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Abstract 

   In this paper, we define the generalized positive polynomial factorial and the generalized difference operator ∆ℓ .A level of 

quality approach of numerical integration of differential equations is to replace it by suitable difference equation whose solution 

can be acquired in a suitable difference equation in a stable manner and without trouble from round –off errors. A definition for 

the Laplace transform corresponding to the nabla difference operator is given.  
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1. Introduction  

       The Knowledge of Laplace transforms become an essential part of the study of engineers and scientists. This provides easy 

and effective solutions for many problems arising in engineering [9]. This subject originated from the operational methods by the 

English engineer Oliver Heaviside (1850-1925) to applied linear transform in problems of electrical engineering [9]. Then it has 

been developed by Bromwich and Carson during 1916-17. The method of Laplace transforms has the advantage of directly giving 

the solution of differential equations with given boundary values. The Laplace transform of f(t) is defined by L(f(t) 

=∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0
 provided that the integral exists, s is a parameter which may be a real or complex number. 

Definition 1.1  

          If   n and ℓ are any two positive integers, then the generalized positive polynomial factorial is defined as 

                                 𝑘ℓ
(𝑛)

 = k(K- ℓ )(k-2 ℓ)…(k-(n-1) ℓ) and 𝑘ℓ
(0)

=1 ,  𝑘ℓ
(1)

=k               (1) 

 

Definition 1.2  

       If u(k) is a sequence of numbers and ℓ is any positive integer, then we define the generalized difference operator ∆ℓ as  

                                        ∆ℓ u(k) = u(k+1) –u(k)                                                                     (2) 

Theorem 1.3 

     If n is a positive integer and ℓ >0 then 

                                        ∆ℓ 𝑘ℓ
(𝑛)

= n ℓ 𝑘ℓ 
(𝑛−1)

                                                                               (3) 

Definition 1.4  [5] 

     Let   >0 and u(k) ,w(k) are real valued bounded functions. Then  

∆ℓ
−1 u(k) w(k) = u(k) ∆ℓ

−1 w(k) - ∆ℓ
−1 ( ∆ℓ

−1 w(k+ ℓ )∆ℓu(k))                                             (4) 

Definition 1.5    

   Let ℓ >0 and 𝑎sℓ-1 ≠ 0, then  ∆ℓ
−1𝑒𝑠𝑘 = 

𝑒𝑠𝑘

𝑒sℓ−1
                                                                    (5) 

Definition 1.6    

   Let ℓ >0 and 𝑎−sℓ-1 ≠ 0, then  ∆ℓ
−1𝑒−𝑠𝑘 = 

𝑒−𝑠𝑘

𝑒−sℓ−1
                                                             (6) 

Definition 1.7 

    For a given function u(k) ,the generalized Laplace transform is defined as 
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                         Lℓ u(k)  = ℓ 𝑒𝑠𝑘 │0
 ∞                                                                                                                  

2.GENERALIZED LAPLACE TRANSFORM OF EXPONENTIAL FUNCTIONS 

Lemma 2.1 

Assume that s≠ 0, and ∇ℓ
−1 be the inverse difference operator, then  

                 ∆ℓ
−1 ℓ 

𝑘ℓ
(𝑛)

𝑛!
 𝑒−𝑠𝑘     |0

 ∞ = 
1

𝑠𝑛+1 

Proof 

           From the definition of generalized Laplace transform, we have 

When n=1,  ∆ℓ
−1 ℓ 

𝑘ℓ
(1)

1!
 𝑒−𝑠𝑘   |0

 ∞  =   ℓ ∆ℓ
−1 [𝑘ℓ

(1)
 𝑒−𝑠𝑘 ]  |0

 ∞   =  ℓ [𝑘ℓ
(1)

   
𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
  -  

𝑒−𝑠(𝑘+ℓ)

(𝑒−𝑠ℓ−1) 2
 ℓ  ] |0

 ∞ 

            ⇒   ∆ℓ
−1 ℓ 

𝑘ℓ
(1)

1!
 𝑒−𝑠𝑘   |0

 ∞    =  
1

𝑠2  as      ℓ 0     

When n=2, ∆ℓ
−1 ℓ 

𝑘ℓ
(2)

