International Journal of Mechanical Engineering

SOME APPLICATIONS OF DISCRETE LAPLACE TRANSFORMS BY NABLA OPERATOR

^{1,*}Shiny N.S & ²Dominic Babu.G

¹Research Scholar & ²Associate professor

^{1,2}P.G and Research Department of Mathematics, Annai Velankanni College, Tholayavattam,

Kanyakumari District, 629157, Affiliated to Manonmaniam Sundaranar University,

Abishekapatti, Tirunelveli-627012, Tamilnadu, India;

Abstract

In this paper, we define the generalized positive polynomial factorial and the generalized difference operator Δ_{ℓ} . A level of quality approach of numerical integration of differential equations is to replace it by suitable difference equation whose solution can be acquired in a suitable difference equation in a stable manner and without trouble from round –off errors. A definition for the Laplace transform corresponding to the nabla difference operator is given.

Keywords: Inverse Difference Operator, Generalized Laplace Transform, Nabla Operator, Exponential, Hyperbolic and Trigonometric Functions.

1. Introduction

The Knowledge of Laplace transforms become an essential part of the study of engineers and scientists. This provides easy and effective solutions for many problems arising in engineering [9]. This subject originated from the operational methods by the English engineer Oliver Heaviside (1850-1925) to applied linear transform in problems of electrical engineering [9]. Then it has been developed by Bromwich and Carson during 1916-17. The method of Laplace transforms has the advantage of directly giving the solution of differential equations with given boundary values. The Laplace transform of f(t) is defined by $L(f(t) = \int_0^\infty e^{-st} f(t) dt$ provided that the integral exists, s is a parameter which may be a real or complex number.

Definition 1.1

If n and ℓ are any two positive integers, then the generalized positive polynomial factorial is defined as

$$k_{\ell}^{(n)} = k(K - \ell)(k - 2\ell)...(k - (n - 1)\ell) \text{ and } k_{\ell}^{(0)} = 1, \ k_{\ell}^{(1)} = k$$
 (1)

Definition 1.2

If u(k) is a sequence of numbers and ℓ is any positive integer, then we define the generalized difference operator Δ_{ℓ} as

(2)

(3)

$$\Delta_{\ell} u(k) = u(k+1) - u(k)$$

Theorem 1.3

If n is a positive integer and $\ell > 0$ then

$$\Delta_{\ell} k_{\ell}^{(n)} = \mathbf{n} \ \ell \ k_{\ell}^{(n-1)}$$

Definition 1.4 [5]

Let >0 and u(k) ,w(k) are real valued bounded functions. Then

$$\Delta_{\ell}^{-1} u(k) w(k) = u(k) \Delta_{\ell}^{-1} w(k) - \Delta_{\ell}^{-1} (\Delta_{\ell}^{-1} w(k+\ell) \Delta_{\ell} u(k))$$
(4)

Definition 1.5

Let
$$\ell > 0$$
 and $a^{s\ell} - 1 \neq 0$, then $\Delta_{\ell}^{-1} e^{sk} = \frac{e^{sk}}{e^{s\ell} - 1}$ (5)

Definition 1.6

Let
$$\ell > 0$$
 and $a^{-s\ell} - 1 \neq 0$, then $\Delta_{\ell}^{-1} e^{-sk} = \frac{e^{-sk}}{e^{-s\ell} - 1}$ (6)

Definition 1.7

For a given function u(k) ,the generalized Laplace transform is defined as

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering 3668 Vol.7 No.2 (February, 2022)

$$L_{\ell} u(k) = \ell e^{sk} \Big|_{0}^{\infty}$$

2.GENERALIZED LAPLACE TRANSFORM OF EXPONENTIAL FUNCTIONS

Lemma 2.1

Assume that $s \neq 0$, and ∇_{ℓ}^{-1} be the inverse difference operator, then

$$\Delta_{\ell}^{-1} \, \ell \, \frac{k_{\ell}^{(n)}}{n!} \, e^{-sk} \qquad \big|_{0}^{\infty} = \frac{1}{s^{n+1}}$$

