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 Abstract: In this paper, we have discussed about three-dimensional intercept problem. We have also applied nonlinear differential 

equations, Lagrangian coefficient and Kepler’s law for discussing the three-dimensional intercept problem. We have also discussed 

about Lambert’s problem for the study of minimum energy orbit by using Lagrangian coefficients. 
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I. Introduction: 

  According to Albert Einstein, the determination of the true movement of the planets, including the earth, this statement also 

known as Kepler’s first great problem. Another second problem is that What are the mathematical laws controlling these 

movements? Clearly it is said that if it were possible for the human spirit to accomplish it, presupposed the solution of the first. 

Kepler explained on Tycho's observations of Mars and expressed it with some simple geometrical theory of motion. He had made 

three revolutionary assumptions: (a) that the orbit was a circle with the sun slightly off-centre, (b) that the orbital motion took place 

in a plane which was fixed in space, and (c) that Mars did not necessarily move with uniform velocity along this circle. Firstly, 

Kepler's first task was to find out the radius of the circle and the direction of the axis connecting perihelion and aphelion. At the 

end, he accomplished his target by representing within 2 arc-minutes the position of Mars at all 10 oppositions recorded by Tycho. 

It is to Kepler's constant approval that he established the basis for a complete reformation of astronomy. His outcome proved that 

the earth did not move with uniform speed, but faster or slower according to its distance from the sun. We will then turn our attention 

to the solution of what has come to be known as "the Kepler problem"-predicting the future position and velocity of an orbiting 

object as a function of some known initial position. and velocity and the time-of-flight [5]. The significance of Lambert’s theorem 

by using two-point boundary value problem (TPBVP), states that “the orbital transfer time depends only upon the semi-major axis, 

the sum of the distances of the initial and final points of the arc from the centre of force, and the length of the chord joining these 

points [4]. The two-point boundary value problem for Keplerian motion, also known as Lambert’s problem, is a classical one in 

astrodynamics. The classical orbit intercept applications are often formulated and solved as Lambert-type problems, where the time-

of-flight (TOF) is specified. In three-dimensional intercept problems, we know that choosing a relevant TOF is repeatedly a difficult 

one and an iterative process. In this work, we begin with a standard derivation of Kepler’s equation and describe how it set up to a 

new mathematical model. This work overcomes the limitation of classical Lambert’s problem by reformulating the intercept problem 

in terms of a minimum-energy application, which then give rise to both initial interceptor velocity and the TOF for the minimum 

energy transfer. The energy minimum form of Lambert’s problem is solved by introducing the classical Lagrangian coefficients and 

universal variable in the problem necessary conditions. The optimization problem is introduced by using the classical Lagrangian 𝑓 

and 𝑔 coefficients, which map initial position and velocity vectors to future times, and a universal time variable 𝑥. This optimization 

problem generates a generalized formulation problem for minimizing the TOF [1]. At present, there is no other analytical approach 

apart from the geometrical analysis for solving the problem. In this work, we proposed an analytical method for solving the 

Lambert’s minimum energy problem.  It is to note that we obtained the minimum initial velocity by applying the nonlinear 

constrained optimization problems which is similar to the determined minimum energy orbit. The most interesting fact is that using 

alternative technique could help us to gain new insight for solving many orbital problems [2].  

 

 II. Mathematical Modeling: 

  In this mathematical modeling, we have introduced Kepler’s equation that describes many geometric properties of the orbit of 

a body which is generally subject to a central force for spacecraft. We will consider this equation for determining the time of flight 

(TOF) because it associates the time of flight from periapsis to eccentric anomaly, semimajor axis and eccentricity. This equation 

has played a crucial role in the history of both physics and mathematics mainly in classical celestial mechanics. Kepler then introduce 

the notation for the mean anomaly M as, 
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         𝑀 = 𝐸 − 𝑒𝑠𝑖𝑛𝐸 = √
𝜇

𝑎3  (𝑡 − 𝑇) ………..((1) 

  We considered time of flight as a function of eccentric anomaly as a new term introduced by Kepler in connection with elliptical 

orbits. 

