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Abstract:  

In this work the behavior of UHMWPE that used in knee prosthesis. The behavior of polyethylene at creep and friction due to 

indentation is analyzed. The behavior of polyethylene at relaxation situation under the action of the rigid indentor is deduced. 

determining the energy lost by hysteresis when indenting a surface flat of UHMWPE with a rigid conical indenter, and the 

spherical connection. Adopted the modified Zener rheological model are used, and the stress-strain curve of UHMWPE is 

approximated by Zener type models with different mechanical properties.  
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1. Introduction 

Knee replacement, also called knee arthroplasty or total knee replacement, is a surgical procedure to resurface a knee damaged 

by arthritis. Metal and plastic parts are used to cover the ends of the bones that form the knee joint, along with the kneecap. 

Phenomena that occur after total knee arthroplasty due to the friction process between UHMWPE polymer and metallic or ceramic 

materials. These phenomena are particularly complex and require interdisciplinary studies; they lead to the surface destruction of 

UHMWPE [1]. The friction process generates aspects of a micro-mechanical, physic-chemical, thermodynamic and irreversible 

nature, damage and destruction, in part or in all over of the polyethylene surface. For the contact of an indenter with known 

geometry (figure .1) with a viscoelastic plan from UHMWPE, the Zener viscoelastic behavior model is accepted, with some 

modifications. The change in the ideal Zener behavior due to the friction of polyethylene with the penetrator and the energy law of 

fluid. 

 

Figure .1 Modified Zenner rheological model [2] 

η2 is  the viscosity of UHMWPE polyethylene is considered, μ is the coefficient of friction of the UHMWPE polyethylene with 

the indenter, with conditions, the penetration of the rigid cone at a constant velocity involves the mechanical equilibrium 

equations: 

𝛿 = 𝛿1 + 𝛿2 = 𝑘𝑒1
+ 𝑘𝑒2

∙ (𝐹𝑛 −
𝐴𝑐

ℎ0

∙ 𝜂2 ∙ 𝛿2 − 𝜇2 ∙ 𝐹𝑛), (1) 

�̇� = �̇�1 + �̇�2 = 𝑘𝑒1
∙ 𝐹𝑛 + �̇�2 (2) 

Where δ is the total load deformation under normal force Fn; δ1, δ2 are elastic and viscoelastic deformations; 𝑘𝑒1
, 𝑘𝑒2

are the 

polyethylene rigidities of the specimen (mm / N), dependent on the modules of elasticity (G1, G2), and the geometry of the 

specimen, experimentally determinable. Ac is the contact area between the surface / specimen and the indenter, related to the 

thickness of the surface / specimen. 

�̇�, �̇�1, �̇�2 are Partial derivatives of indentation with respect to time, From eq.(1) and eq.(2) the differential equation behavior of the 

UHMWPE corresponding to the contact with the indenter rigid cone - spherical connection is deduced. 

𝛿 + 𝐴𝑐 ∙ 𝜂2 ∙ 𝑘𝑒1
∙ 𝛿 = (𝑘𝑒1

+ 𝑘𝑒2
− 𝜇2 ∙ 𝑘𝑒2

) ∙ 𝐹𝑛 + 𝑘𝑒1
∙ 𝑘𝑒2

∙ 𝐴𝑐 ∙ 𝜂2 ∙ �̇�𝑛 (3) 
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This differential equation can be solved with the following conditions: (a) loading at constant deformation velocity (𝛿 ≠ v0) and 

time force dependence is obtained; (b) loading at constant force F0, resulting the dependence of the deformation on the applied 

force. The behavior of UHMWPE polyethylene at frictional indentation is analyzed based on equation (3), accepting loading at 

constant velocity (h = v0, h = v0 ∙ t). Under these conditions, the solution of the linear differential equation (3) becomes: 

𝐹𝑛 =
𝐵 − 𝐴𝐶

𝐴2
∙ 𝑒−𝐴𝑡 +

𝐵

𝐴
∙ (𝑡 −

1

𝐴
) +

𝐶

𝐴
 , (4) 

where A, B, C are the material-specific parameters and loading conditions: 

𝐴 =
𝑘𝑒1

+ 𝑘𝑒2
− 𝜇2 ∙ 𝑘𝑒2

𝑘𝑒1
∙ 𝑘𝑒2

∙ 𝐴𝑐 ∙ 𝜂
;   𝐵 =

𝑣0

𝑘𝑒1
∙ 𝑘𝑒2

∙ 𝐴𝑐 ∙ 𝜂
;  𝐶 =

𝑣0

𝑘𝑒1

. (4.a) 

Behavior of polyethylene at creep due to indentation is analyzed based on equation (3), considering the constant load Fn = Fn0 (Fn 

= 0); the differential equation is obtained of the linear type. Integrating, with boundary conditions, δ = δ0; t = 0 is : 

𝛿(𝑡) = (𝛿0 −
𝐴1

𝐵1

∙ 𝐹𝑛0) ∙ 𝑒−𝐴𝑡 +
𝐵1

𝐴1

∙ 𝐹𝑛0, (5)        

where A1, B1 are specific parameters having the expressions: 

𝐴1 =
1

𝑘𝑒2
∙ 𝐴𝑐 ∙ 𝜂

;   𝐵1 =
𝑘𝑒1

+ 𝑘𝑒2
− 𝜇2 ∙ 𝑘𝑒2

𝑘𝑒2
∙ 𝐴𝑐 ∙ 𝜂

. (5.a) 

The creep function of polyethylene Φ (t) under the rigid indenter is defined as the response of the material to the constant load, as 

follows:  

𝛷(𝑡) =
𝛿(𝑡)

𝐹𝑛0

= (𝑘𝑒1
−

𝐵1

𝐴1

) ∙ 𝑒−𝐴1𝑡 +
𝐴1

𝐵1

. (6) 

At the initial moment, the instantaneous deformation becomes: 

𝛿0 = 𝑘𝑒1
∙ 𝐹𝑛0.  

