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ABSTRACT 

 Let 𝐺 = (𝑉, 𝐸) be taken simple graph. A set 𝑆 ⊆ 𝑉 is a fair as dominating set of 𝐺, if any vertex not in 𝑆 

is adjacent to only one or more vertices in 𝑆. A dominating set 𝑆 of 𝐺 is a fair as dominating set if every two 

vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) − 𝑆 are dominated by same number of vertices from 𝑆. The smaller number taken over 

all fair as dominating sets in 𝐺 is called the fair as domination number of 𝐺 denoted by 𝛾𝑓(𝐺). Let 𝐶𝑛  cycle 

graph of order 𝑛. Let 𝐷𝑓(𝐶𝑛, 𝑖) be the family of all fair as dominating sets of a wheel 𝐶𝑛 with number 𝑖, and let 

𝑑𝑓(𝐶𝑛, 𝑖) = |𝐷𝑓(𝐶𝑛, 𝑖)|. In this paper, we try to explore the fair as domination polynomial  cycle graph and 

also more properties are consider in it. 

Key words: dominating sets, domination as polynomial, fair as dominating sets, fair domination as 

polynomial. 

 

1. Introduction 

 Consider the graph as  𝐺 = (𝑉, 𝐸) as an 

undirected graph, where |𝑉(𝐺)| = 𝑛 take the 

cardinality of vertices and |𝐸(𝐺)| = 𝑚 often the 

number of edges of 𝐺. For  undefined term  refer 

Harary [9]. 

 A set 𝑆 ⊆ 𝑉(𝐺) is a dominating as set if any 

vertex not in 𝑆 is adjacent to one or so many 

vertices in 𝑆. The number minimum taken over all 

dominating sets in 𝐺 is called domination number of 

𝐺 and is often called the domination number of 𝐺 

and denoted by 𝛾(𝐺).  

          A dominating set 𝑆 as fair as dominating set if 

any two vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) − 𝑆 are dominated by 

the same number of vertices from 𝑆. The smaller 

number taken as all of asover all fair dominating 

sets in 𝐺 is called the fair as domination number of 

𝐺 and denoted  𝛾𝑓(𝐺).  

 A domination as polynomial of graph 𝐺 is the 

polynomial                          𝐷(𝐺, 𝑥) =

𝑛
∑

𝑖 = 1
𝑑(𝐺, 𝑖)𝑥𝑖, where 𝑑(𝐺, 𝑖)  number of 

dominating sets of 𝐺 of number 𝑖.  

 Analogously, a fair as domination polynomial 

of a graph 𝐺 of order 𝑛 is the polynomial 

𝐷𝑓(𝐺, 𝑥) =

𝑛
∑

𝑖 = 𝛾𝑓(𝐺)
𝑑𝑓(𝐺, 𝑖)𝑥

𝑖, where 𝑑𝑓(𝐺, 𝑖)  

number of fair as dominating sets of 𝐺 of number 𝑖. 

 An element a as shown to be a zero polynomial 

𝑓(𝑥) if 𝑓(𝑥) = 0. An element a  called zero  

polynomial of multiplicity 𝑚 if (𝑥 − 𝑎)𝑚 𝑓(𝑥)⁄  and 

(𝑥 − 𝑎)𝑚+1  not a divisor of 𝑓(𝑥). 

 

2.  Fair Domination Polynomial of a Cycle 

Graph  

 In this section, we consider to study the fair as 

dominating sets and fair as domination polynomial 

of cycle graph 𝐶𝑛.  
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Definition 2.1. Let 𝐶𝑛 be consider cycle graph of 

order 𝑛. Let 𝐷𝑓(𝐶𝑛, 𝑖) the family of fair as 

dominating sets of 𝐺 with number 𝑖. The fair as 

domination polynomial of 𝐶𝑛  the polynomial 

𝐷𝑓(𝐶𝑛, 𝑥) =

𝑛
∑

𝑖 = 𝛾𝑓(𝐶𝑛)
𝑑𝑓(𝐶𝑛, 𝑖)𝑥

𝑖, where 

𝑑𝑓(𝐶𝑛, 𝑖)𝑥
𝑖 the number of fair as dominating sets of 

𝐶𝑛 of number 𝑖. 