2!
 𝑒−𝑠𝑘  |0

 ∞ =  
ℓ

2
∆ℓ

−1 [𝑘ℓ
(2)

 𝑒−𝑠𝑘 ] |0
 ∞ = 

ℓ

2
 [𝑘ℓ

(2)
 

𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
  - 2ℓ∆ℓ

−1(
𝑒−𝑠(𝑘+ℓ)

𝑒−𝑠ℓ−1
  𝑘ℓ

(1)
)] |0

 ∞ 

                                                   =  
ℓ

2
   [ 𝑘ℓ

(2)
   

𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
  - 2ℓ  (𝑘ℓ

(1)
 

𝑒−𝑠(𝑘+ℓ)

(𝑒−𝑠ℓ−1) 2
 -  

𝑒−𝑠(𝑘+2ℓ)

(𝑒−𝑠ℓ−1) 3
  ℓ) ] |0

 ∞ 

 ⇒   ∆ℓ
−1 ℓ 

𝑘ℓ
(2)

2!
 𝑒−𝑠𝑘  |0

 ∞    = 
1

𝑠3  as      ℓ 0    

When n=3, ∆ℓ
−1 ℓ 

𝑘ℓ
(3)

3!
 𝑒−𝑠𝑘  |0

 ∞ =  
ℓ

6
∆ℓ

−1 [𝑘ℓ
(3)

 𝑒−𝑠𝑘 ] |0
 ∞ = 

ℓ

6
 [ 𝑘ℓ

(3)
  

𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
 - 3ℓ ∆ℓ

−1(
𝑒−𝑠(𝑘+ℓ)

𝑒−𝑠ℓ−1
 𝑘ℓ

(2
 )] |0

 ∞ 

                                          =  
ℓ

6
  [ 𝑘ℓ

(3)
   

𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
  - 3ℓ ( 𝑘ℓ

(2) 𝑒−𝑠(𝑘+ℓ)

(𝑒−𝑠ℓ−1) 2
 - 2ℓ ∆ℓ

−1 (𝑘ℓ
(1)

 
𝑒−𝑠(𝑘+2ℓ)

(𝑒−𝑠ℓ−1) 2
 ))] |0

 ∞             

                                          =  
ℓ

6
  [ 𝑘ℓ

(3)
   

𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
  - 3ℓ ( 𝑘ℓ

(2) 𝑒−𝑠(𝑘+ℓ)

(𝑒−𝑠ℓ−1) 2
 - 2ℓ (𝑘ℓ

(1)
 

𝑒−𝑠(𝑘+2ℓ)

(𝑒−𝑠ℓ−1) 3
 -                       

    
𝑒−𝑠(𝑘+3ℓ)

 (𝑒−𝑠ℓ−1) 4
  ℓ))] |0

 ∞   (from (4)&(5))  

           ⇒   ∆ℓ
−1 ℓ 

𝑘ℓ
(3)

3!
 𝑒−𝑠𝑘  |0

 ∞ =  
1

𝑠4  as      ℓ 0   

When n=4, ∆ℓ
−1 ℓ 

𝑘ℓ
(4)

4!
 𝑒−𝑠𝑘   |0

 ∞  =   
ℓ

24
∆ℓ

−1 [𝑘ℓ
(4)

 𝑒−𝑠𝑘  ] |0
 ∞ 

                                           =  
ℓ

24
  [ 𝑘ℓ

(4)
 

𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
  - 4ℓ ( 𝑘ℓ

(3) 𝑒−𝑠(𝑘+ℓ)

(𝑒−𝑠ℓ−1) 2
 - 3ℓ ∆ℓ

−1 (𝑘ℓ
(2)

 
𝑒−𝑠(𝑘+2ℓ)

(𝑒−𝑠ℓ−1) 2
 ))] |0

 ∞             

 

                                             =   
ℓ

24
  [ 𝑘ℓ

(4)
 

𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
  - 4ℓ ( 𝑘ℓ

(3) 𝑒−𝑠(𝑘+ℓ)