The behavior of polyethylene at relaxation situation under the action of the rigid indentor is deduced from equation (3), 

considering the constant deformation δ = δ0, (δ = 0). By integration, under the boundary conditions: Fn = Fn0 for t = 0, we obtain: 

𝐹𝑛(𝑡) = (𝐹𝑛0 −
𝐵2 ∙ 𝛿0

𝐴
) ∙ 𝑒−𝐴𝑡 +

𝐵2 ∙ 𝛿0

𝐴
, 

(7) 

 

 

with relation A (relation 4.a) and 
𝐵2 =

1

𝑘𝑒1
∙ 𝑘𝑒2

∙ 𝐴𝑐 ∙ 𝜂
   

                     

 (8) 

The relaxation function of polyethylene, Ψ (t), under the rigid indenter is defined as the response of the material to constant 

deformation, as follows: 

𝛹(𝑡) =
𝐹𝑛

𝛿0

= (
1

𝑘𝑒1

−
𝐵2

𝐴
) ∙ 𝑒−𝐴𝑡 +

𝐵2

𝐴
. (9) 

 

2. The effect of energy surface on the coefficient of friction 

Friction patterns described the effects on polyethylene according to a law of flow similar to that of metals [3], [4]. This type of 

modeling is not suitable for UHMWPE, due to the fundamental differences in the deformation mechanisms of polymers and 

metals. A model is adopted in which the state variables evolve according to the deformation speed. The energy lost in the process 

of damage to polyethylene will be used as an indicator of wear [1]. 

The aim of this study was to determine the energy lost by hysteresis when indenting a flat UHMWPE surface with a rigid conical 

indenter, and spherical connection.  

Indentation is defined as the process of penetration of the surface to be studied by a penetrator called "indentor" (with various 

geometric shapes), which penetrates the surface to a certain depth due to the action of a force of controlled magnitude and 

direction followed by its withdrawal. UHMWPE is a polymer with viscoelastic behavior; in fact, UHMWPE is considered as an 

elastovascular body, which deforms elastically, the deformations occur that lead to flow (as to a fluid body) [5]. The viscoelastic 

behavior interprets the variation of the deformation under the action of constant stress(applied stress) for a period of time. The 

deformation initially shows an elastic response, at applied stress, and a delayed elastic deformation. In the present study, adopted 

the modified Zener rheological model Figure 4.1, composed of a spring inserted with a Voigt-Kelvin element [6], (a spring 

connected in parallel with a damper) of high molecular weight polyethylene, UHMWPE. The stress-strain curve of UHMWPE is 

approximated by Zener type models with different mechanical properties. Consider the external coefficient of friction and the 

fluid friction law: 
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𝜏𝑓 = 𝜂2 ∙ 𝜀0̇ ∙ (
�̇�

�̇�0

)

𝑚𝑒

. (10) 

The force in the Damper is defined as: 

𝐹𝑛𝑣 = 𝐴 ∙ 𝜏𝑓 + 𝜇 ∙ 𝐹𝑛 = 𝐴 ∙ 𝜂𝑒 ∙ 𝜀0̇ ∙ (
𝑣

𝑣0

)
𝑚𝑒

, (11) 

Where  𝜀0 ≡
1

𝑠
 , 𝑣0 = 𝛿0 = 1 𝑚𝑚 , are constants of consistency 

ηe is the equivalent viscosity of UHMWPE, global friction parameter (internal or external). For ease of calculation the creep 

functions Φam and relaxation function Ψam, are dimensionless to time, and described as a condition for connecting the Zener 

deformation with normal load, by the following relations:  

𝛷𝑎𝑚 = 𝛷𝑚 ∙ 𝐺2 =
1

𝑔12

+ (1 − 𝑒𝑥𝑝(−𝑡𝑎)), (12a) 

𝛹𝑎𝑚 =
𝛹𝑚

𝐺2

=
𝑔12

1 + 𝑔12

∙ [1 + 𝑔12 ∙ 𝑒𝑥𝑝(−𝑡𝑎 ∙ (1 + 𝑔12))]; (12b) 

Where ta is dimensionless time, 𝑡𝑎 =
𝑡

𝑡𝑖
 , ti is the delay time, 𝑡𝑖 =

𝜂2

𝐺2
; g12 is elasticity parameter 𝑔12 =

𝐺1

𝐺2
 , dimensionless functions 

of Creep and relaxation, Φam, and Ψam  ,  (Figure. 2) shows continuous variations (relative to the dimensionless time, ta, and the 

elasticity parameter, g12).  

