,𝜓(𝜔) ⊂ 𝐴(𝜔), for all 𝐷 ∈ 𝔇. 

 

Definition(2.1.12): A random closed set is said to be a weak attractor of the RDS (𝜃, 𝜓) if  

there is a tempered random variable 𝛿  a sequence {𝑡𝑛} in 𝑅+, 𝑡𝑛 ⟶ +∞, such that  

𝑑(𝜓(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑦, 𝑀(𝜔)) ⟶ 0, for every 𝑦 ∈ 𝑆(𝑀, 𝛿(𝜔)) and 𝜔 ∈ 𝛺. 

 

Definition(2.1.13)[10]: Let 𝑀 be a random set compact set in a locally compact space 𝑋 . 

(i) The set  

𝐴𝑀,𝜓
∗ (𝜔) ≔ {𝑥 ∈ 𝑋: ∃ {𝑡𝑛}𝑖𝑛 𝑅+  ∋  𝑡𝑛 ⟶ +∞ 𝑎𝑛𝑑 𝑑(𝜓(𝑡𝑛, 𝜃−𝑡𝑛

𝜔)𝑥, 𝑀(𝜔)) ⟶ 0 } 

 is called the region of weak attraction of the set 𝑀. 

(ii) The set 

𝐴𝑀,𝜓(𝜔) ≔ {𝑥 ∈ 𝑋:  𝑑(𝜓(𝑡, 𝜃−𝑡𝜔)𝑥, 𝑀(𝜔)) ⟶ 0 𝑎𝑠  𝑡 ⟶ +∞ } 

 is called the region of attraction of the set 𝑀. 

Definition(2.1.14): Let  (𝜃, 𝜓) be a random dynamical system. A  closed random set 𝑀 in  𝑋 is said to be positive stable if for 

every tempered random variable 𝜀: 𝛺 ⟶ 𝑅+  and 𝑥 ∈ 𝑀, there is a tempered random variable 𝛿 ≡ 𝛿𝑥,𝜀: 𝛺 ⟶ 𝑅+ such that 

𝛾𝑆
𝑡(𝜔) ⊆ 𝑆(𝑀, 𝜀), where 𝑆(𝜔) ≡ 𝑆(𝑥, 𝛿(𝜔)) 

 

Definition(2.1.15): A closed random set  𝑀 in a locally compact space 𝑋 is said to be eventually stable with respect to (𝜃, 𝜓) if 

for every tempered random variable 𝜀, there exists 𝜏 > 0 and tempered random variable 𝛿 such that  

 

𝜓(𝑡, 𝜃−𝑡𝜔)𝑆𝛿(𝜃−𝑡𝜔) ⊂ 𝑆𝜀(𝜔), for every 𝑡 ≥ 𝜏,  

 where 𝑆𝜀(𝜔) ≡ 𝑆(𝑀, 𝜀) and  𝑆𝛿(𝜔) ≡ 𝑆(𝑀, 𝛿). 

     

Definition(2.1.16): A closed random set  𝑀 in a locally compact space 𝑋 is said to be asymptotically  stable with respect to 

(𝜃, 𝜓) if  𝑀 is an attractor of  (𝜃, 𝜓) and stable with respect to  (𝜃, 𝜓). 

3. Asymptotically Equivalent in Random Dynamical Systems 

     In this section the concepts of  asymptotically equivalent in random dynamical systems is defined and some essential properties 

are investigated. As the main property we characterize the asymptotically equivalent in terms of omega limit sets. 

Definition(3.1.1): We say a dynamical system  (𝜃, 𝜓1) is asymptotically equivalent to (𝜃, 𝜓2) in the universal 𝔇 if  for all 

𝐷1, 𝐷2 ∈ 𝔇, the following hold: 

             𝑑(𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦) ⟶ 0   as (𝑡 ⟶  +∞) 

is valid, for every  𝑥 ∈ 𝐷1(𝜃−𝑡𝜔) and 𝑦 ∈ 𝐷2(𝜃−𝑡𝜔) , and denote this fact as follows                                 (𝜃, 𝜓1)~(𝜃, 𝜓2)   or  

𝜓1~𝜓2 

 

Proposition(3.1.2)  The asymptotic equivalence is symmetric as well as transitive relation.  

Proof. The symmetry follows from the fact that  

            𝑑(𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦) = 𝑑(𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦, 𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥). 