(𝑒−𝑠ℓ−1) 2
 - 3ℓ  (𝑘ℓ

(2)
 

𝑒−𝑠(𝑘+2ℓ)

(𝑒−𝑠ℓ−1) 3
 – 

                                                                                                2ℓ ∆ℓ
−1 (𝑘ℓ

(1)
 

𝑒−𝑠(𝑘+2ℓ)

(𝑒−𝑠ℓ−1) 3
)))] |0

 ∞             

                                               =   
ℓ

24
  [ 𝑘ℓ

(4)
 

𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
  - 4ℓ ( 𝑘ℓ

(3) 𝑒−𝑠(𝑘+ℓ)

(𝑒−𝑠ℓ−1) 2
 - 3ℓ  (𝑘ℓ

(2)
 

𝑒−𝑠(𝑘+2ℓ)

(𝑒−𝑠ℓ−1) 3
 – 

                                                                                            2ℓ  (𝑘ℓ
(1)

 
𝑒−𝑠(𝑘+3ℓ)

(𝑒−𝑠ℓ−1) 4
−

𝑒−𝑠(𝑘+4ℓ)

(𝑒−𝑠ℓ−1) 5
 ℓ)))] |0

 ∞          

        ⇒   ∆ℓ
−1 ℓ 

𝑘ℓ
(4)

4!
 𝑒−𝑠𝑘   |0

 ∞   =  
1

𝑠5  as      ℓ 0  

In general, ∆ℓ
−1 ℓ 

𝑘ℓ
(𝑛)

𝑛!
 𝑒−𝑠𝑘     |0

 ∞ = 
1

𝑠𝑛+1        

 

Theorem 2.2 

Let Kϵ (0,∞) and  ℓ > 0 , then   ∆ℓ
−1 ℓ 𝑒𝑘ℓ

(1)

𝑒−𝑠𝑘     |0
 ∞ =  

1

𝑠−1
 

Proof 

We have, 𝑒𝑘ℓ
(1)

 = 1+ 
𝑘ℓ

(1)

1!
 + 

𝑘ℓ
(2)

2!
 + 

𝑘ℓ
(3)

3!
 + 

𝑘ℓ
(4)

4!
 + 

𝑘ℓ
(5)

5!
 + …   

∆ℓ
−1 ℓ 𝑒𝑘ℓ

(1)

𝑒−𝑠𝑘 |0
 ∞ =  ∆ℓ

−1 ℓ( 1+ 
𝑘ℓ

(1)

1!
 + 

𝑘ℓ
(2)

2!
 + 

𝑘ℓ
(3)

3!
 + 

𝑘ℓ
(4)

4!
 + 

𝑘ℓ
(5)

5!
 + … ) 𝑒−𝑠𝑘 |0

 ∞ (from Lemma (1.1)) 
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                          =  
1

𝑠
 + 

1

𝑠2  + 
1

𝑠3 + 
1

𝑠4 + 
1

𝑠5 + 
1

𝑠6  + … 

This completes the proof 

Corollary 2.3  

Let Kϵ (0,∞) and  ℓ > 0, then   ∆ℓ
−1 ℓ 𝑒−𝑘ℓ

(1)

𝑒−𝑠𝑘     |0
 ∞ =  

1

𝑠+1
 

3. Generalized Laplace Transform of Exponential & Trigonometric Functions 

3.1 Generalized Laplace Transform of Sine Function 

Lemma 3.1.1 

            If for any positive integer n, the polynomial factorial k(K- ℓ )(k-2 ℓ)…(k-(n-1) ℓ) ,then 

   ∆ℓ
−1ℓ sin𝑎𝑘𝑙

(1)
 𝑒−𝑠𝑘   │0

∞  = 
𝑎

 𝑠2+𝑎2
 

Proof 

            ∆ℓ
−1ℓ sin𝑎𝑘𝑙

(1)
 𝑒−𝑠𝑘   │0

∞  = ℓ [∆ℓ
−1(𝑎𝑘ℓ

(1)
−  -

𝑎3𝑘ℓ
(3)

  

