Fair dominating sets and Fair domination polynomial of a Cycle Graph

S.Durai Raj^{*}, Ligi E. Preshiba [#]and A.M.Anto

*Associate Professor and Principal, Department of Mathematics, Pioneer Kumara Swami College, Nagercoil-629 003,Tamil Nadu, India.

*Research Scholar, Department of Mathematics, Pioneer Kumara Swami College, Nagercoil-629 003, Tamil Nadu, India.

Assistant professor, Department of Mathematics, St. Albert's College(Autonomous), Ernakulam, Kochi

Kerala, India.

Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.

ABSTRACT

Let G = (V, E) be taken simple graph. A set $S \subseteq V$ is a fair as dominating set of G, if any vertex not in S is adjacent to only one or more vertices in S. A dominating set S of G is a fair as dominating set if every two vertices $u, v \in V(G) - S$ are dominated by same number of vertices from S. The smaller number taken over all fair as dominating sets in G is called the fair as domination number of G denoted by $\gamma_f(G)$. Let C_n cycle graph of order n. Let $D_f(C_n, i)$ be the family of all fair as dominating sets of a wheel C_n with number i, and let $d_f(C_n, i) = |D_f(C_n, i)|$. In this paper, we try to explore the fair as domination polynomial cycle graph and also more properties are consider in it.

Key words: dominating sets, domination as polynomial, fair as dominating sets, fair domination as polynomial.

1. Introduction

Consider the graph as G = (V, E) as an undirected graph, where |V(G)| = n take the cardinality of vertices and |E(G)| = m often the number of edges of *G*. For undefined term refer Harary [9].

A set $S \subseteq V(G)$ is a dominating as set if any vertex not in S is adjacent to one or so many vertices in S. The number minimum taken over all dominating sets in G is called domination number of G and is often called the domination number of G and denoted by $\gamma(G)$.

A dominating set *S* as fair as dominating set if any two vertices $u, v \in V(G) - S$ are dominated by the same number of vertices from *S*. The smaller number taken as all of asover all fair dominating sets in *G* is called the fair as domination number of *G* and denoted $\gamma_f(G)$.

A domination as polynomial of graph *G* is the polynomial D(G, x) = Copyrights @Kalahari Journals

 $\sum_{i=1}^{n} d(G,i)x^{i}$, where d(G,i) number of i = 1 dominating sets of G of number i.

commating sets of G of number l.

Analogously, a fair as domination polynomial of a graph G of order n is the polynomial n

$$D_f(G, x) = \sum_{i = \gamma_f(G)} d_f(G, i) x^i, \text{ where } d_f(G, i)$$

number of fair as dominating sets of G of number i.

An element a as shown to be a zero polynomial f(x) if f(x) = 0. An element a called zero polynomial of multiplicity m if $(x - a)^m / f(x)$ and $(x - a)^{m+1}$ not a divisor of f(x).

2. Fair Domination Polynomial of a Cycle Graph

In this section, we consider to study the fair as dominating sets and fair as domination polynomial of cycle graph C_n .

Vol. 6 No. 3(December, 2021)

Definition 2.1. Let C_n be consider cycle graph of order n. Let $D_f(C_n, i)$ the family of fair as dominating sets of G with number i. The fair as domination polynomial of C_n the polynomial

$$D_f(C_n, x) = \sum_{i = \gamma_f(C_n)}^{\infty} d_f(C_n, i) x^i, \quad \text{where}$$

 $d_f(C_n, i)x^i$ the number of fair as dominating sets of C_n of number *i*.

Example 2.2.

Consider cycle graph C_7 vertex set taken as $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$ given in Fig 2.1.

Here $\gamma_f(C_7) = 3$.