Example 2.2. 

 Consider cycle graph 𝐶7  vertex set taken as 

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7}  given in Fig 2.1. 

 

𝐶7 

Figure 2.1 

Here 𝛾𝑓(𝐶7) = 3. 

𝐷𝑓(𝐶7, 3)

= {{𝑣1, 𝑣4, 𝑣5}, {𝑣2, 𝑣5, 𝑣6}, {𝑣3, 𝑣6, 𝑣7}, {𝑣4, 𝑣1, 𝑣7}, {𝑣1, 𝑣2, 𝑣5}, 

{𝑣1, 𝑣3, 𝑣6}, {𝑣3, 𝑣4, 𝑣7}} 

𝐷𝑓(𝐶7, 4)

= {{𝑣1, 𝑣3, 𝑣5, 𝑣6}, {𝑣2, 𝑣4, 𝑣6, 𝑣7}, {𝑣1, 𝑣3, 𝑣5, 𝑣7}, {𝑣1, 𝑣2, 𝑣4, 𝑣6}, 

{𝑣2, 𝑣3, 𝑣5, 𝑣7}, {𝑣1, 𝑣3, 𝑣4, 𝑣6}, {𝑣1, 𝑣2, 𝑣4, 𝑣5}} 

𝐷𝑓(𝐶7, 5)

= {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}, {𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}, {𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7},
{𝑣1, 𝑣4, 𝑣5, 𝑣6, 𝑣7}, 

{𝑣1, 𝑣2, 𝑣3, 𝑣6, 𝑣7}, {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣7}, {𝑣1, 𝑣2, 𝑣5, 𝑣6, 𝑣7},
{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6}, 

{𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣7}, {𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑣6}, {𝑣2, 𝑣4, 𝑣5, 𝑣6, 𝑣7},
{𝑣1, 𝑣3, 𝑣5, 𝑣6, 𝑣7}, 

{𝑣1, 𝑣2, 𝑣4, 𝑣6, 𝑣7}, {𝑣1, 𝑣2, 𝑣3, 𝑣5, 𝑣7}, {𝑣1, 𝑣2, 𝑣3, 𝑣5, 𝑣6},
{𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣7}, 

{𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7}, {𝑣1, 𝑣2, 𝑣4, 𝑣5, 𝑣6}, {𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣7},
{𝑣1, 𝑣3, 𝑣4, 𝑣6, 𝑣7}, 

 {𝑣1, 𝑣2, 𝑣4, 𝑣5, 𝑣7}                  

    𝐷𝑓(𝐶7, 6) =
{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}, {𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7}, {𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7}, 

{𝑣1, 𝑣2, 𝑣4, 𝑣5, 𝑣6, 𝑣7}, {𝑣1, 𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣7}, {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣7}, 

{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣7}} 

𝐷𝑓(𝐶7, 7) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} 

Now, 

𝐷𝑓(𝐶7, 𝑥) =

|𝑉(𝐶7)|

∑

𝑖 = 𝛾𝑓(𝐶7)
𝑑𝑓(𝐶7, 𝑖)𝑥

𝑖 

7
∑

𝑖 = 3
𝑑𝑓(𝐶7, 𝑖)𝑥

𝑖 

𝑑𝑓(𝐶7, 3)𝑥
3 + 𝑑𝑓(𝐶7, 4)𝑥

4 + 𝑑𝑓(𝐶7, 5)𝑥
5 + 𝑑𝑓(𝐶7, 6)𝑥

6

+ 𝑑𝑓(𝐶7, 7)𝑥
7 

7𝑥3 + 7𝑥4 + 7𝑥4 + 21𝑥5 + 7𝑥6 + 𝑥7 

Hence, 

 𝐷𝑓(𝐶7, 𝑥) = 7𝑥3 + 7𝑥4 + 7𝑥4 + 21𝑥5 + 7𝑥6 + 𝑥7. 