                    𝑡 − 𝑇 = √
𝑎3

𝜇
(𝐸 − 𝑒𝑠𝑖𝑛𝐸)      

  Where E=eccentric anomaly, e=eccentricity, 𝜇= gravitational constant, 𝑎 = semimajor axis of orbit, T= time of periapsis 

passage and t= time of flight respectively. 

  We also introduced the mean motion (𝑛) through Kepler’s third law which relates 𝑝 to the semimajor axis, so 𝑛 is a function 

of 𝑎. 

𝑛 =
2𝜋

𝑝
=

𝜇

√𝑎3
 

  Practically, it is possible to obtain time-of-flight equations analytically by applying the dynamical equation of motion and 

integral calculus. We derivation in which the eccentric anomaly arises quite naturally in the course of the geometrical arguments. 

This derivation is expressed more for its historical value than for actual use. The universal variable approach is firmly suggested as 

the best method for general use. 

𝑇𝑂𝐹 = 𝜋√
𝑎3

𝜇
 

 

 

Fig.1 Geometry of the minimum-energy problem for a TOF 

  From eqn. (1), we can rewrite the mean anomaly as, 

𝑀 = 𝑛 (𝑡 − 𝑇) = 𝐸 − 𝑒𝑠𝑖𝑛𝐸 , 

  which is often referred to as Kepler’s equation. 

  We know that the loss of numerical accuracy can occur near 𝑒 ∽ 1 , in which the time of flight involving the eccentric 

anomalies (E) does not work out properly near parabolic orbits in the Kepler’s equation because the trial-and-error solutions are 

converge too slowly or not at all. This great loss of computational accuracy near 𝑒 = 1 and the inconvenience of having a different 

type of equations for each conic orbit can be overcome by introducing the universal variable, 𝑥. Moreover, the introduction of this 

new independent universal variable, 𝑥 enable us to generate a single time of flight which is reliable for all conic orbits. Thus, the 

derivative of the universal variable 𝑥 is defined as, 

�̇� = √𝜇

𝑟
……….(2) 

where,  𝑟 is the position of spacecraft. 

   We expressed Kepler’s equation in terms of the radial spacecraft coordinate in the following form as 

√𝜇𝑡 = 𝑎 [𝑥 − √𝑎𝑠𝑖𝑛 (
𝑥

√𝑎
)] + 𝑎

𝑟0.𝑣0

√𝜇
[1 − 𝑐𝑜𝑠 (

𝑥

√𝑎
)] + 𝑟0√𝑎𝑠𝑖𝑛 (

𝑥

√𝑎
),…(3) 

 

𝑟 = 𝑎 + 𝑎 [
𝑟0.𝑣0

√𝜇𝑎
𝑠𝑖𝑛 (

𝑥

√𝑎
) + (

𝑟0

𝑎
− 1) 𝑐𝑜𝑠 (

𝑥

√𝑎
)].…….(4) 

  where 𝑟0 and 𝑣0 are the initial position and velocity vectors of spacecraft and 𝑇 is known to be zero without loss of generality 

respectively. The necessary conditions of  𝑟0 and 𝑣0   describe the position and velocity of an orbiting object as a function of time. 

The position of the spacecraft can be assessed at a time   when the value of the universal variable from (3) is well known. We can 

obtain the value of  𝑥  successfully by using Newton’s iteration technique when the value of 𝑡, time of flight is given. 
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The 𝒇 𝐚𝐧𝐝 𝒈 expressions: 

  The f and g functions are referred to as the Lagrange coefficients after Joseph Louis Lagrange (1736–1813), a French 

mathematical physicist, whose numerous contributions include calculations of planetary motion. We considered four vectors of all 

coplanar  𝑟0, 𝑣0, 𝑟, and 𝑣, which are governed by Keplerian motion by assuming that there are no external forces. Therefore, the 

position and velocity vectors of spacecraft at time 𝑡 are introduced here in order to calculate 𝑣 and 𝑟 in terms of 𝑣0, 𝑟0 and 𝑥 as, 