 

Figure. 2 dimensionless functions of creep a) and relaxation b) of a modified Zener viscoelastic material 

The variation of the contact area and the pressure distribution is analyzed for different loading or unloading conditions. It can be 

considered as an initial solution that the stresses and strains corresponding to a purely elastic material are known (V. Radok-

Johnson [6]).  

This involves the replacement of the elastic constant in the elastic solution by the integral operator from the viscoelastic stress-

strain relations. If the deformation beginning is known, the stresses are found by replacing the elastic modulus, 2G, in the elastic 

solution by the integral operator, expressed in terms of the relaxation function. If the load is known, the variation in deformation is 

found in the elastic solution by replacing the 1 / 2G constant with the integral operator involving the creep compliance function 

Φm(t).  

 

3. Indentation model with rigid cylindrical indenter 

The contact between a rigid penetrator with a cylindrical tip and a viscoelastic plane is analyzed. The geometry of this penetrator 

is presented in Figure.3 
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Figure.3 Rigid cylindrical penetrator geometry. 

Indentation is defined by the following geometric parameters: 

α - conic taper; 

R - radius of the connecting sphere at the top of the cone; 

δ - maximum penetration depth (indentation); 

a - radius of the contact circle; 

δs - penetration depth (indentation) corresponding to the limit of the spherical area; 

as - the radius of the contact circle corresponding to the boundary of the spherical area; 

h0 - height of the cone.  

For calculation, the penetration depth and the radius of the contact circle are dimensionless to the radius of the sphere at the tip of 

the cylinder R, : 𝛿𝑎 =
𝛿

𝑅
, 𝑎𝑎 =

𝑎

𝑅
.. The loading of the cylinder is estimated by the average pressure Striebeck.  

𝑝𝑆 =
𝐹𝑛

𝐵 ∙ 2 ∙ 𝑅
; 𝑝𝑎𝑆 =

𝑝𝑆

𝐺2

 (13) 

dimensionless half-width contact of the indenter is: 

𝑎𝑎(𝑡𝑎, 𝑔12, 𝐹𝑎𝑆) =  {
4

𝜋
∙ 𝐹𝑎𝑆 ∙ [

1

𝑔12

+
1

1
∙ (1 − 𝑒𝑥𝑝(−𝑡𝑎))]}

1
2
 (14) 

 

At the initial moment (ta = 0), the contact half-width is: 

𝑎𝑎𝑜(𝐹𝑎𝑆, 𝑔12) = (
4

𝜋 ∙ 𝑔12

∙ 𝐹𝑎𝑆)

1
2

. 

 

 

For a known indentation speed (v), the dimensionless indentation depth is 

𝛿𝑎 =
𝛿

𝑅
= 𝑣𝑎 ∙ 𝑡𝑎 (15) 

where the dimensionless velocity is defined as va = (ηe ∙ ν) / (G2 ∙ R) and toa 

is the dimensionless time corresponding to the maximum load force. 

 

 Figure 4. Dimensionless contact half-width variation with loading time  
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The response of the material to creep is 

𝑠(𝑡𝑠) = ∫ 𝛹(𝑡𝑎 − 𝑥)

𝑡𝑎

0

∙
𝑑𝑎𝑎

2

𝑑𝛿𝑎

𝑑𝑥 (16) 

If the variation of the dimensionless penetration depth δa (t) is known, then the variation of the dimensionless contact radius aa (t) 

is given by the equation: 

𝑎𝑎(𝑡) = √𝛿𝑎(𝑡) (17) 

It can be substituted in equation (4.16) to find the dimensionless contact pressure Stribeck: 

𝑝𝑎𝑆 = 4 ∙ ∫ 𝛹(𝑡𝑎 − 𝑥, 𝑔12)

𝑡𝑎

0

∙ [
𝑑

𝑑𝑥
[𝑎𝑎𝑜(𝑥, 𝐹𝑎𝑆, 𝑔12) ∙ (1 − 𝑟𝑎

2)
1
2]] (18) 

At some point, the pressure in the center of the linear contact is 

𝑝𝑜𝑡 =
2

𝜋
∙

𝐹𝑛

𝑎(𝑡)
 (19) 

the relative pressure 𝑝0𝑡𝑟 =
𝑝𝑜𝑡

𝑝𝑜𝑜
 , poo is the pressure in the linear center of contact at time t = 0, the variation of the pressure on the 

contact belt of the rigid cylinder with polyethylene considered as material with Zener behavior is deduced: 

𝑝𝑟(𝑟𝑎 , 𝑡𝑎, 𝑔12) = 𝑝𝑜𝑡𝑟(𝑡𝑎, 𝑔12) ∙ √1 −
𝑟𝑎

2

[1 + 𝑔12 ∙ (1 − 𝑒𝑥𝑝(−𝑡𝑎))]
2 (20) 

Thus, Figure 5 exemplifies the variation of the dimensionless pressure at different points on the section of contact (ra = 0; 0.5; 0.8; 

1; 1.2; 1.5) with the dimensionless time, for the Viscoelasticity parameter, g12 = 84.12. 

 

 

Figure.5 variation of the dimensionless pressure between the cylinder and the viscoelastic plane with the working time 

When the rheological properties of polyethylene change, especially as a result of temperature, the pressure distribution is as shown 

in Figure .6. 

