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Abstract 

Android-based mobile and other electronics devices dealing with medical and security applications bear huge amount data 

processing at heterogeneous environment causing a serious problem of security threats and system crash. To meet the business 

requirements, the android-based OS maintains much anticipated and smart environment for creating the developer’s comforts 

zone. Therefore, from the prospective of maintaining personal information secured, it is utmost important to focus on safety and 

security of digital devices. In this paper, we gave the assurance for better malware classifiers utilizing the popular machine 

learning and deep learning based methods.  In particular, performing the extensive set of experiments using machine learning 

classifiers on two dataset, one is created by API call and another Prem++ is created permission over APK. The API call dataset 

contains 1156 features, whereas prem++ contains 130 features. The methodology adopted with self-attention based features which 

are processed by setting of bidirectional LSTM.  The noticeable advantages of our approach are that the system follows simple 

static approach and track the malware without dynamic analysis.  More generally, APIs and permission settings are part of every 

android device which votes our approach satisfactorily applicable.  

Keywords: Malware detection, Random forest, Self-attention, Machine learning, LSTM, API Toolkit. 

 

1.0  Introduction 

The word ‘Malware’ is derived from malicious software by connecting mal from malicious and ware from software. It basically 

refers to the threatening activities which have major target to access the unauthorized resources. In other words malware may refer 

to unethical practices to misuse the unauthorized software and fulling the interest for legitimate activities. The variants of its 

applications include viruses, ransomware and spyware, worm, adware, Trojan horses, and malware etc. [4, 7]. Malware usually 

consists of cyber-attacker-developed codes which are intended to inflict significant data and device harm or to obtain unauthorized 

access to a network. Malware can interpret any computing machine from small PC to big work station [5]. Connecting over 

internet causes the serious with misusing the personal via login. In general, malware is sent by email in the form of a connection 

or file which needs the recipient to select the link or open the file to execute the malware.  Everybody uses in connected in daily 

life with some processing machine like smart mobile and PC to accomplish the required the task for their living. Therefore, 

corresponding to the growth of population, poor activities are encouraged by digital media. Hence, it is utmost important as well 

as challenging problem to keep safe the individual information in the huge mass of data server. The major proliferation of 

malware activities is noticed for accomplish the legitimate targets [6]   

Cybersecurity analysts and researchers have two approaches: static and dynamic analysis of malware detection. Recent 

revolutions in digital media and highly of growing corresponding applications created very hazardous situation due to every 

devices is connected via several applications. Therefore, modern malwares are capable to evade both dynamic and static 

approaches via many available apps. Static analysis technique is adopted via virus scanning in which sequence of malicious 

pattern is followed to match the patterns in dataset. The matching score determines the program is malicious. But plenty of 

evasion approaches do not follow the tools for detecting malware. The popular approach of evasion, obfuscation is adopted in case 

of malware updates its polymorphism in run-time mode to hide its identity.  The malware techniques are polymorphic and 

metamorphic and discussed in detail by Baysa et al. (2011) [8]. But the major issues with signature based malware detection are 

reported they do not maintain the semantic of the malware behavior [9]. From the detailed comparison of the static and dynamic 

approach [10], Moser et al. [11] introduced that a special opaque constant with obfuscation transformation can lead the evasion of 

malware to break the static analysis approach.  

To create shielding against the loose points in signature base approach, Egele et al. (2008)[12] followed dynamic approach for 

malware detection  and developed systems ad refried behavior based malware detection.  According to Yalew et al. (2017) [13], 

user-spaced malware takes OS services at large scale in which dynamic approach support to create a behavioral file of the 
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intercept between OS and malware.  The intercept of generated system calls falls into four categories for dynamic analysis of 

malware detection: 1) Emulation, 2) Hyper-supervision, 3) Hooking, 4) Bare-metal approach. Hooking approach introduced in 

[13] overwrites the API code directly from te memory of the process in online modes. This monitors the record of any API calls 

from windows. Another important approach discussed by Bayer et al.(2006)[14] in which no emulation is entertained for tracking 

the API calls.  The method based on emulation approach is bit sallower which results poor detection of malware.  