Proof

From the definition of generalized Laplace transform, we have

When n=1,
$$\Delta_{\ell}^{-1} \ell \frac{k_{\ell}^{(1)}}{1!} e^{-sk} \mid_{0}^{\infty} = \ell \Delta_{\ell}^{-1} [k_{\ell}^{(1)} e^{-sk}] \mid_{0}^{\infty} = \ell [k_{\ell}^{(1)} \frac{e^{-sk}}{e^{-s\ell}-1} - \frac{e^{-s(k+\ell)}}{(e^{-s\ell}-1)^{2}} \ell]]_{0}^{\infty}$$

$$\Rightarrow \Delta_{\ell}^{-1} \ell \frac{k_{\ell}^{(2)}}{2!} e^{-sk} \mid_{0}^{\infty} = \frac{1}{s^{2}} as \quad \ell \to 0$$
When n=2, $\Delta_{\ell}^{-1} \ell \frac{k_{\ell}^{(2)}}{2!} e^{-sk} \mid_{0}^{\infty} = \frac{\ell}{2} \Delta_{\ell}^{-1} [k_{\ell}^{(2)} e^{-sk}] \mid_{0}^{\infty} = \frac{\ell}{2} [k_{\ell}^{(2)} \frac{e^{-sk}}{e^{-s\ell}-1} - 2\ell (k_{\ell}^{(1)} \frac{e^{-s(k+\ell)}}{(e^{-s\ell}-1)^{2}} - \frac{2\ell \Delta_{\ell}^{-1} (\frac{e^{-s(k+\ell)}}{e^{-s\ell}-1} k_{\ell}^{(1)})] |_{0}^{\infty}$

$$= \frac{\ell}{2} [k_{\ell}^{(2)} \frac{e^{-sk}}{e^{-s\ell}-1} - 2\ell (k_{\ell}^{(1)} \frac{e^{-sk}}{(e^{-s\ell}-1)^{2}} - \frac{e^{-s(k+2\ell)}}{(e^{-s\ell}-1)^{2}} \ell_{\ell}^{-1})] |_{0}^{\infty}$$

$$\Rightarrow \Delta_{\ell}^{-1} \ell \frac{k_{\ell}^{(2)}}{3!} e^{-sk} \mid_{0}^{\infty} = \frac{\ell}{5} as \quad \ell \to 0$$
When n=3, $\Delta_{\ell}^{-1} \ell \frac{k_{\ell}^{(3)}}{s!} e^{-sk} \mid_{0}^{\infty} = \frac{\ell}{6} \Delta_{\ell}^{-1} [k_{\ell}^{(3)} e^{-sk}] |_{0}^{\infty} = \frac{\ell}{6} [k_{\ell}^{(2)} \frac{e^{-sk}}{e^{-s\ell}-1} - 3\ell \Delta_{\ell}^{-1} (k_{\ell}^{-1} \frac{e^{-s(k+\ell)}}{(e^{-s\ell}-1)^{2}} \ell_{\ell}^{-1})] |_{0}^{\infty}$

$$= \frac{\ell}{6} [k_{\ell}^{(3)} \frac{e^{-sk}}{e^{-s\ell}-1} - 3\ell (k_{\ell}^{(2)} \frac{e^{-sk}}{(e^{-s\ell}-1)^{2}} - 2\ell \Delta_{\ell}^{-1} (k_{\ell}^{(1)} \frac{e^{-s(k+\ell)}}{(e^{-s\ell}-1)^{2}})] |_{0}^{\infty}$$

$$= \frac{\ell}{6} [k_{\ell}^{(3)} \frac{e^{-sk}}{e^{-s\ell}-1} - 3\ell (k_{\ell}^{(2)} \frac{e^{-s(k+\ell)}}{(e^{-s\ell}-1)^{2}} - 2\ell (k_{\ell}^{(1)} \frac{e^{-s(k+\ell)}}{(e^{-s\ell}-1)^{2}})] |_{0}^{\infty}$$