 $D_f(C_7, 3)$

 $= \{\{v_1, v_4, v_5\}, \{v_2, v_5, v_6\}, \{v_3, v_6, v_7\}, \{v_4, v_1, v_7\}, \{v_1, v_2, v_5\}, \\ \{v_1, v_3, v_6\}, \{v_3, v_4, v_7\}\}$

 $D_f(\mathcal{C}_7,4)$

 $= \{\{v_1, v_3, v_5, v_6\}, \{v_2, v_4, v_6, v_7\}, \{v_1, v_3, v_5, v_7\}, \{v_1, v_2, v_4, v_6\}, \\\{v_2, v_3, v_5, v_7\}, \{v_1, v_3, v_4, v_6\}, \{v_1, v_2, v_4, v_5\}\}$

 $D_{f}(C_{7}, 5)$

 $= \{v_1, v_2, v_3, v_4, v_5\}, \{v_2, v_3, v_4, v_5, v_6\}, \{v_3, v_4, v_5, v_6, v_7\}, \{v_1, v_4, v_5, v_6, v_7\},\$

 $\begin{aligned} \{v_1, v_2, v_3, v_6, v_7\}, \{v_1, v_2, v_3, v_4, v_7\}, \{v_1, v_2, v_5, v_6, v_7\}, \\ \{v_1, v_2, v_3, v_4, v_6\}, \end{aligned}$

 $\{ v_2, v_3, v_4, v_5, v_7 \}, \{ v_1, v_3, v_4, v_5, v_6 \}, \{ v_2, v_4, v_5, v_6, v_7 \}, \\ \{ v_1, v_3, v_5, v_6, v_7 \},$

 $\{ v_1, v_2, v_4, v_6, v_7 \}, \{ v_1, v_2, v_3, v_5, v_7 \}, \{ v_1, v_2, v_3, v_5, v_6 \}, \\ \{ v_2, v_3, v_4, v_6, v_7 \},$

 $\begin{aligned} \{v_3, v_4, v_5, v_6, v_7\}, \{v_1, v_2, v_4, v_5, v_6\}, \{v_2, v_3, v_5, v_6, v_7\}, \\ \{v_1, v_3, v_4, v_6, v_7\}, \end{aligned}$

 $\{v_1, v_2, v_4, v_5, v_7\}$

$$D_f(C_7, 6) =$$

 $\{v_1, v_2, v_3, v_4, v_5, v_6\}, \{v_2, v_3, v_4, v_5, v_6, v_7\}, \{v_1, v_3, v_4, v_5, v_6, v_7\},$

 $\{v_1, v_2, v_4, v_5, v_6, v_7\}, \{v_1, v_2, v_3, v_5, v_6, v_7\}, \{v_1, v_2, v_3, v_4, v_6, v_7\},$

$$\{v_1, v_2, v_3, v_4, v_5, v_7\}\}$$

$$D_f(C_7,7) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$$

Copyrights @Kalahari Journals

Now,

$$D_{f}(C_{7}, x) = \sum_{i = \gamma_{f}(C_{7})}^{|V(C_{7})|} d_{f}(C_{7}, i)x^{i}$$

$$\sum_{i = 3}^{7} d_{f}(C_{7}, i)x^{i}$$

$$d_{f}(C_{7}, 3)x^{3} + d_{f}(C_{7}, 4)x^{4} + d_{f}(C_{7}, 5)x^{5} + d_{f}(C_{7}, 6)x^{6}$$

$$+ d_{f}(C_{7}, 7)x^{7}$$

$$7x^{3} + 7x^{4} + 7x^{4} + 21x^{5} + 7x^{6} + x^{7}$$

Hence,

$$D_f(C_7, x) = 7x^3 + 7x^4 + 7x^4 + 21x^5 + 7x^6 + x^7$$

To prove over main results we need the following lemma.

Lemma 2.3. For any cycle graph $C_n (n \ge 5)$,

$$\gamma_f(C_n) = \begin{cases} \lceil \frac{n}{3} \rceil ifn \equiv 0 \lor 1(mod3) \\ \lceil \frac{n}{3} \rceil + 1ifn \equiv 2(mod3) \end{cases}$$

Theorem 2.4. For any cycle graph C_n with n vertices,

$$d_f(C_n, i) = \emptyset \text{ if } 1 < \lceil \frac{n}{3} \rceil + 1 \text{ or } i > n.$$

Proof: Let C_n be a cycle with n vertices

We know that any member of $D_f(C_n, i)$ contains at most *n* vertices.

Therefore, we have $d_f(C_n, i) = \emptyset$ for i > n.