Several popular tools for malware analysis are discussed in [15] al of which follows hyper supervision methods. The malware 

detection API tools used by Lengyel et al. (2014)[16], provide satisfactory performance without creating any interference with OS 

process and stands significantly better than emulation approach.   

From the motivation of recent digital evolution AI-based applications covers majority of the problem space to provide better 

solution. Several examples from the state-of-the-arts ensured, machine learning and deep learning impact the domain of security at 

large scale. Feature engineering is key component of machine learning. In highly qualitative research discussed on feature 

engineering for malware detection, it recommended the rich set of the knowledgebase features to train the model [17, 18, 19].  To 

tackle the behavior of constantly developing malware, it is burdensome to maintain the drastic updates in dataset frequently. The 

problem to tackle such behavior of malware, deep learning provides better framework to experiment with large amount data and 

processing abrupt changes with the corresponding features.   

In the contribution aspect, our work introduced self-attention based bidirectional LSTM (SA-BilSTM) resulting highly 

recommend performance in comparison to several existing state-of-the-arts like random forest, decision tree etc. For setting the 

experimental framework, we used two datasets. One is generated based on API Calls and another dataset is Permission which also 

referred as Prem++. The sets of malwares used to perform the experiments includes: TeslaCrypt, Vawtrak, Zeus, DarkComet, 

CTB-Locker, CyberGate, Xtreme, Locky Ransomware and Dridex.  

 

1.2 Scope and Motivation 

Android based operating systems are highly responsible to provide friendly services at large scale in heterogeneous environments. 

In the situation of several applications running in parallel, making the system secured and robust is toughest a challenge.  

Detecting malware can play vital role to deal such a troublesome situations of system crashed.  The limitations of existing 

malware detection techniques, static analysis bears economical side effects via time, power and other resources. As working 

strategy is static analysis follows signature based scheme, it fails to determine the malwares at runtime. Another issues towards 

solving the problem, it is switched to dynamic approaches. But it requires huge amount of features to understand the changing 

behavior of the malware. Therefore, lacking of suitable and sufficient amount of feature samples, machine learning approach is 

discouraged. Developing a sustainable malware detection system is utmost important to keep the safe the growing digital media.   

 

2.0 Literature Review 

Shankarapani et al. (2010) present algorithms for identification that can enable the antivirus community to guarantee a version of a 

known malware without having to establish a signature, it can always be detected. By study of comparisons (based on specific 

quantitative measures) a matrix of similarity scores that can be generated is performed to determine the likelihood that a piece of 

code under inspection contains a particular malware. Authors present two methods- SAVE and MEDiC.  

MEDiC uses analysis assembly calls and SAVE uses API calls for analysis (Static API call series and Static API call set). Authors 

illustrate where assembly can be superior to API calls. This provides a more rigorous comparison of executables. On the other 

hand, API calls may be superior to Assembly for Its speed and smaller signature. Better detection efficiency can be given by both 

of proposed techniques against obfuscated malware.  

Alazeb et al. (2011) Zero-day Identification of Malware based on Supervised Learning Algorithms the API functions were used 

for feature representation, again and again. With the Help Vector Machines algorithm, the best result was obtained with 

normalized poly-kernel. 97.6 percent accuracy was reached, with a false-positive rate of 0.025. Amin Kharraz et al. (2015) 

proposed” A Look Under the Hood of Ransomware Attacks” studied ransomware attacks between 2006 and 2014. It tells that we 

can detect and stop zero-day ransomware attacks by keep view of I/O requests and securing the MFT (Master File Table) in the 

NTFS. The authors suggest mitigating ransomware attacks, system need real time monitoring. 