$$= \frac{\ell}{6} [k_{\ell}^{(3)} \frac{e^{-sk}}{e^{-s\ell}-1} - 3\ell (k_{\ell}^{(2)} \frac{e^{-s(k+\ell)}}{(e^{-s\ell}-1)^{2}} - 2\ell (k_{\ell}^{(1)} \frac{e^{-s(k+\ell)}}{(e^{-s\ell}-1)^{2}})] |_{0}^{\infty}$$
When n=4, $\Delta_{\ell}^{-1} \ell \frac{k_{\ell}^{(4)}}{4!} e^{-sk} |_{0}^{\infty} = \frac{1}{s^{4}} as \quad \ell \to 0$

$$= \frac{\ell}{24} [k_{\ell}^{(4)} \frac{e^{-sk}}{e^{-s\ell}-1} - 4\ell (k_{\ell}^{(3)} \frac{e^{-s(k+\ell)}}{(e^{-s\ell}-1)^{2}} - 3\ell (k_{\ell}^{(2)} \frac{e^{-s(k+2\ell)}}{(e^{-s\ell}-1)^{2}})] |_{0}^{\infty}$$

$$= \frac{\ell}{24} [k_{\ell}^{(4)} \frac{e^{-sk}}{e^{-s\ell}-1} - 4\ell (k_{\ell}^{(3)} \frac{e^{-s(k+\ell)}}{(e^{-s\ell}-1)^{2}} - 3\ell (k_{\ell}^{(2)} \frac{e^{-s(k+2\ell)}}{(e^{-s\ell}-1)^{3}} - 2\ell (k_{\ell}^{(1)} \frac{e^{-s(k+2\ell)}}{(e^{-s\ell}-1)^{3}} - \frac{\ell}{2\ell (k_{\ell}^{(1)} \frac{e^{-s(k+2\ell)}}{(e^{-s\ell}-1)^{3}} - \frac{\ell}{(e^{-s(k+2\ell)}})} - 2\ell (k_{$$

Theorem 2.2

Let K ϵ (0, ∞) and $\ell > 0$, then $\Delta_{\ell}^{-1} \ell e^{k_{\ell}^{(1)}} e^{-sk} |_{0}^{\infty} = \frac{1}{s-1}$

Proof

We have,
$$e^{k_{\ell}^{(1)}} = 1 + \frac{k_{\ell}^{(1)}}{1!} + \frac{k_{\ell}^{(2)}}{2!} + \frac{k_{\ell}^{(3)}}{3!} + \frac{k_{\ell}^{(4)}}{4!} + \frac{k_{\ell}^{(5)}}{5!} + \dots$$

$$\Delta_{\ell}^{-1} \ell e^{k_{\ell}^{(1)}} e^{-sk} \mid_{0}^{\infty} = \Delta_{\ell}^{-1} \ell (1 + \frac{k_{\ell}^{(1)}}{1!} + \frac{k_{\ell}^{(2)}}{2!} + \frac{k_{\ell}^{(3)}}{3!} + \frac{k_{\ell}^{(4)}}{4!} + \frac{k_{\ell}^{(5)}}{5!} + \dots) e^{-sk} \mid_{0}^{\infty} (\text{from Lemma (1.1)})$$
Copyrights @Kalahari Journals

Vol.7 No.2 (February, 2022)

International Journal of Mechanical Engineering

$$= \frac{1}{s} + \frac{1}{s^2} + \frac{1}{s^3} + \frac{1}{s^4} + \frac{1}{s^5} + \frac{1}{s^6} + \dots$$

This completes the proof

Corollary 2.3

Let K ϵ (0, ∞) and $\ell > 0$, then $\Delta_{\ell}^{-1} \ell e^{-k_{\ell}^{(1)}} e^{-sk} |_{0}^{\infty} = \frac{1}{s+1}$