The transitivity follows from the triangle inequality : 

𝑑(𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝜓3(𝑡, 𝜃−𝑡𝜔)𝑧) ≤ 𝑑(𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦) + 𝑑(𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦, 𝜓3(𝑡, 𝜃−𝑡𝜔)𝑧) 

 

Corollary(3.1.3): The asymptotic equivalence of the dynamical systems on a singleton is an equivalence relation. 

Theorem(3.1.4):  Let  𝔇 be a universal and (𝜃, 𝜓)  be an RDS. If  𝛤𝐷,𝜓 is nonempty compact, then  

𝑑(𝜓(𝑡, 𝜃−𝑡𝜔)𝑥, 𝛤𝐷,𝜓(𝜔))  = 0                                    (1) 

for every  𝐷 ∈ 𝔇 and every 𝑥 ∈ 𝐷(𝜃−𝑡𝜔). 

Proof  Assume contrary that  (1) does not hold, then there is a sequence {𝑡𝑛} in 𝑅+ with 𝑡𝑛 ⟶ +∞ and a 𝛽 > 0 such that  
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𝑑 (𝜓(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑥𝑛 , 𝛤𝐷,𝜓(𝜔)) ≥ 𝛽 > 0                      (2) 

for some  𝐷 ∈ 𝔇 and  𝑥𝑛 ∈ 𝐷(𝜃−𝑡𝑛
𝜔) 

Since  

𝑑 (𝜓(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑥𝑛 , 𝛤𝐷,𝜓(𝜔)) = 𝑑(𝜓(𝑡𝑛, 𝜃−𝑡𝑛

𝜔)𝑥𝑛 , 𝛾𝐷
𝑘(𝜔)) , for every  𝜔 ∈ 𝛺, 

 then  

𝑑(𝜓(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑥𝑛 , 𝛾𝐷

𝑘(𝜔)) ≥ 𝛽 > 0                         (3) 

Now, the sequence  {𝜓(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑥𝑛} : 𝜓(𝑡𝑛, 𝜃−𝑡𝑛

𝜔)𝑥𝑛 ∈ 𝛾𝐷
𝑘(𝜔) such that  

𝜓(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑥𝑛  = 𝑦 ∈ 𝛾𝐷

𝑘(𝜔), 

since 𝛾𝐷
𝑘(𝜔)is compact. On the other hand from (2) it follows that 

𝑑 (𝑦, 𝛤𝐷,𝜓(𝜔)) ≥ 𝛽 > 0 . 

This is a contradiction. Thus we must have  

𝑑(𝜓(𝑡, 𝜃−𝑡𝜔)𝑥, 𝛤𝐷,𝜓(𝜔))  = 0. 

Theorem(3.1.5): Let  (𝜃, 𝜓1)  and (𝜃, 𝜓2)  be two RDS's on the locally compact metric space 𝑋 and let 𝔇 be a universal such that 

𝛤𝐷1,𝜓1
 and 𝛤𝐷2,𝜓2

 are both non-empty and compact random  for any 𝐷1, 𝐷2 ∈ 𝔇. Then  

(𝜃, 𝜓1)~(𝜃, 𝜓2)  in 𝔇  if and only if  𝛤𝐷1,𝜓1
∩ 𝛤𝐷2,𝜓2

≠ ∅, for all 𝐷1 , 𝐷2 ∈ 𝔇. 

Proof Suppose that  (𝜃, 𝜓1)~(𝜃, 𝜓2) in 𝔇 , then  

            𝑑(𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦) ⟶ 0   as (𝑡 ⟶  +∞).  

for every  𝑥 ∈ 𝐷1(𝜃−𝑡𝜔) and 𝑦 ∈ 𝐷2(𝜃−𝑡𝜔). The sets 𝛤𝐷1,𝜓1
 and 𝛤𝐷2,𝜓2

 are both non-empty and compact random sets  in a locally 

compact spaces 𝑋, then by Theorem(3.1.4) 

𝑑(𝛤𝐷1,𝜓1
(𝜔), 𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥)  = 0                                                               (1) 

for every  𝐷1 ∈ 𝔇 and every 𝑥 ∈ 𝐷1(𝜃−𝑡𝜔), and  

𝑑(𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦, 𝛤𝐷2,𝜓2
(𝜔))  = 0                                                               (2) 

for every  𝐷2 ∈ 𝔇 and every 𝑦 ∈ 𝐷2(𝜃−𝑡𝜔) 

Using (1) and (2) in the inequality  

𝑑 (𝛤𝐷1,𝜓1
(𝜔), 𝛤𝐷2,𝜓2

(𝜔)) ≤ 𝑑(𝛤𝐷1,𝜓1
(𝜔), 𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥) + 𝑑(𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦)   