Also, since $\lceil \frac{n}{3} \rceil$ or $\lceil \frac{n}{3} \rceil + 1$ is minimum cardinality of a fair dominating set, there is no fair dominating set of cardinality less than $\lceil \frac{n}{3} \rceil$.

Therefore,
$$D_f(C_n, i) = \emptyset$$
 if $1 < \lceil \frac{n}{3} \rceil$.
Hence, $D_f(C_n, i) = \emptyset$ if $i > n$ or $i < \lceil \frac{n}{3} \rceil$.

Theorem 2.5. For $n \ge 3$, a star graph C_{3n} may not have a fair dominating set of cardinality n + 1.

Proof: Consider C_{3n} where $n \ge 3$. We shall find a fair dominating set *S* of cardinality n + 1 in C_{3n} . Since $n + 1 < \lfloor \frac{n}{2} \rfloor$, not every element in $V(C_{3n}) - S$ are independent. Then $V(C_{3n}) - S$ contains at least two adjacent vertices. Since *S* is a fair dominating set of C_{3n} , that $V(C_{3n}) - S$ does not contain more than two adjacent vertices. We consider the following two cases:

Case (i): If every vertices in $V(C_{3n}) - S$ forms induced union of path P_2 . Then it is clear that S contains exactly n – vertices.

Hence this case fails.

Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

Case (ii): If every vertices in $V(C_{3n}) - S$ need not forms induced union of path P_2 . This means that $V(C_{3n}) - S$ contains an induced path P_1 . Assume vbe the vertex of P_1 . Then the vertices adjacent to vin $V(C_{3n}) - S$ is dominated by two vertices of Sand the remaining vertices in $V(C_{3n}) - S$ are dominated by exactly one vertex from S. So that Sis not a fair dominating set.

Hence we cannot find a fair dominating set of cardinality n + 2 for a star graph C_{3n} for $n \ge 3$.

I

Theorem 2.6 For $n \ge 9$, a cycle graph C_n not every power of x exists in a fair domination polynomial.

Proof: Consider a cycle graph C_{3n} with $n \ge 3$ vertices. By Theorem 2.5, a cycle graph C_{3n} may not have a fair dominating set of particular cardinality. Hence the result follows.

Lemma 2.7. For any cycle graph C_n with n vertices,

i. $d_f(C_n, n) = 1$ ii. $d_f(C_n, n-1) = n$ iii. $d_f(C_n, n-2) = \binom{n}{2}$. iv.for $k \ge 2$, $d_f(C_{3k}, k) = 3$. v.for ≥ 3 , $d_f(C_{3k+1}, k+1) = 0$. vi.for ≥ 3 , $d_f(C_{3k+1}, k+1) = 3k + 1$. vii.for $k \ge 3$, $d_f(C_{3k+2}, k+2) = 6k + 4$ viii. $d_f(C_n, i)$ is always a positive integer.

Proof. i. For any graph G with n vertices, we have $d_f(G, n) = 1$.

Hence $d_f(C_n, n) = 1$.

ii. For any graph C_n with *n* vertices, $V(C_n)$ is the unique fair dominating set of cardinality *n*.

Therefore, we have $d_f(C_n, n-1) = n$.

iii. By the definition, we can choose a fair dominating set of cardinality n-2 in C_n as $\binom{n}{2}$ different ways.

Hence,
$$d_f(C_n, n-2) = \binom{n}{2}$$
.

iv. Consider the cycle graph C_{3k} , where $k \ge 2$. Then it has 3k vertices. The fair dominating sets of C_{3k} of cardinality k are $\{1,4,7,\ldots,3k-2\}, \{2,5,8,\ldots,3k-1\}$ and $\{6,9,\ldots,3k\}$.

Therefore we have 3 fair dominating sets of C_{3k} of cardinality k.