3. Generalized Laplace Transform of Exponential & Trigonometric Functions

3.1 Generalized Laplace Transform of Sine Function

Lemma 3.1.1

If for any positive integer n, the polynomial factorial k(K- ℓ)(k-2 ℓ)...(k-(n-1) ℓ), then

$$\Delta_{\ell}^{-1}\ell \operatorname{sin} ak_{l}^{(1)} e^{-sk} \quad \Big|_{0}^{\infty} = \frac{a}{s^{2}+a^{2}}$$

Proof

$$\Delta_{\ell}^{-1}\ell\sin ak_{l}^{(1)} e^{-sk} \left| \begin{smallmatrix} \infty \\ 0 \end{smallmatrix} \right| = \ell \left[\Delta_{\ell}^{-1}(ak_{\ell}^{(1)} - \frac{a^{3}k_{\ell}^{(3)}}{3!} + \frac{a^{5}k_{\ell}^{(5)}}{5!} - \cdots \right) e^{-sk} \right] \left| \begin{smallmatrix} \infty \\ 0 \end{smallmatrix} (7)$$

Now,

$$\ell \left[\Delta_{\ell}^{-1}(ak_{\ell}^{(1)} e^{-sk}) \right] \Big|_{0}^{\infty} = \ell a \left[k_{\ell}^{(1)} \frac{e^{-sk}}{e^{-s\ell} - 1} - \Delta_{\ell}^{-1} \left(\frac{e^{-s(k+\ell)}}{e^{-s\ell} - 1} \right) \right] \Big|_{0}^{\infty} (\text{from } (4)\&(5))$$
$$= \ell a \left[k_{\ell}^{(1)} \frac{e^{-sk}}{e^{-s\ell} - 1} - \frac{e^{-s(k+\ell)}}{(e^{-s\ell} - 1)^{2}} \ell \right] \Big|_{0}^{\infty}$$

 $\ell \left[\Delta_{\ell}^{-1}(ak_{\ell}^{(1)} e^{-sk}) \right] \Big|_{0}^{\infty} = \frac{a}{s^{2}} \quad \text{as} \quad \ell \longrightarrow 0$ Also,

$$\ell \left[\Delta_{\ell}^{-1} (\frac{a^{3}k_{\ell}^{(3)}}{3!} e^{-sk}) \right] \Big|_{0}^{\infty} = \frac{\ell a^{3}}{6} \left[k_{\ell}^{(3)} \frac{e^{-sk}}{e^{-s\ell} - 1} - \Delta_{\ell}^{-1} \left(\frac{e^{-s(k+\ell)}}{e^{-s\ell} - 1} \cdot 3 \ell k_{\ell}^{(2)} \right) \right] \Big|_{0}^{\infty}$$
$$= \frac{\ell a^{3}}{6} \left[k_{\ell}^{(3)} \frac{e^{-sk}}{e^{-s\ell} - 1} - 3 \ell \left(k_{\ell}^{(2)} \frac{e^{-s(k+\ell)}}{(e^{-s\ell} - 1)^{2}} - \Delta_{\ell}^{-1} \left(\frac{e^{-s(k+2\ell)}}{(e^{-s\ell} - 1)^{2}} \cdot 2 \ell(k_{\ell}^{(1)}) \right) \right] \Big|_{0}^{\infty} (\text{from (3) \&(4)})$$

$$\begin{split} &= \frac{\ell a^3}{6} \left[k_{\ell}^{(3)} \frac{e^{-sk}}{e^{-s\ell} - 1} - 3 \,\ell \left(\, k_{\ell}^{(2)} \frac{e^{-s(k+\ell)}}{(e^{-s\ell} - 1)^2} - \right. \\ & \left. 2 \,\ell \left(\, k_{\ell}^{(1)} \frac{e^{-s(k+2\ell)}}{(e^{-s\ell} - 1)^3} - \Delta_{\ell}^{-1} (\frac{e^{-s(k+3\ell)}}{(e^{-s\ell} - 1)^3} \,\ell \,) \right) \right) \quad \Big|_{0}^{\infty} \end{split}$$