Sgandurra et al. (2016) have suggested EldeRan tool, which checks Characteristic signatures of ransomware by examining a 

collection of Actions in the initial phases of the kill-chain assault flow. EldeRan detects and categorizes Ransomware dynamically 

by evaluating tasks such as registry operations Key operations, Windows API calls, directories, and files Operations of a machine. 

Logical Regression by EldeRanuses To identify each user's classifier algorithm and ML algorithm, Application, which has 

additional features for defining and identifying For as yet unknown ransomware, build signatures. 

Carlin et al. (2017) highlighted the low-level study of both Dynamic and static opcodes to detect malware on 1,000 samples of 

labels in the runtime dataset to influence the typical AV labels. They obtained the dataset from VirusShare. The reviewer chose 

the scale and facility modality. There are 180,000 malware records, and these records are called by MD5 hash with no other 

metadata. Highest accuracy is 98.4% percent.  kumar R et al. (2017) proposed “Evaluating Shallow and Deep Networks for 

Ransomware Detection and Classification” tells about supervised machine learning method of detection of ransomware. Multi-

layer perceptron (MLP) used for ransomware detection and classification. It proposed a method using API calls for ransomware 

detection. As a feature for classification it uses 131 API calls which are used as input for MLP architecture. Takeuchi et al. (2018) 
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introduced Ransomware Detection using Support Vector Machine (SVMs). There are 588 samples in the dataset, which have 312 

benign and 276 Ransomware. VirusTotal is used to obtain these samples. The authors developed the same vector symbols with 

different sequences of API calls. Author checked and educated the classifier of the SVM data type. The normal vector symbol 

accuracy is 93.52 percent, and 97.48 percent is the best SVM accuracy. 

Greg et al. (2018) recommends technique of network management for data from traffic so that features can be extracted from it . 

Those features are used in the classification of ransomware and the used algorithm is Random Forest Binary Classifier. They say 

the rate of detection is 86 percent. 

 

3.0 Research Methodology 

We purposed method in which we use different machine learning algorithm for classification of different malware. In this section, 

we will describe the architecture of our proposed system. Our proposed detection system is attempting to improve the 

performance of malware detection using API call data. This system has main modules of raw feature extraction and applying 

learning algorithm for classification. 

 

3.1 Feature Extraction and classification: 

Feature selection creates the road map for machine learning classification. Every data item exhibits some specific features which 

gives identification to that item.  For instance, in real estate estimating the price of a house requires knowledge as a 

multidimensional matrix, where the attributes are represented by the columns and rows presents in the matrix for the properties of 

numerical values. In case of an image, it is considered a pixel and interpreted as an RGB color. These features are referred to as 

traits, and the matrix is known as vector of functions. The data extraction method from the files is referred to as the feature 

extraction. The purpose of extracting features is to acquire a collection of insightful data that help to remove redundancy. It is 

crucial to understand that characteristics can reflect the important and valid details regarding our dataset, because we plan to 

develop for the specific experiments. In real-life scenario, exact forecasting is an ideal case. It makes extracting features a non-

obvious assignment. Extracting feature is most complex task as per subject of research as it involves a lot of study and statistics. 

Additionally, it is quite domain-specific, but generic approaches apply badly here. Non-redundancy is another major prerequisite 

for a good feature set. Getting redundant characteristics, i.e., characteristics that outline the same data as well as redundant 

attributes of knowledge, which depend closely on each other’s will skew the algorithm and thus have an incorrect one Outcome. 

Furthermore, if the input data is too large to be fed into the algorithm (has too many characteristics), so it can be translated to a 

reduced vector function (vector, having a smaller number of features). The phase of diminishing the measurements of the vector is 

referred to as function collection. At the completion of this operation, the chosen features are supposed to detail the related data 

from the Initial set so that, without any precision loss, it can be used instead of initial data. 

It is essential to express raw data in some meaningful forms so that we can use it. We use cuckoo sandbox for feature extract ion. 