3!
+

𝑎5𝑘ℓ
(5)

5!
 − ⋯ )𝑒−𝑠𝑘] │0

∞    (7) 

Now, 

        ℓ [∆ℓ
−1(𝑎𝑘ℓ

(1)
 𝑒−𝑠𝑘)] │0

∞   = ℓa [ 𝑘ℓ
(1)

 
𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
   -   ∆ℓ

−1( 
𝑒−𝑠(𝑘+ℓ) 

𝑒−𝑠ℓ−1
   )]  │0

∞  (from (4)&(5)) 

       =   ℓ a [  𝑘ℓ
(1)

 
𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
       -       

𝑒−𝑠(𝑘+ℓ )

(𝑒−𝑠ℓ−1)2 ℓ]     │0
∞ 

  ℓ [∆ℓ
−1(𝑎𝑘ℓ

(1)
 𝑒−𝑠𝑘)] │0

∞    =  
𝑎

 𝑠2        as   ℓ⟶0                                                                   (8) 

Also, 

  ℓ [∆ℓ
−1(

𝑎3𝑘ℓ
(3)

3!
𝑒−𝑠𝑘)] │0

∞  = 
  ℓa3  

6
[𝑘ℓ

(3)
 

𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
   -   ∆ℓ

−1 (  
𝑒−𝑠(𝑘+ℓ )

𝑒−𝑠ℓ−1
  3 ℓ 𝑘ℓ

(2)
)]   │0

∞ 

                                                        =  
  ℓa3  

6
[𝑘ℓ

(3)
 

𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
 - 3 ℓ ( 𝑘ℓ

(2) 𝑒−𝑠(𝑘+ℓ )

(𝑒−𝑠ℓ−1)2 -                      

                                                                   ∆ℓ
−1 (

𝑒−𝑠(𝑘+2ℓ )

(𝑒−𝑠ℓ−1)2  2 ℓ(𝑘ℓ
(1)

))] │0
∞(from (3) &(4)) 

 

                                                       =  
  ℓ a3 

6
[𝑘ℓ

(3)
 

𝑒−𝑠𝑘

𝑒−𝑠ℓ−1
  - 3 ℓ ( 𝑘ℓ

(2) 𝑒−𝑠(𝑘+ℓ )

(𝑒−𝑠ℓ−1)2 -        

                                                                   2 ℓ ( 𝑘ℓ
(1) 𝑒−𝑠(𝑘+2ℓ )

(𝑒−𝑠ℓ−1)3- -  ∆ℓ
−1(

𝑒−𝑠(𝑘+3ℓ )

(𝑒−𝑠ℓ−1)3   ℓ )))   │0
∞ 

  ℓ [∆ℓ
−1(

𝑎3𝑘ℓ
(3)

3!
𝑒−𝑠𝑘)] │0

∞  =  
𝑎3

 𝑠4        as   ℓ⟶0                                                                   (9) 

Continuing this process, we get 

   ℓ [∆ℓ
−1(

𝑎5𝑘ℓ
(5)

5!
𝑒−𝑠𝑘)] │0

∞ =  
𝑎5

𝑠6         as   ℓ⟶0                                                                  (10) 

 Substituting (8),(9),(10) in (7) ,we get 

        ∇ℓ
−1ℓsin𝑎𝑘𝑙

(1)
 𝑒−𝑠𝑘   │0

∞  =   
𝑎

 𝑠2     -  
𝑎3

 𝑠4  +  
𝑎5

𝑠6    - ... 

This gives the proof 

Corollary 3.1.2 

Let k ϵ (0,∞)  and  ℓ >0 , then we have   ∇ℓ
−1ℓ sin𝑘𝑙

(1)
 𝑒−𝑠𝑘   │0

∞  = 
1

 𝑠2+12
 

3.2 Generalized Laplace transform of cosine Function 

Lemma 3.2.1 

    Assume that s≠ 0, and ∇ℓ
−1 be the inverse difference operator, then  

   ∆ℓ
−1ℓ cos𝑎𝑘𝑙

(1)
 𝑒−𝑠𝑘   │0

∞  = 
𝑠

 𝑠2+𝑎2
 

 