 

Figure.6 variation of the dimensionless pressure between the cylinder and the plane with variable Viscoelasticity 
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When the external load is variable, a real situation in the knee prosthesis, a linear variation between the minimum force (Fam) and 

the maximum force (FaMS) is accepted. In this case, the contact width has the expression 

𝑎𝑎𝑙𝑖𝑛(𝑡𝑎, 𝑔12, 𝐹𝑎𝑀𝑆, 𝐹𝑎𝑚, 𝑡𝑎1, 𝑡𝑎2) = [
4

𝜋
∙ 𝐹𝑎𝑆𝑀 ∙ ∫ 𝛷𝑎𝑚[(𝑡𝑎 −

𝑡𝑎

0

𝑥), 𝑔12]
𝑑

𝑑𝑥
𝐹𝑎(𝐹𝑎𝑚 , 𝑡𝑎1, 𝑡𝑎2, 𝑥)𝑑𝑥]

1

2
  

(21) 

The variation of the contact (half-width) with time and with the load, allows the theoretical analysis of the component of losses by 

the coefficient of friction hysteresis (μh). Thus, for cylindrical contact, this component has the form [7]: 

𝜇ℎ = 2 ∙ (
4

𝜋
)

3

∙ 𝛼ℎ ∙
𝐵

2 ∙ 𝑅
∙ (

𝑝𝑚

𝐸𝑠

)
4

 (22) 

where pm is the average contact pressure, time-dependent and viscoelastic properties of polyethylene, Es - equivalent elasticity, αh- 

loss coefficient by hysteresis. The eqaution (22) has the expression 

𝜇ℎ(𝑡𝑎, 𝑔12, 𝐹𝑎𝑆 , 𝐵𝑎 , 𝛼ℎ) = 2 ∙ (
4

𝜋
)

3

∙ 𝛼ℎ ∙ 𝐵𝑎 ∙ (
1 + 𝑔12

−1

3
∙

𝐹𝑎𝑆

𝑎𝑎(𝑡𝑎, 𝑔12, 𝐹𝑎𝑆)
)

4

 (23) 

Figure .7 and Figure .8 exemplify the variation of the Coefficient of hysteresis friction, with time and with the viscoelastic 

parameter,   g12   respectively. 

 

Figure. 7. Variation of the coefficient of friction with the working time 

 

Figure. 8. Variation of the coefficient of friction with the viscoelastic parameter 

 

4. Viscoelastic behavior of UHMWPE polyethylene in cylindrical contacts 

It is known that UHMWPE polyethylene has a viscoelastic behavior, in which the intrinsic properties of elasticity and viscosity 

are manifested simultaneously. In order to analyze the behavior of UHMWPE polyethylene in the total knee prosthesis, it is 

assumed to detail the behavior for cylindrical contacts. The case of a rigid cylinder moving with sliding, rolling or sliding and 

rolling on a viscoelastic plane is accepted. The cylinder moves at a constant speed v (see Figure. 9) much slower than the speed of 

propagation of sound waves (vs) in the viscoelastic body. In this hypothesis the inertial effects of the equilibrium equations can be 

neglected [8], [9]. The propagation speed of sound waves is vs≈5 ∙ 10 ^ 3 m / s for steel, vs≈1000 m / s for polymeric materials, 

vs≈30-50 m / s for rubber. The solution given by Goryacheva and some adaptations by Popov [9] and Johnson [6] are accepted. 

The plastic properties of polyethylene are the longitudinal modulus of elasticity (E) and the Poisson's ratio (ν). The properties that 

characterize the viscous behavior of polyethylene are the characteristic creep (Tε) and relaxation (Tσ) times. For the isotropic 

viscoelastic solid, the relationships between stresses and deformation have the forms  

𝜀𝑥0
+ 𝑇𝜀 ∙

𝜕𝜀𝑥0

𝜕𝑡
=

1−𝜗2

𝐸
∙ (𝜎𝑥0

+ 𝑇𝜎 ∙
𝜕𝜎𝑥0

𝜕𝑡
) −

𝜗∙(1+𝜗)

𝐸
∙ (𝜎𝑧0

+ 𝑇𝜎 ∙
𝜕𝜎𝑧0

𝜕𝑡
), (34) 
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𝜀𝑧0
+ 𝑇𝜀 ∙

𝜕𝜀𝑧0

𝜕𝑡
=

1−𝜗2

𝐸
∙ (𝜎𝑧0

+ 𝑇𝜎 ∙
𝜕𝜎𝑧0

𝜕𝑡
) −

𝜗∙(1+𝜗)

𝐸
∙ (𝜎𝑥0

+ 𝑇𝜎 ∙
𝜕𝜎𝑥0

𝜕𝑡
), 

𝛾𝑥0𝑧0
+ 𝑇𝜀 ∙

𝜕𝛾𝑥0𝑧0

𝜕𝑡
=

1+𝜗

𝐸
∙ (𝜏𝑥0𝑧0

+ 𝑇𝜎 ∙
𝜕𝜏𝑥0𝑧0

𝜕𝑡
). 