(8)

$$\ell \left[\Delta_{\ell}^{-1} \left(\frac{a^3 k_{\ell}^{(3)}}{3!} e^{-sk} \right) \right] \Big|_{0}^{\infty} = \frac{a^3}{s^4} \quad \text{as} \quad \ell \to 0$$

$$\tag{9}$$

Continuing this process, we get 51, (5)

$$\ell \left[\Delta_{\ell}^{-1} \left(\frac{a^{s} \kappa_{\ell}^{s}}{5!} e^{-sk} \right) \right] \Big|_{0}^{\infty} = \frac{a^{s}}{s^{6}} \quad \text{as} \quad \ell \to 0$$

$$\tag{10}$$

Substituting (8),(9),(10) in (7) ,we get

$$\nabla_{\ell}^{-1}\ell \operatorname{sin} ak_{l}^{(1)} e^{-sk} \mid_{0}^{\infty} = \frac{a}{s^{2}} - \frac{a^{3}}{s^{4}} + \frac{a^{5}}{s^{6}} - \dots$$

This gives the proof

Corollary 3.1.2

Let $k \in (0,\infty)$ and $\ell > 0$, then we have $\nabla_{\ell}^{-1} \ell \sin k_l^{(1)} e^{-sk} |_0^{\infty} = \frac{1}{s^2 + 1^2}$

3.2 Generalized Laplace transform of cosine Function

Lemma 3.2.1

Assume that $s \neq 0$, and ∇_{ℓ}^{-1} be the inverse difference operator, then

$$\Delta_{\ell}^{-1}\ell \cos ak_l^{(1)} e^{-sk} \quad \Big| \begin{smallmatrix} \infty \\ 0 \end{smallmatrix} = \frac{s}{s^2 + a^2}$$

Proof

$$\Delta_{\ell}^{-1}\ell \cos ak_{l}^{(1)} e^{-sk} \left| \begin{smallmatrix} \infty \\ 0 \end{smallmatrix} \right|_{0}^{\infty} = \ell \left[\Delta_{\ell}^{-1} (1 - \frac{a^{2}k_{\ell}^{(2)}}{2!} + \frac{a^{4}k_{\ell}^{(4)}}{4!} - \cdots)e^{-sk} \right] \left| \begin{smallmatrix} \infty \\ 0 \end{smallmatrix}$$
(11)

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

Vol.7 No.2 (February, 2022)

Now,

$$\ell \left[\Delta_{\ell}^{-1}(e^{-sk}) \right] \Big|_{0}^{\infty} = \left[\begin{array}{c} \frac{e^{-sk}}{1 - e^{s\ell}} \ell \right] \quad \Big|_{0}^{\infty} = \frac{1}{s} \quad \text{as} \quad \ell \to 0$$
(12)

$$\ell \left[\Delta_{\ell}^{-1} \left(\frac{a^{2} k_{\ell}^{(2)}}{2!} e^{-sk} \right) \right] \Big|_{0}^{\infty} = \frac{\ell a^{2}}{2} \left[k_{\ell}^{(2)} \frac{e^{-sk}}{1 - e^{s\ell}} - \Delta_{\ell}^{-1} \left(\frac{e^{-s(k-\ell)}}{1 - e^{s\ell}} 2 \ell \left(k - \ell \right)_{\ell}^{(1)} \right) \right] \Big|_{0}^{\infty}$$

$$= \frac{\ell a^{2}}{2} \left[k_{\ell}^{(2)} \frac{e^{-sk}}{1 - e^{s\ell}} - 2 \ell \left(k_{\ell}^{(1)} \frac{e^{-s(k-\ell)}}{(1 - e^{s\ell})^{2}} - \frac{1}{2} k_{\ell}^{(1)} \right) \right]$$

$$\Delta_{\ell}^{-1} \left(\frac{e^{-s(k-2\ell)}}{(e^{s\ell})^2} \ell \right) \right] \Big|_{0}^{\infty} (\text{from}(4) \& (5))$$

$$\ell \left[\Delta_{\ell}^{-1} (\frac{a^2 k_{\ell}^{(2)}}{2!} e^{-sk}) \right] \Big|_{0}^{\infty} = \frac{a^2}{s^3} \quad \text{as} \quad \ell \to 0$$
(13)