                                          +𝑑(𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦, 𝛤𝐷2,𝜓2
(𝜔)), 

 Then 

𝑑 (𝛤𝐷1,𝜓1
(𝜔), 𝛤𝐷2,𝜓2

(𝜔)) = 0 for every 𝐷1, 𝐷2 ∈ 𝔇 .                                    (3) 

Since  𝛤𝐷1,𝜓1
(𝜔) and  𝛤𝐷2,𝜓2

(𝜔) are closed for every 𝐷1, 𝐷2 ∈ 𝔇, , then  

𝛤𝐷1,𝜓1
∩ 𝛤𝐷2,𝜓2

≠ ∅, for all 𝐷1 , 𝐷2 ∈ 𝔇.                                                       (4) 

Conversely, the assumption (4) implies (3). Using (1),(2) and (3) to the inequality  

𝑑(𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦) ≤ 𝑑 (𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝛤𝐷1,𝜓1
(𝜔))    

                                             +𝑑 (𝛤𝐷1,𝜓1
(𝜔), 𝛤𝐷2,𝜓2

(𝜔)) + 𝑑(𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦, 𝛤𝐷2,𝜓2
(𝜔)) 

for every  𝑥 ∈ 𝐷1(𝜃−𝑡𝜔) and 𝑦 ∈ 𝐷2(𝜃−𝑡𝜔). Thus we have 

𝑑(𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦) ⟶ 0   as (𝑡 ⟶  +∞) 

for every  𝑥 ∈ 𝐷1(𝜃−𝑡𝜔) and 𝑦 ∈ 𝐷2(𝜃−𝑡𝜔).i.e., (𝜃, 𝜓1)~(𝜃, 𝜓2). 

 

Corollary (3.1.6) Let  (𝜃, 𝜓1)  and (𝜃, 𝜓2)  be two RDS's on the compact metric space 𝑋 and let 𝔇 be a universal such that 𝛤𝐷1,𝜓1
 

and 𝛤𝐷2,𝜓2
 are both non-empty and compact random  for any 𝐷1, 𝐷2 ∈ 𝔇. Then  

(𝜃, 𝜓1)~(𝜃, 𝜓2)  in 𝔇  if and only if  𝛤𝐷1,𝜓1
∩ 𝛤𝐷2,𝜓2

≠ ∅, for all 𝐷1 , 𝐷2 ∈ 𝔇. 

Proof:  This follows from the fact that the compact space is locally compact. 
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Theorem(3.1.7):Let 𝑋 be a compact metric space and  (𝜃, 𝜓1)~(𝜃, 𝜓2)  on a non-empty random set 𝐷. If  𝑀 ⊂ 𝐷 is an attractor 

of  (𝜃, 𝜓1) , then  𝑀 is a weak attractor of  (𝜃, 𝜓2). 

Proof. Since  𝑀 ⊂ 𝐷 is an attractor of  (𝜃, 𝜓1), then there exists a tempered random variable  𝜀 > 0 such that 

𝛤𝑥,𝜓1
(𝜔) ≠ ∅   and   𝛤𝑥,𝜓1

(𝜔) ⊂ 𝑀(𝜔), for every 𝑥 ∈ 𝑆(𝑀, 𝜀). 

 

On the other hand for every point 𝑥 ∈ 𝑀 there exists a neighborhood 𝑈(𝑥) such that  𝑈(𝑥) ⊂ 𝐷. We take a Lebesgue number 𝜆 of 

the covering 

{𝑈(𝑥): 𝑥 ∈ 𝑀, 𝑈(𝑥) ⊂ 𝐷(𝜔)}. 

Then  

𝑆(𝑀, 𝜆) = ⋃ 𝑆(𝑥, 𝜆)𝑥∈𝑀 ⊂ ⋃ 𝑈(𝑥)𝑥∈𝑀 ⊂ 𝐷(𝜔). 

We can choose 𝜀 to satisfy 𝜀 ≤ 𝜆. Thus  

         𝑆(𝑀, 𝜀) ⊂ 𝐷(𝜔).                                                                (1) 

Then 

𝛤𝑝,𝜓1
(𝜔) ∩ 𝛤𝑞,𝜓2

(𝜔) ≠ ∅ for every  𝑝 ∈ 𝑆(𝑀, 𝜀) and 𝑞 ∈ 𝐷(𝜔), 

because of (1), the assumption (𝜃, 𝜓1)~(𝜃, 𝜓2) and  Corollary (3.1.6). On the other hand  

𝛤𝑝,𝜓1
(𝜔) ≠ ∅ 𝑎𝑛𝑑 𝛤𝑝,𝜓1

(𝜔) ⊂ 𝑀(𝜔) for every  𝑝 ∈ 𝑆(𝑀, 𝜀). 