  𝑟 = 𝑓𝑟0 + 𝑔𝑣0 

  𝑣 = 𝑓̇𝑟0 + �̇�𝑣0……………… (5) 

   It is seen that the position and velocity vectors 𝑟 and 𝑣 are indeed linear combinations of the initial position and velocity 

vectors. The Lagrange coefficients and their time derivatives in these expressions are themselves functions of time and the initial 

conditions where 𝑓, 𝑔, 𝑓̇ and �̇� are scalar time-dependent constants which are subject to the following constraint: 

   𝑓�̇� − 𝑓̇𝑔 = 1 (conservation of angular momentum) …………………………..(6) 

where 𝑓 = 1 −
𝑎

𝑟0
[1 − 𝑐𝑜𝑠 (

𝑥

√𝑎
)], 

 𝑔 = 𝑡 −
𝑎

√𝜇
[𝑥 − √𝑎 𝑠𝑖𝑛 (

𝑥

√𝑎
)]………..(7) 

𝑓̇ = −
√𝜇𝑎

𝑟𝑟0

 𝑠𝑖𝑛 (
𝑥

√𝑎
) 

     �̇� = 1 −
𝑎

𝑟
[1 − 𝑐𝑜𝑠 (

𝑥

√𝑎
)]……(8) 

   We introduced the Lagrangian function in order to find the maximum or minimum of a function 𝑓(𝑥) subjected to the equality 

constraint 𝑔(𝑥) =0  , which have to be satisfied exactly by the choose values of the variable as follows: 

  ℒ(𝑥, 𝜆) = 𝑓(𝑥) − 𝜆𝑔(𝑥) …….(9) 

  Where, this function ℒ is known as Lagrangian, which is a function of 𝑥 and a new variable ℷ is referred to as a Lagrange 

multiplier. From eqn.(7), we can re-write eqn.(9) as, 

ℒ(𝑥, 𝜆) = 1 −
𝑎

𝑟0

[1 − 𝑐𝑜𝑠 (
𝑥

√𝑎
)] − 𝜆 [𝑡 −

𝑎

√𝜇
 {𝑥 − √𝑎 𝑠𝑖𝑛 (

𝑥

√𝑎
)}] 

= 1 −
𝑎

𝑟0

+
𝑎

𝑟0

𝑐𝑜𝑠 (
𝑥

√𝑎
) − 𝜆𝑡 −

𝑎𝜆

√𝜇
𝑥 +

𝜆𝑎√𝑎

√𝜇
 𝑠𝑖𝑛

𝑥

√𝑎
 

 = 1 − 𝜆𝑡 − 𝑎 (
1

𝑟0
+ 𝜆

𝑥

√𝜇
) + 𝑎 [

1

𝑟0
 𝑐𝑜𝑠

𝑥

√𝑎
+ 𝜆√

𝑎

𝜇
sin

𝑥

√𝑎
] ……………….(10) 

   The basic idea of this method is to remodel a constrained problem into a set such that the derivative test of an unconstrained 

problem can still be obtained. The great advantage of this method is that we can obtained the optimization without certain 

parameterization in terms of the constraints. Most importantly, the method of Lagrange multiplier is widely used to solve challenging 

constrained optimization problems. The energy minimum form of Lambert’s problem is solved by introducing the classical 

Lagrangian coefficients and universal variable in the necessary condition. 

III.  Nonlinear optimization approach of Lambert’s problem: 

  Another expressions for 𝑓and 𝑔 is formulated for Lambert’s problem by using the following relationship between two position 

vectors and one initial-velocity vector 𝑣0 as 

 𝑟1 = 𝑓𝑟0 + 𝑔𝑣0 …………(11) 

  where 𝑓 and 𝑔 are the two time-independent variables and designated as follows 

𝑓 = 1 −
𝑟1

𝑝
(1 − 𝑐𝑜𝑠∆𝑣) …(12) 

𝑔 =
𝑟1𝑟0𝑠𝑖𝑛∆𝑣

√𝜇𝑝
 ……………...(13), where 𝑝 is the semi-parameter. 