Cuckoo sandbox support virtual system and monitor the file. We identified the registry key processes ip address and API call as 

feature. We select API call as a feature because it full fills all requirements. API call outlines everything happening to the 

operating system. Any action we do in file may be viewed as API call. After taking API call sequences of various files including 

malware we use these data as a training dataset of machine learning model. We used four machine learning algorithm which is 

suitable for classification. These classifiers include naïve Bayes, Regression, J48 and Random Forest. 

 

4.0 Result Discussion and Analysis 

All the experiment is done on Intel (R) Core i5-4210U CPU machine with 1.70 GHz processor, 32.00 GB of memory. The 

Microsoft Windows 10 pro is installed on this machine. Ransomware and benign software is analyzed in the Virtual Machine for 

20 seconds. We choose small running time of 20 seconds for selecting relevant feature before infection of ransomware in the 

machine. 

 

4.1 Datasets and Experimental Framework 

API CALL and Permission: For preparing the dataset, we collect 3000 files in which 2000 files are malicious and 1000 files are 

benign. Malicious files include dridex, ctb-locker cyber-gate, teslacrypt, zeus, vawtrak, darkcomet xtreme and locky.  Another 

dataset Permission dataset is created using APK toolkit [2]. In root direction of APK toolkit, there is manifest.xml file for 

providing essential guide to applications.  The detailed designing of API toolkit is described in [3] 

 

4.1 Cuckoo Sandbox 

Cuckoo Sandbox is the platform for investigating open-source malware that makes it easy to get any file or URL has a 

comprehensive behavioral analysis in a matter of seconds. We use it in virtual environment for extracting features. 
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4.2 Classification 

After feature selection of data we trained that data with the help of weka 3.8.5 data mining framework. After that we took test 

dataset of 1156 instances in which 173 samples are benign. From the extracted features of data samples, confusion is generated. 

As we have used five classifiers for each corresponding confusion matrices are represented in Table-1, Table-2, Table-3, Table-4, 

and Table-5.   

 

4.2.1 Naïve Bayes classifier: It classifies data with assumption of independence among predictors based on Bayes' Theorem. A 

Naive Bayes classifier believes, in basic terms, that the inclusion of a certain function in a class is unrelated to the existence of any 

other feature. The major application of Naïve Bayes Classifier is tuned to forecast the trend analysis in a given time series pattern.  

4.2.2 Random Forest Classifier: Supervised learning ensemble methods which create a forest with n numbers of decision tree. It is 

developed for both classification and regression analysis. It shows highest accuracy in comparison of other ensemble methods. 

4.2.3 Regression: It is supervised class of machine learning which predicts resultant value based of intendent variables based on 

dependent variables. The class of regression may be referred linear and non-linear depending on the correspondence of 

independent and dependent variables.      

4.2.4 J48 Decision Tree: J48 is improvements of ID3 algorithms (Iterative Dichotomiser-3) developed by WEKA. For 

constructing decision tree, it uses both greedy and top down approach. The algorithm J48 has its significant over decision tree to 

utilize the missing values.  The major drawbacks of J48 algorithm is concerned with overfitting, empty an insignificant braches.   

4.2.5 Self Attention based Bidirectional LSTM (SA-BiLSTM): Long-short-Term-Memory (LSTM) is class of recurrent neural 

network which is capable to resolve the problem of long term calls of the information. Bidirectional-LSTM (BiLSTM) works in 

forward and backward directions which incorporate to develop an efficient mechanism for extracting the feature from 

multichannel matrix.  The architecture of Self-attention based BiLSTM (SA-BiLSTM) is explained in [1] which is basically used 

for sentiment classification.    

 

4.5 Weka: Weka is knowledge analysis environment developed by university of Waikato. Weka can classify data by machine 

learning in one click simply. We can apply weka algo on direct dataset by weka preprocess option in weka explorer or we can call 

these algorithms by our java program code. Java is used to write weka, so as java is machine independent it is also an open source 

and we can use weka in any platforms. 