Where 𝜀𝑥0
, 𝜀𝑧0

, 𝛾𝑥0𝑧0
 are deformation at the points (x0, z0), and  𝜎𝑥0

, 𝜎𝑧0
, 𝜏𝑥0𝑧0

 are the stresses at the points (x0, z0). At any point (x, 

z) is defined by the velocity v and the time t:  

𝑥 = 𝑥0 − 𝑣 ∙ 𝑡.𝑧 = 𝑧0;   )35( 

Displacements andstresses are independent of time,  

𝑢0(𝑥 + 𝑣 ∙ 𝑡, 𝑡) = 𝑢(𝑥); 𝑤0(𝑥 + 𝑣 ∙ 𝑡, 𝑡) = 𝑤(𝑥).  

The instantaneous modulus of elasticity is defined: 𝐻 =
𝑇𝜀∙𝐸

𝑇𝜎
 , with 𝑇𝜀 > 𝑇𝜎, parameter 

𝑇𝜀

𝑇𝜎
≈ 105 − 107, for amorphous polymeric 

materials, 
𝑇𝜀

𝑇𝜎
≈ 10 − 102 for polymeric materials with a high level of crystallinity, and  

𝑇𝜀

𝑇𝜎
≈ 1.1 − 1.5 for dark colored materials. 

 

Figure. 9. Scheme of  displacement on the plane 

In the case of small deformations, the equation of the profile of the radius R of circular cylinder, can be approximated with a 

parabola  

𝑓(𝑧) =
𝑧2

2∙𝑅
 . (36) 

the boundary condition of the undeformed surface (z = 0)., The normal displacement in the z, (w) direction of the half-space (z = 

0), w = f (z) + const, inside the contact area (-a, b) satisfies the condition 

𝜕𝑤

𝜕𝑧
=

𝑧

𝑅
 , (z=0). (37) 

It is accepted with the surface of contact that the tangential stresses τxz comply with Coulomb's law 

𝜏𝑥𝑧 = −𝜇 ∙ 𝜎𝑧 ∙ 𝑠𝑖𝑔𝑛(𝑣), (z=0) (38) 

where μ is the sliding friction coefficient. The stresses and displacements were described by Goryacheva, by solving the 

differential equations (34). Thus, the pressure p (x) at any point in the contact area has the expression 

𝑝𝑥 = −𝜎𝑧(𝑥, 0) = −
𝜌𝑒𝑥𝑝(𝑥 𝑇𝜎⁄ ∙𝑣)

𝑇𝜎∙𝑣∙𝜋∙𝐾∙𝑅
∙ ∫ [

(𝑎+𝑏)2

2
∙ (

1

4
− 𝜂2) + 𝐹𝑛 ∙ 𝐾 ∙ 𝑅 + (𝑥΄ − 𝑇𝜀 ∙ 𝑣) ∙

𝑥

−𝑎

(𝑎 + 𝑏) ∙ (
1

2
− 𝜂) − (𝑥΄ − 𝑇𝜀 ∙ 𝑣) ∙ (𝑎 + 𝑥΄)] ∙

𝑒𝑥𝑝(−
𝑥΄

𝑇𝜎∙𝑣
)∙𝑑𝑥΄

(𝑎+𝑥΄)
1

2⁄ +𝜂
∙(𝑏−𝑥΄)

1
2⁄ −𝜂

  

(39) 

 

where 𝐾 =
2∙(1−𝜗2)

𝜋∙𝐸
; 𝜃 =

1−2∙𝜗

2∙(1−𝜗)
;𝜌 =

1

√1+𝜇2∙𝜃2
; 𝜂 =

1

𝜋
∙ 𝑎𝑟𝑐𝑡𝑔(𝜇 ∙ 𝜃)𝑠𝑖𝑔𝑛(𝑣), |𝜂| <

1

2
; 

 

and Fn is the normal force per unit length of the cylinder 

𝐹𝑛 = ∫ 𝑝(𝑥)
𝑏

−𝑎
𝑑𝑥. (40) 

𝐿 = 𝑎 + 𝑏 , the contact width of the rigid cylinder with the viscoelastic plane, 𝐿𝐸 = √
2∙𝐹𝑛∙𝐾∙𝑅

(
1

4
−𝜂2)

 

the contact width of the rigid cylinder on the elastic plane, 𝛼 =
𝑇𝜀

𝑇𝜎
, and 𝜁 =

𝐿

2∙𝑇𝜀∙𝑉
  

deduces the dimensionless contact width[8] 𝐿𝑎 = 𝐿
𝐿𝐸

⁄ ,  

[1 − 𝐿𝑎
2] ∙ [𝛹 (

3

2
+ 𝜂, 3; 2𝜁) ∙ 𝛷 (

1

2
+ 𝜂, 1; 2𝛼𝜁) +

1

2
∙ 𝛼 ∙ (

1

2
− 𝜂) ∙ 𝛹 (

1

2
+ 𝜂, 1; 2𝜁) ∙ (41) 
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𝛷 (
3

2
+ 𝜂, 3; 2𝛼𝜁)] + 𝐿𝑎

2 ∙ (1 − 𝛼) ∙ 𝛹 (
3

2
+ 𝜂, 3; 2𝜁) ∙ 𝛷 (

3

2
+ 𝜂, 3; 2𝛼𝜁) = 0  

where the hypergeometric confluent functions Ψ (β, γ; z) and Φ (β, γ; z) have the parameters β and γ and the argument z: 