Continuing like this process, we get

$$\ell \left[\Delta_{\ell}^{-1} \left(\frac{a^4 k_{\ell}^{(4)}}{4!} e^{-sk} \right) \right] \Big|_{0}^{\infty} = \frac{a^4}{s^5} \qquad \text{as} \quad \ell \to 0$$
(14)

Substituting (12),(13),(14) in (11) ,we get

$$\Delta_{\ell}^{-1} \ell \cos a k_{l}^{(1)} e^{-sk} \Big|_{0}^{\infty} = \frac{1}{s} - \frac{a^{2}}{s^{3}} + \frac{a^{4}}{s^{5}} - \dots$$

This yields the proof.

Corollary 3.2.2

Assume that $s \neq 0$, and ∇_{ℓ}^{-1} be the inverse difference operator, then

 $\nabla_{\ell}^{-1}\ell\cos k_l^{(1)} e^{-sk} \quad \Big|_0^{\infty} = \frac{s}{s^2+1^2}$

4. Generalized Laplace Transform of Hyperbolic Functions 4.1Geeralized Laplace Transform of Hyperbolic Sine Function Definition 4.1.1

Let
$$\ell > 0$$
 and a is a parameter, then $\sinh k_{\ell}^{(1)} = \frac{e^{k_{\ell}^{(1)} - e^{-k_{\ell}^{(1)}}}}{2}$

Definition 4.1.2

Let
$$\ell > 0$$
 and a is a parameter, then $\sinh ak_{\ell}^{(1)} = \frac{e^{ak_{\ell}^{(1)} - e^{-ak_{\ell}^{(1)}}}}{2}$

Lemma 4.1.3

$$\Delta_{\ell}^{-1} \, \ell e^{ak_{\ell}^{(1)}} \sinh bk_{\ell}^{(1)} \, e^{-sk_{\ell}^{(1)}} \qquad \big|_{0}^{\infty} = \frac{b}{(s-a)^{2}-b^{2}}$$

Proof

$$\begin{split} \Delta_{\ell}^{-1} \,\ell e^{ak_{\ell}^{(1)}} \,sinhbk_{\ell}^{(1)} e^{-sk_{\ell}^{(1)}} & \big|_{0}^{\infty} = \ell \ \Delta_{\ell}^{-1} \,(\frac{e^{bk_{\ell}^{(1)}} - e^{-bk_{\ell}^{(1)}}}{2}) e^{-(s-a)k_{\ell}^{(1)}} & \big|_{0}^{\infty} \\ &= \frac{\ell}{2} \,(\Delta_{\ell}^{-1} \,e^{-(s-a-b)k} - \Delta_{\ell}^{-1} (e^{-\{s-a+b\}k}) \,\big|_{0}^{\infty} \\ &= \frac{1}{2} \,(\frac{1}{s-a-b} - \frac{1}{s+a+b}) \end{split}$$

This completes the proof

Corollary 4.1.4

Assume that $s \neq 0$, and ∇_{ℓ}^{-1} be the inverse difference operator, then Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

$$\Delta_{\ell}^{-1} \ \ell e^{-ak_{\ell}^{(1)}} \ sinhbk_{\ell}^{(1)} \ e^{-sk_{\ell}^{(1)}} \ |_{0}^{\infty} = \frac{b}{(s+a)^{2}-b^{2}}$$

Lemma 4.1.5

Assume that $s \neq 0$, and ∇_{ℓ}^{-1} be the inverse difference operator, then

$$\Delta_{\ell}^{-1} \, \ell k_{\ell}^{(1)} \, sinhak_{\ell}^{(1)} \, e^{-sk_{\ell}^{(1)}} \quad \big|_{0}^{\infty} = \frac{2s}{(s^{2}-a^{2})^{2}}$$