 

 

a b c d e f g h i j 
Naïve Bayes 

Class 

112 12 0 0 18 4 0 3 6 18 a=Beign 

2 113 1 0 0 2 1 0 0 6 b=Dridex 

2 0 81 0 0 1 0 0 1 2 c=Locky 

0 1 0 110 0 1 0 0 0 1 d=Teslacrypt 

5 11 10 1 46 1 0 2 2 6 e= Vawlrak 

7 4 0 1 4 82 1 0 2 15 f=Zeus 

1 0 0 0 0 2 128 0 0 0 g=DarkComet 

0 1 0 0 0 0 7 120 0 1 h=CyberGate 

3 0 0 1 0 2 3 0 112 0 i=Xtreme 

2 0 1 0 0 0 0 0 0 76 
j=CTB-

Locker 

 

  

Table-1: Confusion matrix of Naïve Bays   
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a b c d e f g h i j 
Random 

Forest Class 

170 0 0 0 0 0 1 0 0 0 a=Beign 

0 113 2 2 6 1 0 0 0 1 b=Dridex 

0 0 90 0 1 0 0 0 0 2 c=Locky 

0 1 0 110 1 0 0 0 0 1 d=Teslacrypt 

0 2 1 1 65 4 0 1 0 0 e= Vawlrak 

0 3 0 0 6 102 3 1 0 1 f=Zeus 

0 1 0 0 1 1 128 0 0 0 g=DarkComet 

0 1 0 0 0 3 6 119 0 0 h=CyberGate 

0 0 1 0 0 0 0 1 119 0 i=Xtreme 

0 0 0 0 2 0 0 0 0 77 
j=CTB-

Locker 

 

 

 

a b c d e f g h i j 
J48 DT  

Class 

173 0 0 0 0 0 1 0 0 0 a=Beign 

0 114 0 0 3 7 0 1 0 0 b=Dridex 

0 1 87 1 2 1 0 1 2 0 c=Locky 

0 0 0 111 0 0 1 0 0 1 d=Teslacrypt 

0 4 1 1 62 4 0 1 0 1 e= Vawlrak 

0 6 3 2 4 95 1 2 1 2 f=Zeus 

0 0 0 1 0 0 127 3 0 0 g=DarkComet 

0 2 0 0 0 1 5 120 0 0 h=CyberGate 

0 0 0 0 1 0 0 0 120 0 i=Xtreme 

0 0 0 0 2 1 0 0 0 76 
j=CTB-

Locker 

 

  

Table-2: Confusion matrix of Random Forest  

 

Table-3: Confusion matrix of Regression Analysis   
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a b c d e f g h i j 
Regression 

Class 

171 1 0 0 0 1 0 0 0 0 a=Beign 

2 116 0 2 4 0 0 0 0 1 b=Dridex 

0 0 92 0 2 0 0 1 0 0 c=Locky 

0 0 0 112 1 0 0 0 0 0 d=Teslacrypt 

2 0 0 0 72 0 0 0 0 1 e= Vawlrak 

3 2 1 0 5 104 1 0 0 2 f=Zeus 

1 0 0 0 0 0 130 0 0 0 g=DarkComet 

1 0 0 0 0 1 7 120 0 0 h=CyberGate 

1 0 0 0 0 0 0 0 120 0 i=Xtreme 

1 1 0 0 0 0 0 0 0 77 
j=CTB-

Locker 

 

 

 

 

 
b c d e f g h i j 

SA-BiLSTM 

Class 

179 1 0 0 0 1 5 0 1 0 a=Beign 

2 106 0 2 0 0 0 1 0 1 b=Dridex 

0 0 102 0 2 0 0 1 0 0 c=Locky 

0 0 0 111 1 0 0 0 1 0 d=Teslacrypt 

2 1 0 0 109 0 0 0 0 1 e= Vawlrak 

0 2 1 0 5 104 1 0 1 2 f=Zeus 

1 0 0 1 0 0 129 0 0 0 g=DarkComet 

1 0 4 0 0 1 7 110 0 0 h=CyberGate 

1 0 2 0 4 0 0 0 100 0 i=Xtreme 

1 1 0 0 1 0 0 2 0 99 
j=CTB-

Locker 

 

 

5-Result and Discussion 

 

Out of 1156 instances 968 instances are classified accurately while 168 instances classified incorrectly. On the given related input 

feature matrix, the accuracy is received 0. 8373. 