𝛹(β, γ; z) =
1

𝛤(𝛽)
∙ ∫ 𝑒𝑥𝑝(−𝑧𝑡) ∙ 𝑡𝛽−1 ∙ (1 + 𝑡)𝛾−𝛽−1 ∙ 𝑑𝑡

∞

0
;  

𝛷(β, γ; z) =
1

𝐵(𝛽, 𝛾 − 𝛽)
∙ 𝑧1−𝛾 ∙ ∫ 𝑒𝑥𝑝(𝑡) ∙ 𝑡𝛽−1 ∙ (𝑧 − 𝑡)𝛾−𝛽−1 ∙ 𝑑𝑡

𝑧

0

 

 

where Γ (β) is the Gamma function, Γ(β) = ∫ 𝑥𝛽−1 ∙ 𝑒−𝑥𝑑𝑥
∞

0
, B (β, γ) is the Betta function, Figure .10 exemplifies the 

dimensionless contact width (La) with the variation of the rolling velocity of the rigid cylinder on UHMWPE polyethylene. 

 

Figure 10. Variation of the dimensional contact width with rolling velocity 

The coordinates of the points that define the contact width of the viscoelastic material can be found: 

{
𝐿 = 𝑎 + 𝑏

𝜀 =
𝑏 − 𝑎

𝑏 + 𝑎

 (42) 

with 𝜀 = −2 ∙ 𝜂 +
(1−𝐿𝑎

2)∙(
1

2
−𝜂)∙𝛹(

1

2
+𝜂,1;2𝜁)

2∙𝜁∙𝐿𝑎
2∙𝛹(

3

2
+𝜂,3;2𝜁)

 (43) 

Where 𝑎𝑎 =
𝑎

𝐿
, 𝑏𝑎 =

𝑏

𝐿
, it results from (42) 

𝑎𝑎 =
1−𝜀

2
 and 𝑏𝑎 =

1+𝜀

2
.    (44) 

Figure 11 exemplifies the coordinates of the contact points as a function of speed for two rigid cylinders with radii R = 5 and R = 

9.5. 

 

 Figure .11 Coordinates  of contact point depending on velocity 
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Due to the asymmetry of the pressure distribution (a ≠ b), the reaction Fn, of the viscoelastic half-plane does not pass through the 

center of the cylinder. Thus, a torque (rolling moment) results.  

𝑀1 = ∫ 𝑥 ∙ 𝑝(𝑥)𝑥𝑑
𝑏

−𝑎
. (45) 

Replacing pressure p (x) from eq.(39) to eq. (45) and the dimensionless rolling moment is M1, M1a = M1 / (Fn ∙ L), results : 

𝑀1𝑎 = 𝐿𝑎
2 ∙ (

1

2∙𝜁
−

𝜀

2
−

𝜂

3
) + (

𝜀

2
−

1

2𝜁𝛼
− 𝜂). (46) 

The tangential force T1 = μ ∙ Fn is applied at the coordinate point (0, d) and as a result the torque M2 = μ ∙ Fn ∙ d, according to the 

law of action and reaction M1 = M2, d is the distance from the axis of rotation to the position of the force is applied. 

𝑑 =
𝑀1

𝜇∙𝐹𝑛
=

𝑀1𝑎∙𝐹𝑛∙𝐿

𝜇
, (47) 

Or  𝑑𝑎 =
𝑑

𝑅
=

𝑀1𝑎∙𝐿

𝜇∙𝑅
. (48) 

Figure .12 and Figure .13 exemplify the dimensionless rolling moment in eq.(46) and the dimensionless tangential force in eq.(48) 

as a function of the velocity v, for different radii of the cylinder (R).  

 

Figure .12. Dimensionless distance as a function of rolling velocity 

 

Figure .13. Dimensionless rolling moment as a function of running speed 

To determine the coefficient of friction by rolling, it is considered that in the contact area (-a, b) there are two parts: one with slip 

(-a, c) and one with adhesion (stick) (c, b). Figure.14 shows the scheme of contact with sliding and rolling. Assuming the rigid 

cylinder and the flat support made of polyethylene as a viscoelastic material, the tangential velocities of the contact points in the 

stick area (c, b) are: 

𝑉 − 𝜔𝑅 =
𝜕𝑤2

𝑜

𝜕𝑡
, (49) 

where w2
o is the displacement of the plane 2 with respect to the fixed system of axes x0Oz0. 
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Figure .14. Diagram of contact with sliding and rolling 

In the coordinate system (x, y) related to cylinder 1, the relation (49) can be written as 

𝑑𝑤2

𝑑𝑥
= 𝛿, z=0, 𝑐 < 𝑥 < 𝑏  and  𝛿 =

𝜔𝑅−𝑉

𝑉
 (50) 

δ is the pseudo-slip coefficient. Coulomb-Amontons friction law is accepted inside the slip area (-a, c) 

𝜏𝑥𝑧 = −𝜇 ∙ 𝑝(𝑥)𝑠𝑔𝑛(𝑠𝑥), with p(x)>0. (51) 

Where sx is the difference between the tangential displacement of velocities at the contact points of the cylinder with the plane: 

𝑠𝑥 =
𝜕𝑤2

𝜕𝑡
− 𝑣 + 𝜔𝑅 = 𝑣

𝛿⁄ −
𝑑𝑤2

𝑑𝑥
. (52) 

Outside the contact area (-a, b), the viscoelastic plane is not required. The relationships between the stress and deformation in 

expressions (34). The solutions given by Goryacheva of the expression (34)are accepted [8]. Thus, the contact width L = a + b, the 

parameter 𝜀 =
(𝑏−𝑎)

(𝑏+𝑎)
  , is determined by relations (42) and (43), and the parameter is defining the separation of the stick area from 

the slip area (c) is determined from equation (53). 