   Now, the Lambert’s problem is reformulated based on the constrained optimization method by selecting 𝑥 =  [𝑣0
𝑇𝑝]𝑇which is 

given as, 

𝑓𝑟0 + 𝑔𝑣0 − 𝑟1 = 0………………..(14) 

  At this time, the interceptor orbit energy for the magnitudes of the position and velocity vectors has been set out because it’s 

valid for all orbits which is defined as, 

𝜉 =
𝑣0

2

2
−

𝜇

𝑟0
  ……………………….(15) 
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Fig:2 Geometry for the Lambert problem. 

 

  It is to be noted that the second term of the orbit energy is constant and known, because of that we can establish the performance 

index simply without loss of generality as 

𝒥(𝑥) =
1

2
𝑣0

𝑇𝑣0……………………….(16) 

  The Hamiltonian is established by adding the constraint of an undetermined Lagrange-multiplier vector as follows, 

𝐻 =
1

2
𝑣0

𝑇𝑣0 + 𝜆𝑇(𝑓𝑟0 + 𝑔𝑣0 − 𝑟1) …………………………………..(17) 

where  𝜆𝜖ℛ3 is the Lagrange-multiplier vector. 

  The necessary conditions have been provided inorder to minimize the performance index with respect to the augmented 

variables as given below, 

𝜕𝐿

𝜕𝑣0
= 𝑣0

𝑇 + 𝑔𝜆𝑇 = 0 ……..(18) 

𝜕𝐿

𝜕𝑝
= 𝜆𝑇 (

𝑟1

𝑝2
(1 − 𝑐𝑜𝑠Δ𝑣)𝑟0 −

𝑟1𝑟0 𝑠𝑖𝑛(𝛥𝑣)

2√𝜇𝑝3
𝑣0)……………...(19) 

  We can obtained the following equations from eqn.(12) and eqn.(13) as  

𝑟1

𝑝2
(1 − 𝑐𝑜𝑠Δ𝑣) =

1−𝑓

𝑝
…….(20) 

𝑟1𝑟0 𝑠𝑖𝑛(𝛥𝑣)

2√𝜇𝑝3
=

𝑔

2𝑝
……………(21) 

  Then, the necessary condition of eqn.(19) is classified by substituting the above two equations in eqn.(19) 

𝜆𝑇 (
1−𝑓

𝑝
𝑟0 −

𝑔

2𝑝
𝑣0) = 0…..(22) 

  From eqn.(10), we get the following results of Lagrange-multiplier vector and the initial velocity vector respectively, 

𝜆𝑇 = −
1

𝑔
𝑣0

𝑇…………….(23) 

𝑣0 =
𝑟1−𝑓𝑟0

𝑔
……………...(24) 

  By multiplying 𝑝𝑔 on both sides of eqn.(22) and substituting the above two equations, we obtained the results as, 

(𝑟1
𝑇 − 𝑓𝑟0

𝑇) (𝑟0 − 𝑓𝑟0 −
1

2
(𝑟1 − 𝑓𝑟0) ) = 0………………………...(25) 

  Henceforth, we can derive the second order equation with respect to 𝑓 by employing the above equation as shown below: - 

𝑓2 − 2𝑓 +
2𝑟0

𝑇𝑟1−𝑟1
2

𝑟0
2 = 0…(26) 

  In order to obtained the solution of this equation in a simpler way is described as, 

𝑓 = 1 ± √1 +
𝑟1

2−2𝑟0
𝑇𝑟1

𝑟0
2 ……………..(27) 

F' 