Proof

$$\Delta_{\ell}^{-1} \ell k_{\ell}^{(1)} sinhak_{\ell}^{(1)} e^{-sk_{\ell}^{(1)}} |_{0}^{\infty} = \ell \Delta_{\ell}^{-1} k_{\ell}^{(1)} \left(\frac{e^{ak_{\ell}^{(1)} - e^{-ak_{\ell}^{(1)}}}{2} \right) e^{-sk_{\ell}^{(1)}} |_{0}^{\infty}$$
$$= \frac{\ell}{2} \left(\Delta_{\ell}^{-1} k_{\ell}^{(1)} e^{-(s-a)k} - \Delta_{\ell}^{-1} k_{\ell}^{(1)} e^{-(s+a)k} \right) |_{0}^{\infty}$$
(15)

$$\frac{\ell}{2} \left(\Delta_{\ell}^{-1} k_{\ell}^{(1)} e^{-(s-a)k} \right) \quad \Big|_{0}^{\infty} = \frac{\ell}{2} \left(k_{\ell}^{(1)} \frac{e^{-(s-a)k}}{e^{-(s-a)\ell} - 1} - \frac{e^{-(s-a)(k+\ell)}}{(e^{-(s-a)\ell} - 1)^{2}} \right) \Big|_{0}^{\infty} = \frac{1}{2(s-a)^{2}}$$
(16)

Similarly we can prove,

$$\frac{\ell}{2} \left(\Delta_{\ell}^{-1} k_{\ell}^{(1)} e^{-(s+a)k} \right) |_{0}^{\infty} = \frac{1}{2(s+a)^{2}}$$
(17)

Substituting (16) & (17) in (15)we get

$$\Delta_{\ell}^{-1} \ell k_{\ell}^{(1)} \sinh k_{\ell}^{(1)} e^{-sk_{\ell}^{(1)}} \mid_{0}^{\infty} = \frac{1}{2(s-a)^{2}} - \frac{1}{2(s+a)^{2}}$$

This completes the proof

4.2 Generalized Laplace Transform of Hyperbolic Cosine Functions Definition 4.2.1

Let
$$\ell > 0$$
 and a is a parameter, then $\cosh k_{\ell}^{(1)} = \frac{e^{k_{\ell}^{(1)} - e^{-k_{\ell}^{(1)}}}}{2}$

Definition 4.2.2

Let
$$\ell > 0$$
 and a is a parameter, then $\cosh ak_{\ell}^{(1)} = \frac{e^{ak_{\ell}^{(1)} + e^{-ak_{\ell}^{(1)}}}}{2}$

Lemma 4.2.3

Assume that $s \neq 0$, and ∇_{ℓ}^{-1} be the inverse difference operator, then

$$\Delta_{\ell}^{-1} \, \ell e^{ak_{\ell}^{(1)}} \, \cosh k_{\ell}^{(1)} \, e^{-sk_{\ell}^{(1)}} \qquad \big|_{0}^{\infty} = \frac{s-a}{(s-a)^{2}-1}$$

Proof

$$\begin{split} \Delta_{\ell}^{-1} \, \ell e^{ak_{\ell}^{(1)}} \, \cosh k_{\ell}^{(1)} e^{-sk_{\ell}^{(1)}} & |_{0}^{\infty} = \ell \ \Delta_{\ell}^{-1} \, (\frac{e^{k_{\ell}^{(1)} + e^{-k_{\ell}^{(1)}}}}{2}) e^{-(s-a)k_{\ell}^{(1)}} & |_{0}^{\infty} \\ &= \frac{\ell}{2} \, (\Delta_{\ell}^{-1} \, e^{-(s-a-1)k} \ + \Delta_{\ell}^{-1} (e^{-\{s-a+1\}k}) \ |_{0}^{\infty} \\ &= \frac{1}{2} \, (\frac{1}{s-a-1} + \frac{1}{s+a+1}) \end{split}$$