Hence  

𝛤𝑞,𝜓2
(𝜔) ∩ 𝑀(𝜔) ≠ ∅,  for every 𝑝 ∈ 𝑆(𝑀, 𝜀). 

This shows that  𝑀 is a weak attractor of  (𝜃, 𝜓2). 

Theorem(3.1.8): Let 𝑋 be a compact metric space and  (𝜃, 𝜓1)~(𝜃, 𝜓2)  on a non-empty random open set 𝐷. If  a compact 

random set 𝑀 ⊂ 𝐷 is an stable with respect to  (𝜃, 𝜓1) , then  𝑀 is a eventually stable with respect to  (𝜃, 𝜓2). 

Proof Since 𝐷 is an open neighborhood of  𝑀   then there exists  a 𝛿′ > 0 such that  

𝑆(𝑀, 𝛿′) ⊂ 𝐷                                                                     (1) 

Note that a positive number  𝛿′ can be considered as a constant random variable and hence a tempered random variable. Because 

of 𝑀 is stable with respect to  (𝜃, 𝜓1), then for every tempered random variable 𝜀, there exist 𝜏 > 0 and a tempered random 

variable  𝛿′′ > 0 such that  

𝜓1(𝑡, 𝜃−𝑡𝜔)𝑆𝛿′′(𝜃−𝑡𝜔) ⊂ 𝑆𝜀

2
(𝜔), for every 𝑡 ≥ 𝜏, 

 where 𝑆𝜀

2
(𝜔) ≡ 𝑆(𝑀,

𝜀

2
) and  𝑆𝛿′′(𝜔) ≡ 𝑆(𝑀, 𝛿′′).  Set 

𝛿(𝜔) ≔ {𝛿′(𝜔), 𝛿′′(𝜔)} , 

where  𝛿′(𝜔) ≡ 𝛿′ , for every 𝜔 ∈ 𝛺. Thus for every tempered random variable 𝜀, there exists a tempered random variable  𝛿′′ >
0 such that  

(i) 𝜓1(𝑡, 𝜃−𝑡𝜔)𝑆𝛿(𝜃−𝑡𝜔) ⊂ 𝑆𝜀

2
(𝜔), for every 𝑡 ∈ 𝑅+, and  

(ii) 𝑆𝛿(𝜔) ⊂ 𝐷. 

Since  𝐷 ∈ 𝔇 and 𝑆𝛿(𝜔) ⊂ 𝐷, then  𝑆𝛿(𝜔) ∈ 𝔇. By hypothesis (𝜃, 𝜓1)~(𝜃, 𝜓2) in the universal 𝔇 then  we have  

𝑑(𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦) < 𝜀(𝜔)/2 

is valid, for every  𝑥 ∈ 𝑆𝛿(𝜃−𝑡𝜔) and 𝑦 ∈ 𝐷(𝜃−𝑡𝜔). 

 

Using these results to the inequality  

                   𝑑(𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦, 𝑀) ≤ 𝑑(𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦, 𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥) + 𝑑(𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝑀),  

we get for every tempered random variable 𝜀, there exists 𝜏 > 0 and tempered random variable 𝛿 such that  

𝑑(𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦, 𝑀) <
𝜀(𝜔)

2
+

𝜀(𝜔)

2
= 𝜀(𝜔), for every 𝑡 ≥ 𝜏, and 𝑦 ∈ 𝑆𝛿(𝜃−𝑡𝜔).  

Consequently, 𝑀 is eventually stable with respect to (𝜃, 𝜓2).                                 

Theorem(3.1.9): Let 𝑋 be a compact metric space and  (𝜃, 𝜓1)~(𝜃, 𝜓2)  on a non-empty random open set 𝐷. If  a compact 

random set 𝑀 ⊂ 𝐷 is an asymptotically stable with respect to  (𝜃, 𝜓1) , then  𝑀 is a asymptotically stable with respect to  (𝜃, 𝜓2). 