(1 + 𝜀 − 𝛽 −
2𝑅𝛿

𝜇𝐿
) ∙ [𝐼0(𝛼𝛽𝜁) ∙ 𝐾1(𝛽𝜁) + 𝐼1(𝛼𝛽𝜁) ∙ 𝐾0(𝛽𝜁) +

1

𝜁
∙ (

1

𝛼
− 1) ∙ 𝐼1(𝛼𝛽𝜁) ∙ 𝐾0(𝛽𝜁)]  (53) 

 

Where 𝛽 =
(𝑏−𝑐)

𝑏+𝑎
 , I0 (x), I1 (x) and K0 (x) are modified Bessel functions. Equation (20) is solved numerically for different values 

of the parameters α, ξ, in the MATCHAD2000 program. Figure 15 exemplifies the dependence of the dimensionless coordinate 

𝑐𝑎 =
𝑐

𝐿
 

as a function of the parameter 𝜁𝑜𝑒 =
𝐿𝐸

2𝑇𝜀𝑣
 , for three parameter values 𝛼 =

𝑇𝜀

𝑇𝜎
 ,  

 

Figure.15. Dependency of the dimensionless cylinder coordinate  
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It is required by the normal force Fn, the tangential force T and the moment M. As a result of the reactions of the viscoelastic 

plane appear normal and tangential stresses distributed on the contact area (-a, b), which result in the forces Fn1 and T. The 

mechanical equilibrium condition for the cylinder in its center of rotation is  

𝑀 + 𝑀1 + 𝑇1 ∙ 𝑅 = 0, (54) 

where 𝑀1 = ∫ 𝑥 ∙ 𝑝(𝑥)𝑑𝑥
𝑏

−𝑎
 and 𝑇1 = ∫ 𝜏𝑥𝑧𝑑𝑥

𝑏

−𝑎
, with 𝜏𝑥𝑧(−𝑎) = 𝜏𝑥𝑧(𝑏) = 0.  

By replacing the pressure p (x) and the coordinates of the points defining the contact (a, b), Goryacheva deduces:  

𝑀1

𝐹𝑛∙𝐿
=

𝜀

2
∙ (1 − 𝐿𝑎

2) +
1

2𝜁
∙ (𝐿𝑎

2 −
1

𝛼
), (55) 

𝑇1

𝜇 ∙ 𝐹𝑛

= 1 − (𝛽𝐿𝑎)2 − 2𝛽𝐿𝑎
2 ∙ (1 + 𝜀 − 𝛽 −

2𝛿𝑅

𝜇𝐿
) ∙

𝐾1(𝛽𝜁)

𝐾0(𝛽𝜁)
 (56) 

The rolling moment of the rigid cylinder on the viscoelastic plane when the normal load Fn, the rolling velocity ω, the axial 

velocity v is 

𝑀𝑟𝑜𝑠𝑡 = 𝑀1 + 𝑇1𝑅 . (57) 

Thus, the coefficient of friction by rolling of rigid cylinder of radius R, on a viscoelastic plane characterized by elasticity (E, ν), 

creep times (Tε) and relaxation times (Tσ) and the sliding friction coefficient (μr) is given by the relationship 

𝜇𝑟 =
𝑀𝑟𝑜𝑠𝑡

𝐹𝑛 ∙ 𝐿
= (

1

𝐿𝑎
2 − 1) ∙

𝐾0(𝜉)

4 ∙ 𝐾1(𝜁)
+

1

2𝜁
∙ (𝐿𝑎

2 −
1

𝛼
) +

𝜇𝑅

𝐿
∙ (1 − 𝛽2𝐿𝑎

2)

−
2𝜇𝛽𝑅𝐿 (1 −

1
𝛼

) 𝐼1(𝛼𝛽𝜁)𝐾0(𝛽𝜁)

𝐿𝑎
2 ∙ 𝜁 ∙ [𝐼0(𝛼𝛽𝜁)𝐾1(𝛽𝜁) + 𝐼1(𝛼𝛽𝜁)𝐾0(𝛽𝜁)]

 

(58) 

In the case of free rolling (μ = 0), the expression (58) is reduced to the first two terms. It is exemplified in Figure 16, the 

dependence of the sliding rolling coefficient for three rigid cylinders (R = 5; B = 4; R = 8; B = 5; R = 9.5; B = 6 mm) as a function 

of the parameter 

𝜉𝑜𝑒 =
𝐿0

2 ∙ 𝑇𝜀∙𝑣

 

 

 Figure 16 Dependence of the slip coefficient 

For pure rolling (μ = 0, δ = 0), the variation of the coefficient of friction with the rheological parameter of relaxation of 

polyethylene (ξoe) is presented in Figure 17. 