This completes the proof

Corollary 4.2.4

Assume that $s \neq 0$, and ∇_{ℓ}^{-1} be the inverse difference operator, then

$$\Delta_{\ell}^{-1} \ell e^{-ak_{\ell}^{(1)}} \cosh k_{\ell}^{(1)} e^{-sk_{\ell}^{(1)}} |_{0}^{\infty} = \frac{s+a}{(s+a)^{2}-1}$$

Lemma 4.2.5

Assume that $s \neq 0$, and ∇_{ℓ}^{-1} be the inverse difference operator, then

$$\Delta_{\ell}^{-1} \, \ell e^{k_{\ell}^{(1)}} \, \cosh ak_{\ell}^{(1)} \, e^{-sk_{\ell}^{(1)}} \qquad |_{0}^{\infty} = \frac{s-1}{(s-1)^{2}-a^{2}}$$

Proof

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

Vol.7 No.2 (February, 2022)

$$\begin{split} \Delta_{\ell}^{-1} \, \ell e^{k_{\ell}^{(1)}} \, \cosh ak_{\ell}^{(1)} e^{-sk_{\ell}^{(1)}} & |_{0}^{\infty} = \ell \ \Delta_{\ell}^{-1} \, (\frac{e^{ak_{\ell}^{(1)}} + e^{-ak_{\ell}^{(1)}}}{2}) e^{-(s-1)k_{\ell}^{(1)}} & |_{0}^{\infty} \\ &= \frac{\ell}{2} \, (\Delta_{\ell}^{-1} \, e^{-(s-1-a)k} \ + \ \Delta_{\ell}^{-1} (e^{-(s-1+a)k}) \ |_{0}^{\infty} \\ &= \frac{1}{2} \, (\frac{1}{s-1-a} \ + \frac{1}{s-1+a}) \end{split}$$

This completes the proof

Corollary 4.2.6

Assume that $s \neq 0$, and ∇_{ℓ}^{-1} be the inverse difference operator, then

$$\Delta_{\ell}^{-1} \,\ell e^{-k_{\ell}^{(1)}} \,\cosh k_{\ell}^{(1)} \,e^{-sk_{\ell}^{(1)}} \,\mid_{0}^{\infty} = \frac{s+1}{(s+1)^{2}-a^{2}}$$

References

- [1] G.Britto Antony Xavier, B.Govindan, S.John Borg and M. Meganathan, Generalized Laplace Transform Arrived from an Inverse Difference Operator, Global Journal of Pure and Applied Mathematics, 12(2016), 661-666.
- [2] M.Maria Susai Manuel, G.Britto Antony Xavier and E. Thandapani ,Theory of Generalized Difference Operator and its Applications, Far East Journal of mathematical Sciences, 20(2) (2006),163-171
- [3] Trigonometry Fourier series and Laplace Transform by Arumugam & Issac
- [4] G. Britto Antony Xavier, S.U. Vasantha Kumar, B. Govindan and T.G.Gerly, Discrete Laplace Transform by Generalized Difference Operator, S.H.C. J. Humn. & Sci, 4(2013), 63-81.
- [5] V.Britanak and K.R.Rao ,The fast Generalized discrete Fourier Transforms : A unified Approach to the Discrete sinu-soidal Transforms computation, signal processing 79(1999),135-150
- [6] Fahini A. Wahbi, Mazen .(2020). Nabla Fractional Laplace Transform .International journal of Advanced Science and Technology, 29(10s), 6735-6742,
- [7] Hein ,J.,McCarthy,Z.,Gaswick,N.,Mckain,B., & Speer,K. (2011).Laplace transforms for the nabla-difference operator.Panamerican Mathematical Journal,21(3),79-97.
- [8]B.S Grewal, Higher Engineering Mathematics, 42nd Edition, Khanna Publishers.
- [9]]B.S Grewal ,Higher Engineering Mathematics,40nd Edition,Khanna Publishers
- [10]Maria Susai Manuel.M,Chandrasekar.V and Britto Antony Xavier.G,Solutions and Applications of Certain Class of α-Difference Equations,International Journal of Applied Mathematics,24(6)(2011),943-954.