Proof 

            ∆ℓ
−1ℓ cos𝑎𝑘𝑙

(1)
 𝑒−𝑠𝑘   │0

∞  = ℓ [∆ℓ
−1(1 −  -

𝑎2𝑘ℓ
(2)

  

2!
+

𝑎4𝑘ℓ
(4)

4!
 − ⋯ )𝑒−𝑠𝑘] │0

∞     (11) 
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Now, 

                       ℓ [∆ℓ
−1( 𝑒−𝑠𝑘)] │0

∞   = [   
𝑒−𝑠𝑘

1−𝑒𝑠ℓ ℓ]     │0
∞  =  

1

 𝑠
        as   ℓ⟶0                     (12) 

 

             ℓ [∆ℓ
−1(

𝑎2𝑘ℓ
(2)

2!
𝑒−𝑠𝑘)] │0

∞  = 
  ℓa2  

2
[𝑘ℓ

(2)
 

𝑒−𝑠𝑘

1−𝑒𝑠ℓ   -   ∆ℓ
−1 (  

𝑒−𝑠(𝑘−ℓ )

1−𝑒𝑠ℓ   2 ℓ (𝑘 − ℓ)ℓ
(1)

)]   │0
∞ 

 

                                                             =  
  ℓa2  

2
[𝑘ℓ

(2)
 

𝑒−𝑠𝑘

1−𝑒𝑠ℓ  - 2 ℓ ( 𝑘ℓ
(1) 𝑒−𝑠(𝑘−ℓ )

(1−𝑒𝑠ℓ)2 -       

 

                                                                                ∆ℓ
−1 (

𝑒−𝑠(𝑘−2ℓ )

(𝑒𝑠ℓ)2   ℓ))] │0
∞(from(4) & (5)) 

 

              ℓ [∆ℓ
−1(

𝑎2𝑘ℓ
(2)

2!
𝑒−𝑠𝑘)] │0

∞   =  
𝑎2

 𝑠3        as   ℓ⟶0                                                        (13) 

Continuing like this process, we get 

  

                 ℓ [∆ℓ
−1(

𝑎4𝑘ℓ
(4)

4!
𝑒−𝑠𝑘)] │0

∞ =  
𝑎4

𝑠5         as   ℓ⟶0                                                         (14) 

 

    Substituting (12),(13),(14) in (11) ,we get 

  

               ∆ℓ
−1ℓ cos𝑎𝑘𝑙

(1)
 𝑒−𝑠𝑘   │0

∞  =    
1

 𝑠
     -  

𝑎2

 𝑠3   +  
𝑎4

𝑠5         - ... 

This yields the proof. 

            

Corollary 3.2.2 

    Assume that s≠ 0, and ∇ℓ
−1 be the inverse difference operator, then  

             ∇ℓ
−1ℓ cos𝑘𝑙

(1)
 𝑒−𝑠𝑘   │0

∞  = 
𝑠

 𝑠2+12
 

4. Generalized Laplace Transform of Hyperbolic Functions 

4.1Geeralized Laplace Transform of Hyperbolic Sine Function 

Definition 4.1.1 

               Let   ℓ >0 and a is a parameter, then sinh𝑘 ℓ 
(1)

 =
𝑒

𝑘
 ℓ 
(1)

−𝑒
−𝑘

 ℓ 
(1)

2
 

Definition 4.1.2 

               Let   ℓ >0 and a is a parameter, then sinh𝑎𝑘 ℓ 
(1)

 = 
𝑒

𝑎𝑘
 ℓ 
(1)

−𝑒
−𝑎𝑘

 ℓ 
(1)

2
 

Lemma 4.1.3 

              ∆ℓ
−1 ℓ𝑒𝑎𝑘ℓ

(1)

 𝑠𝑖𝑛ℎ𝑏𝑘ℓ
(1) 

𝑒−𝑠𝑘ℓ
(1)

       |0
 ∞=  

𝑏

(𝑠−𝑎)2−𝑏2      

Proof 

              ∆ℓ
−1 ℓ𝑒𝑎𝑘ℓ

(1)