For Naive Bayes classifier, out of 1156 instances 968 instances are classified accurately while 168 instances classified incorrectly. 

Hence accuracy is the classifier 83.73%. Similarly, in case regression, out of 1156 instances 1094 instances are classified 

accurately while 62 instances classified incorrectly. Hence accuracy is 94.63%. Another important classifier based on decision 

tree, In J48, out of 1156 instances 1086 instances are classified accurately while 70 instances classified incorrectly. Hence 

accuracy is 93.94%.  Random forest classifier, out of 1156 instances 1114 instances are classified accurately while 42 instances 

classified incorrectly. Hence accuracy is 96.36%. 

Table-5: Confusion matrix of Self Attention Bidirectional LSTM  

 

Table-4: Confusion matrix of Regression Analysis   
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While classifying with SA-BiLSTM, out 1156, it is received 1149 correctly classified samples and results high satisfactory 

performance with accuracy of 99.394%. Table 6 summaries the performance of all the classifier with their accuracy and other 

performance measures average True-Positive-Rate (TPR), average False-Positive-Rate, and F-measure the classifiers for malware 

detection. From accuracy graph presented in Figure 1, it is observed SA-BilSTM performed better 99.39%  and 97.80% accuracy 

on API Calls and Permission dataset.   

   

Table-6: Comparative Performance based Machine Learning and Deep Learning Classifiers   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-1: Accuracy on Machine Learning Classifiers on API Call and Permission Datasets    

 

6-Conclusion and Future Recommendation 

Malware detection and its avoidance is utmost important task for cyber security analyst. We have proposed detection of malware 

and classification with higher accuracy. We have used four classification algorithms to detect malware. In our approach, the 

permission prem++ is extracted from the information of every APP’s profile whereas API is extracted from the file of App 

package. By using jointly, perm++ and API call features, our approach can classify any the malware of any potential class. From 

the experiments, it is also justified the success rate of different machine learning algorithms. Random Forest, Naïve Bayes, 

Regression and J48 classifier are used for detection which shows accuracy of 96.36%, 83.73%, 94.63%, and 93.94% respectively. 

The accuracy based on SA-BiLSTM is 99.39% which is highest on all the classifiers on both the datasets Permission and API-

Calls. J48 Decision Tree and Naïve Bayes classifier shows higher accuracy than previous work and Random Forest find almost 

equal accuracy. We have classified different types of malwares which are dridex, locky, teslacrypt, vawtrak, zeus, darkcomet, 

cybergate, xtreme and CTB-locker. Thus, we have become successful to detect malware like dridex, vawtrak, dark-comet and 

cybergate using this method. Our method is suitable to classify and detect polymorphic behavior of malware.  

 

Datasets Classifier  TPR FPR F-

Measure 

Accurac

y 

Permission Naïve Bayes 0.84 0.03 84.20 81.02 

Random Forest 0.95 0.05 95.21 95.43 

Regression 092 0.08 90.02 91.29 

J48 Decision 

Tree 
0.92 0.07 91.99 92.89 

SA-BiLSTM 0.97 0.04 96.88 97.80 

API-Calls Naïve Bayes 0.85 0.02 85.30 83.73 

Random Forest 0.96 0.04 96.40 96.36 

Regression 0.94 0.05 94.70 94.63 

J48 Decision 

Tree 
0.93 0.06 93.90 93.94 

SA-BiLSTM 0.98 0.03 98.02 99.39 
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