 

Figure 17 Variation of the coefficient of friction 
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For the particular case α = Tε / Tσ = 1, the situation of the contact of a rigid cylinder with an elastic plane is obtained. In this 

situation, the length of contact is  

𝐿 = 2 ∙ 𝑎 = √8 ∙ 𝐾 ∙ 𝑅 ∙ 𝐹𝑛. (59) 

the position of the separating line of stick area from the slip area is  

𝛽 =
𝑎−𝑐

2𝑎
= 1 −

𝛿∙𝑅

𝜇∙𝑎
. (60) 

The pressure distribution is symmetrical  

𝑝(𝑥) =
√𝑎2−𝑥2

𝜋∙𝐾∙𝑅
,  (-a < x < a). (61) 

Tangential stresses in the contact area are  

𝜏𝑥𝑧(𝑥) = {

𝜇

𝜋 ∙ 𝐾 ∙ 𝑅
∙ √𝑎2 − 𝑥2,   (−𝑎 < 𝑥 < 𝑐);

𝜇

𝜋 ∙ 𝐾 ∙ 𝑅
∙ √𝑎2 − 𝑥2 − √(𝑎 − 𝑥) ∙ (𝑥 − 𝑐) , (𝑐 < 𝑥 < 𝑎).

 (62) 

The tangential force required to run is 

𝑇

𝜇 ∙ 𝐹𝑛

=
𝛿 ∙ 𝑅

𝜇 ∙ 𝑎
∙ (2 −

𝛿 ∙ 𝑅

𝜇 ∙ 𝑎
). (4.63) 

When a rigid cylinder slides and rolls on a viscoelastic plane, the friction force has a mechanical component due to the 

asymmetric deformation of the pressure distribution and an adhesion (adhesion) component in the contact area. For the analytical 

determination of the deformation component of the coefficient of friction of the cylinder on a polyethylene support, the solutions 

given by Goryacheva [8] and Johnson [6] are proposed. 

In this sense, it is accepted that the friction is very small in the contact area (μ≈0) and due to the asymmetry of the pressure 

distribution (p (x)) (Figure .18), the results Fn1 and Td have moment effects of torsion respect to cylinder axis:  

𝑇𝑑 = ∫ 𝑝(𝑥)

𝑎

−𝑎

sin 𝜑 𝑑𝑥 ≈
𝑀

𝑅
, (4.64) 

when 𝑀 = ∫ 𝑥𝑝(𝑥)
𝑏

−𝑎
𝑑𝑥  

 

 

 Figure 18 Deformation and force friction components 

Since the angle ϕ is small (contact length l << R) and τ_xz≈0, it results from (46) 

𝜇𝑑 =
𝑇𝑑

𝐹𝑛

=
𝑀

𝐹𝑛 ∙ 𝑅
= 𝛼ℎ ∙

𝐿0

𝑅
, (65) 

where αh is the coefficient of hysteresis losses of viscoelastic polyethylene 

𝛼ℎ =
𝜀

2
∙ 𝐿𝑎 ∙ (1 − 𝐿𝑎

2) +
𝐿𝑎

2 −
1
𝛼

2 ∙ 𝜉𝑜𝑒

 (66) 

 With 𝐿𝑎 =
𝐿

𝐿0
, the relative contact width of the viscoelastic cylinder in comparison with an elastic one, 𝛼 =

𝑇𝜀

𝑇𝜎
, rheological 

parameter (relaxation, creep), and 𝜉𝑜𝑒 =
𝐿0

2𝑇𝜀𝑣
  the relaxation parameter. Considering the average Striebeck loading pressure is 

(𝑝𝑆 =
𝐹𝑛𝑡

2𝑅𝐵
, 𝐹𝑛𝑡 =

𝐹𝑛𝑡

𝐵
 ) , the dimensionless striebeck pressure is (𝑝𝑎𝑠 =

𝑝𝑠

𝐸
),    E is the longitudinal modulus of elasticity of 

polyethylene. The analytical expression of the friction deformation component is resulted 
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𝜇𝑑 = 4 ∙ 𝛼ℎ ∙ √
2 ∙ (1 − 𝜗2) ∙ 𝑝𝑎𝑠

𝜋
. (67) 

Figure 19 exemplifies the variation of friction component with the rheological relaxation parameter (ξoe) for three relaxation 

parameters (α). 

 

Figure.19 Variation of the friction component with the rheological parameter of relaxation 

 

From the analysis of the deformation component curves of the friction coefficient, its observed that there are maximum values of 

certain relaxation modulus (ξoe) and implicit for certain sliding velocities (v). 

 

5- Conclusions 

The rheological behavior of UHMWPE is determined by the spherically connected conical penetrator and the cylindrical 

penetrator in contact with the UHMWPE plane. The asymmetry of the pressure distribution leads to the formation of a torsional 

moment in the knee prosthesis. The coefficient of friction by rolling the rigid cylinder on a viscoelastic plane is dependent on the 

elasticity, the creep and relaxation times. UHMWPE polyethylene can be characterized by the mechanical behavior with a rigid 

cylinder: 

- Contact width for a viscoelastic behavior; 

- Pressure distribution and asymmetry on the contact area; 

- Coefficient of friction at sliding; 

- Coefficient of friction at free rolling; 

- deformation component.  
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