2a-r0 

F 

2a-r1 
r1 c 

 
r0 

F" 
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  For the case of eccentricity as 𝑓 ≤ 1, we choose the value of as 

𝑓 = 1 −
√𝑟0

2+𝑟1
2−2𝑟0

𝑇𝑟1

𝑟0
…………….…(28) 

  We get the result of semi-parameter by comparing eqn.(12) with eqn.(28) as shown below:- 

𝑟1

𝑝
(1 − 𝑐𝑜𝑠Δ𝑣) =

√𝑟0
2+𝑟1

2−2𝑟0
𝑇𝑟1

𝑟0
 ……..(29) 

  Now, by rearranging the above equation, we get the result of minimum energy semi-parameter, 𝑝 as 

𝑝𝑚𝑖𝑛 =
𝑟0𝑟1

√𝑟0
2+𝑟1

2−2𝑟0
𝑇𝑟1 

(1 − 𝑐𝑜𝑠Δ𝑣) ….(30) 

  It is prominent from the above equation that we can apply the considered expressions of 𝑓 and 𝑔 from eqn.(12) and eqn.(13) 

because the above semi-parameter attained by the optimization method is similar to the earlier discussed geometrical minimum 

solution in eqn.(12), such that the minimum initial velocity gives as 

𝑣0 =
√𝜇𝑝𝑚𝑖𝑛

𝑟0𝑟1𝑠𝑖𝑛(Δ𝑣)
[𝑟1 − (1 −

𝑟1

𝑝𝑚𝑖𝑛
(1 − 𝑐𝑜𝑠Δ𝑣) ) 𝑟0]…………………………..(31) 

 

IV. Conclusions: 

  This study proposed on Kepler’s equation used to explain the TOF equation followed by a description of the universal variable 

used for the problem formulation. The mathematical advantage of this approach is that the problem has a unique optimal solution, 

rather than the family of solutions that characterize the classical Lambert’s problem. Mathematically, the problem is defined by a 

constrained optimization algorithm.  This constrained optimization algorithm is introduced in formulating the problem for operating 

the near-parabolic orbits that appears in intercept applications. Analytically, this is handled in a very comprehensive way by 

introducing a universal variable that allow a single TOF equation to be established that is reliable for all conic orbits.  It is obviously 

understood that the applicability of Lambert’s problem to astrodynamics is somehow an efficient solution algorithm which can be 

extremely useful in almost any part of space mission design and operation, from orbit determination to trajectory optimization. In 

this work, all the approaches are studied based on a numerical procedure where the value of the free parameter is searched iteratively. 

It is also enabled to state the problem in terms of universal variables, so that a uniform parametrization is determined for all type of 

transfers along arcs of elliptical, parabolic, or hyperbolic orbits. The proposed algorithm is predicted to be broadly practical for all 

classes types of intercept problem that have a Lambert-like character. By solving the nonlinear 3D, intercept problem through 

minimizing energy, the TOF and initial velocity is calculated. Then, applying minimum-energy velocity obtained for the interceptor 

shows that the final distance between the two orbits is zero at the computed TOF. It is observed that the problems formulated by the 

universal variable and 𝑓 and 𝑔 expressions in this paper are explained in 3D space for sustaining the design of arbitrary intercept 

problems with minimum energy. In general terms, algorithm is introduced for generalizing the classical Lambert’s transfer problem, 

where the determination of time of-flight (TOF) for a spacecraft intercept, in arbitrary three-dimensional orbit. The optimization 

problems that are solved to find the transfer trajectories are divided into direct or indirect methods. Direct method requires fairly 

fewer function computations whereas Indirect methods may exhibit rapid convergence when compared to a direct method. In this 

study, we applied constrained optimization method to solve the Lambert minimum-energy problem.  Eventually, it was shown that 

the result from the proposed approach coordinated with the solution of the geometrical approach. The resulting minimum-energy 

intercept solution algorithm has important applications on spanning, rendezvous, targeting, interplanetary trajectory design, and so 

on. 
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