 𝑠𝑖𝑛ℎ𝑏𝑘ℓ
(1)

𝑒−𝑠𝑘ℓ
(1)

        |0
 ∞ = ℓ   ∆ℓ

−1 ( 
𝑒

𝑏𝑘
 ℓ 
(1)

−𝑒
−𝑏𝑘

 ℓ 
(1)

2
  )𝑒−(𝑠−𝑎)𝑘ℓ

(1)

        |0
 ∞ 

                       = 
ℓ

2
 ( ∆ℓ

−1 𝑒−(𝑠−𝑎−𝑏)𝑘   -   ∆ℓ
−1(𝑒−{𝑠−𝑎+𝑏)𝑘)     |0

 ∞ 

                                                                 = 
1

2
  ( 

1

𝑠−𝑎−𝑏
  - 

1

𝑠+𝑎+𝑏
  ) 

This completes the proof  

Corollary 4.1.4 

    Assume that s≠ 0, and ∇ℓ
−1 be the inverse difference operator, then  
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                ∆ℓ
−1 ℓ𝑒−𝑎𝑘ℓ

(1)

 𝑠𝑖𝑛ℎ𝑏𝑘ℓ
(1) 

𝑒−𝑠𝑘ℓ
(1)

   |0
 ∞=  

𝑏

(𝑠+𝑎)2−𝑏2       

Lemma 4.1.5 

    Assume that s≠ 0, and ∇ℓ
−1 be the inverse difference operator, then  

              ∆ℓ
−1 ℓ𝑘ℓ

(1)
 𝑠𝑖𝑛ℎ𝑎𝑘ℓ

(1) 
𝑒−𝑠𝑘ℓ

(1)

    |0
 ∞=  

2𝑠

(𝑠2−𝑎2)2      

 Proof 

∆ℓ
−1 ℓ𝑘ℓ

(1)
 𝑠𝑖𝑛ℎ𝑎𝑘ℓ

(1)
𝑒−𝑠𝑘ℓ

(1)

    |0
 ∞ = ℓ   ∆ℓ

−1𝑘ℓ
(1)

 ( 
𝑒

𝑎𝑘
 ℓ 
(1)

−𝑒
−𝑎𝑘

 ℓ 
(1)

2
  )𝑒−𝑠𝑘ℓ

(1)

   |0
 ∞  

                       = 
ℓ

2
 ( ∆ℓ

−1𝑘ℓ
(1)

 𝑒−(𝑠−𝑎)𝑘   -   ∆ℓ
−1𝑘ℓ

(1)
𝑒−{𝑠+𝑎)𝑘)  |0

 ∞     (15) 

       
ℓ

2
 ( ∆ℓ

−1𝑘ℓ
(1)

 𝑒−(𝑠−𝑎)𝑘 )   |0
 ∞    =  

ℓ

2
 (𝑘ℓ

(1)
  

𝑒−(𝑠−𝑎)𝑘

𝑒−(𝑠−𝑎)ℓ−1
  -  

𝑒−(𝑠−𝑎)(𝑘+ℓ)

(𝑒−(𝑠−𝑎)ℓ−1) 2
  |0

 ∞  =  
1

2(𝑠−𝑎)2               (16) 

Similarly we can prove, 

       

                 
ℓ

2
 ( ∆ℓ

−1𝑘ℓ
(1)

 𝑒−(𝑠+𝑎)𝑘 )   |0
 ∞   = 

1

2(𝑠+𝑎)2                                                                         (17)  

 Substituting (16) & (17) in  (15)we get 

                 ∆ℓ
−1 ℓ𝑘ℓ

(1)
 𝑠𝑖𝑛ℎ𝑘ℓ

(1)
𝑒−𝑠𝑘ℓ

(1)

    |0
 ∞  =     

1

2(𝑠−𝑎)2  -   
1

2(𝑠+𝑎)2     

    This completes the proof  

4.2 Generalized Laplace Transform of Hyperbolic Cosine Functions 

Definition 4.2.1 

               Let   ℓ >0 and a is a parameter, then cosh𝑘 ℓ 
(1)