Copyrights @Kalahari Journals

Hence $d_f(C_{3k}, k+1) = 3$.

v. This follow from Theorem:2.

vi.Consider the wheel graph C_{3k+1} . Then it has 3k + 1 vertices. The fair dominating set of C_{3k+1} of cardinality k + 1 are $\{1,2,5,...,3k - 1\}, \{2,3,6,...,3k\}, \{3,4,7,...,3k + 1\}, ..., \{3k + 1,1,4,7,...,3k - 2\}.$

Therefore we have 3k + 1 fair dominating sets of C_{3k+1} cardinality k + 1. Hence $d_f(C_{3k+1}, k + 1) = 3k + 1$.

vii.Consider the cycle graph C_{3k+2} . Then it has 3k + 2 vertices. The fair dominating sets of C_{3k+2} of cardinality k + 2 are $\{1,2,5,6,9, ..., 3k\}, \{2,3,6,7, ..., 3k + 1\}, \{3,4,7,8, ..., 3k + 2\}, ..., \{3k + 2,1,4,5,8, ..., 3k + 1\}, \{1,2,3,6,9, ..., 3k\}, \{2,3,4,7,10, ..., 3k + 1\}, \{3,4,5,8,11, ..., 3k + 2\}, ..., \{3k + 1, 3k + 2, 1, 4, 7, ..., 3k - 2\}.$ Therefore we have 3k + 2 + 3k + 2 fair

Therefore we have 3k + 2 + 3k + 2 fair dominating sets of cardinality k + 2. Hence $d_f(C_{3k+2}, k + 2) = 3k + 2 + 3k + 2 = 6k + 4$.

viii. Clearly $d_f(C_n, i)$ is the cardinality of total collection of fair dominating sets of cardinality *i*. Hence $d_f(C_n, i)$ has to be a positive integer including zero.

Acknowledgement

We sincerely thank the anonymous referee for his suggestions towards the improvement of the paper.

References

- 1) S.Alikhani, Y.H. Peng, Introduction to domination polynomial of a graph, Ars Combinatoria, 114(2014) 257-266.
- A.M Anto, P. Paul Hawkins and T. Shyla Isac Mary, "Perfect Dominating Sets and Perfect Domination polynomial of a Cycle", Advances in Mathematics: Scientific Journal 8(3) (2019), 538-543.
- A.M Anto, P. Paul Hawkins and T. Shyla Isac Mary, "Perfect Dominating Sets and Perfect Domination polynomial of a path", International Journal of Advanced Science and Technology, Vol. 28, No. 16 (2019). PP 1226-1236.

Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

- 4) Y.Caro, A.Hansberg, M.Henning, Fair domination in graphs Discreate Mathematics, 312(19)(2012) 2905-2914.
- 5) S.Durai Raj and Ligi. E. Preshiba, "Fair Dominating set and Fair Dominating polynomial of path", International virtual conference on Pure and applied mathematics, 21st December 2020, pages 28 to 34.
- 6) S.Durai Raj and Ligi. E. Preshiba, "Fair Dominating set and Fair Dominating polynomial of star graph", International virtual conference on recent Trends and Techniques in mathematical and computer science, 28th and 29th july 2021, pages 185 to 192.
- S.Durai Raj and Ligi. E. Preshiba, and A.M Anto, "Fair and Domination polynomial of a tree related graph", International conference on analysis and applied mathematics-2022, 26th and 28th april 2022, pages 161 to 168.
- 8) S.Durai Raj and Ligi. E. Preshiba, "Fair Dominating set and Fair Dominating polynomial of wheel graph", Turkish Journal

of computer and mathematics education. Vol:11, No.03, E-ISSN:1309-4653, pages 1171 to 1177.

- 9) S.Durai Raj and Ligi. E. Preshiba, "Fair Dominating set and Fair Dominating polynomial of star graph", Kala Saroer, Vol:23, ISSN:0975-4520, Pages 197-202, 2020.
- 10) S.Durai Raj and Ligi. E. Preshiba, and A.M Anto, "Fair and Domination polynomial of a Banana tree", Design Engineering. Vol 2021: ISSUE:07,ISSN:0011-9342, Pages 2157-2160, 2021.
- 11) T.W.Haynes, S.T.Hedetniemi and P.J Slater, Fundamentals domination in graphs, Marcel Dekker, Inc., New York (1998).
- 12) P. Paul Hawkins, A.M Anto and T. Shyla Isac Mary, "Perfect Dominating Sets and Perfect Domination polynomial of a star Graph", Malaya Journal of Matematik, Vol.8, No. 4, 1751-1755, 2020.
- 13) D.B.West, Introduction to Graph Theory, second Ed., Prentice-Hall, Upper saddle River, NJ, (2001).