Proof: Use the same technique  that given in the proof of Theorem (3.1.8) 
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Theorem(3.1.10): Let 𝑋 be a compact metric space and  (𝜃, 𝜓1)~(𝜃, 𝜓2)  on a non-empty random open set 𝐷. If 𝑀  a non-empty 

compact random set in 𝑋 , then  

(i) 𝐴𝑀,𝜓1

∗ (𝜔) ∩ 𝐷 ≠ ∅, then  𝐷 ⊂ 𝐴𝑀,𝜓2

∗ (𝜔), 

(ii) 𝐴𝑀,𝜓1
(𝜔) ∩ 𝐷 ≠ ∅, then  𝐷 ⊂ 𝐴𝑀,𝜓2

(𝜔) 

Proof. (i) Suppose that  𝐴𝑀,𝜓1

∗ (𝜔) ∩ 𝐷 ≠ ∅, then there exists  𝑥 ∈ 𝐴𝑀,𝜓
∗ (𝜔) ∩ 𝐷. So there exists a sequence {𝑡𝑛} such that  

(1) 𝑡𝑛 ⟶ +∞ as 𝑛 ⟶ +∞ , 

(2) 𝑑(𝜓1(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑥, 𝑀(𝜔)) ⟶ 0 as 𝑛 ⟶ +∞,  

(3) 𝑑(𝜓1(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑥, 𝜓2(𝑡𝑛, 𝜃−𝑡𝑛

𝜔)𝑦) ⟶ 0 as 𝑛 ⟶ +∞. 

On the other hand , for every 𝑦 ∈ 𝐷, we have  

 𝑑(𝜓2(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑦, 𝑀(𝜔)) ≤ 𝑑(𝜓2(𝑡𝑛, 𝜃−𝑡𝑛

𝜔)𝑦, 𝜓1(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑥) 

                                                        +𝑑(𝜓1(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑥, 𝑀(𝜔)),  

which implies that 

                𝑑(𝜓2(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑦, 𝑀(𝜔)) ⟶ 0  as 𝑛 ⟶ +∞.  

 So by definition of 𝐴𝑀,𝜓2

∗ (𝜔) we have   𝑦 ∈ 𝐴𝑀,𝜓2

∗ (𝜔). Consequently 𝐷 ⊂ 𝐴𝑀,𝜓2

∗ (𝜔). 

 

(ii) Suppose that 𝐴𝑀,𝜓1
(𝜔) ∩ 𝐷 ≠ ∅, then there exists  𝑥 ∈ 𝐴𝑀,𝜓1

(𝜔) ∩ 𝐷. Then  

𝑑(𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝑀(𝜔)) ⟶ 0 as 𝑡 ⟶ +∞,  

and  

𝑑(𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦) ⟶ 0 as 𝑡 ⟶ +∞ for every  𝑦 ∈ 𝐷 

 are valid. Applying these results to the inequality   

 

  𝑑(𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦, 𝑀(𝜔)) ≤ 𝑑(𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦, 𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥) 

                                                        +𝑑(𝜓1(𝑡, 𝜃−𝑡𝜔)𝑥, 𝑀(𝜔)),  

 

Then  

         𝑑(𝜓2(𝑡, 𝜃−𝑡𝜔)𝑦, 𝑀(𝜔)) ⟶ 0 as 𝑡 ⟶ +∞ for every  𝑦 ∈ 𝐷. 

So by definition of 𝐴𝑀,𝜓2
(𝜔) we have   𝑦 ∈ 𝐴𝑀,𝜓2

(𝜔). Consequently 𝐷 ⊂ 𝐴𝑀,𝜓2

∗ (𝜔). 

Corollary(3.1.11): Under the similar assumption theorem (3.1.10) the following are hold: 

(i) 𝐴𝑀,𝜓
∗ (𝜔) ∩ 𝐷 ≠ ∅, then  𝐷 ⊂ 𝐴𝑀,𝜓

∗ (𝜔), 

(ii) 𝐴𝑀,𝜓(𝜔) ∩ 𝐷 ≠ ∅, then  𝐷 ⊂ 𝐴𝑀,𝜓(𝜔). 

Proof. This follows from the fact that  (𝜃, 𝜓1)~(𝜃, 𝜓1) and the above theorem. 

Corollary(3.1.12): Under the similar assumption theorem (3.1.10) the following are hold: 

(i) 𝐴𝑀,𝜓1

∗ (𝜔) ⊂ 𝐷, then  𝐴𝑀,𝜓1

∗ (𝜔) ⊂ 𝐴𝑀,𝜓2

∗ (𝜔), 

(ii) 𝐴𝑀,𝜓1
(𝜔) ⊂ 𝐷, then  𝐴𝑀,𝜓1

(𝜔) ⊂ 𝐴𝑀,𝜓1
(𝜔). 
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