 =
𝑒

𝑘
 ℓ 
(1)

−𝑒
−𝑘

 ℓ 
(1)

2
 

Definition 4.2.2 

               Let   ℓ >0 and a is a parameter, then cosh𝑎𝑘 ℓ 
(1)

 =
𝑒

𝑎𝑘
 ℓ 
(1)

+ 𝑒
−𝑎𝑘

 ℓ 
(1)

2
 

Lemma 4.2.3 

    Assume that s≠ 0, and ∇ℓ
−1 be the inverse difference operator, then  

              ∆ℓ
−1 ℓ𝑒𝑎𝑘ℓ

(1)

 𝑐𝑜𝑠ℎ𝑘ℓ
(1) 

𝑒−𝑠𝑘ℓ
(1)

       |0
 ∞=  

𝑠−𝑎

(𝑠−𝑎)2−1
       

Proof 

              ∆ℓ
−1 ℓ𝑒𝑎𝑘ℓ

(1)

 𝑐𝑜𝑠ℎ𝑘ℓ
(1)

𝑒−𝑠𝑘ℓ
(1)

        |0
 ∞ = ℓ   ∆ℓ

−1 ( 
𝑒

𝑘
 ℓ 
(1)

+𝑒
−𝑘

 ℓ 
(1)

2
  )𝑒−(𝑠−𝑎)𝑘ℓ

(1)

        |0
 ∞ 

                       = 
ℓ

2
 ( ∆ℓ

−1 𝑒−(𝑠−𝑎−1)𝑘   +  ∆ℓ
−1(𝑒−{𝑠−𝑎+1)𝑘)     |0

 ∞ 

                                                                 = 
1

2
  ( 

1

𝑠−𝑎−1
  + 

1

𝑠+𝑎+1
  ) 

This completes the proof  

Corollary 4.2.4 

    Assume that s≠ 0, and ∇ℓ
−1 be the inverse difference operator, then  

              ∆ℓ
−1 ℓ𝑒−𝑎𝑘ℓ

(1)

 𝑐𝑜𝑠ℎ𝑘ℓ
(1) 

𝑒−𝑠𝑘ℓ
(1)

    |0
 ∞=  

𝑠+𝑎

(𝑠+𝑎)2−1
 

Lemma 4.2.5 

    Assume that s≠ 0, and ∇ℓ
−1 be the inverse difference operator, then  

                    ∆ℓ
−1 ℓ𝑒𝑘ℓ

(1)

 𝑐𝑜𝑠ℎ𝑎𝑘ℓ
(1) 

𝑒−𝑠𝑘ℓ
(1)

       |0
 ∞=  

𝑠−1

(𝑠−1)2−𝑎2      

  Proof 
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              ∆ℓ
−1 ℓ𝑒𝑘ℓ

(1)

 𝑐𝑜𝑠ℎ𝑎𝑘ℓ
(1)

𝑒−𝑠𝑘ℓ
(1)

        |0
 ∞ = ℓ   ∆ℓ

−1 ( 
𝑒

𝑎𝑘
 ℓ 
(1)

+𝑒
−𝑎𝑘

 ℓ 
(1)

2
  )𝑒−(𝑠−1)𝑘ℓ

(1)

     |0
 ∞ 

                       = 
ℓ

2
 ( ∆ℓ

−1 𝑒−(𝑠−1−𝑎)𝑘   +   ∆ℓ
−1(𝑒−(𝑠−1+𝑎)𝑘)   |0

 ∞ 

                                                                 = 
1

2
  ( 

1

𝑠−1−𝑎
  + 

1

𝑠−1+𝑎
  ) 

This completes the proof  

 

Corollary 4.2.6 

    Assume that s≠ 0, and ∇ℓ
−1 be the inverse difference operator, then  

              ∆ℓ
−1 ℓ𝑒−𝑘ℓ

(1)

 𝑐𝑜𝑠ℎ𝑎𝑘ℓ
(1) 

𝑒−𝑠𝑘ℓ
(1)

   |0
 ∞=  

𝑠+1

(𝑠+1)2−𝑎2        
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