To prove over main results we need the following 

lemma. 

Lemma 2.3. For any cycle graph 𝐶𝑛(𝑛 ≥ 5), 

   𝛾𝑓(𝐶𝑛) = {
⌈
𝑛

3
⌉𝑖𝑓𝑛 ≡ 0 ∨ 1(𝑚𝑜𝑑3)

⌈
𝑛

3
⌉ + 1𝑖𝑓𝑛 ≡ 2(𝑚𝑜𝑑3)

 

Theorem 2.4. For any cycle graph 𝐶𝑛 with 𝑛 

vertices, 

 𝑑𝑓(𝐶𝑛, 𝑖) = ∅ if 1 < ⌈
𝑛

3
⌉ + 1 or 𝑖 > 𝑛. 

Proof: Let  𝐶𝑛 be a cycle with 𝑛 vertices 

 We know that any member of 𝐷𝑓(𝐶𝑛, 𝑖) 

contains atmost  𝑛 vertices. 

 Therefore, we have 𝑑𝑓(𝐶𝑛, 𝑖) = ∅for 𝑖 > 𝑛. 

 Also, since ⌈
𝑛

3
⌉ or ⌈

𝑛

3
⌉ + 1 is minimum 

cardinality of a fair dominating set, there is no fair 

dominating set of cardinality less than ⌈
𝑛

3
⌉. 

 Therefore, 𝐷𝑓(𝐶𝑛, 𝑖) = ∅ if 1 < ⌈
𝑛

3
⌉. 

 Hence, 𝐷𝑓(𝐶𝑛, 𝑖) = ∅ if 𝑖 > 𝑛 or  𝑖 < ⌈
𝑛

3
⌉. 

         ∎ 

Theorem 2.5. For 𝑛 ≥ 3, a star graph 𝐶3𝑛 may not 

have a fair dominating set of cardinality 𝑛 + 1. 

Proof: Consider 𝐶3𝑛 where 𝑛 ≥ 3. We shall find a 

fair dominating set 𝑆 of cardinality 𝑛 + 1 in 𝐶3𝑛. 

Since 𝑛 + 1 < ⌊
𝑛

2
⌋, not every element in 𝑉(𝐶3𝑛) − 𝑆 

are independent. Then 𝑉(𝐶3𝑛) − 𝑆 contains at least 

two adjacent vertices. Since 𝑆 is a fair dominating 

set of 𝐶3𝑛, that 𝑉(𝐶3𝑛) − 𝑆 does not contain more 

than two adjacent vertices. We consider the 

following two cases: 

Case (i):   If every vertices in 𝑉(𝐶3𝑛) − 𝑆 forms 

induced union of path 𝑃2. Then it is clear that 𝑆 

contains exactly 𝑛 − vertices.  

 Hence this case fails. 
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Case (ii):   If every vertices in 𝑉(𝐶3𝑛) − 𝑆 need not 

forms induced union of path 𝑃2. This means that 

𝑉(𝐶3𝑛) − 𝑆  contains an induced path 𝑃1. Assume 𝑣 

be the vertex of 𝑃1. Then the vertices adjacent to 𝑣 

in 𝑉(𝐶3𝑛) − 𝑆 is dominated by two vertices of 𝑆 

and the remaining vertices in 𝑉(𝐶3𝑛) − 𝑆 are 

dominated by exactly one vertex from 𝑆. So that 𝑆 

is not a fair dominating set. 

 Hence we cannot find a fair dominating set of 

cardinality 𝑛 + 2 for a star graph 𝐶3𝑛 for 𝑛 ≥ 3. 

       

          ∎ 

Theorem 2.6 For 𝑛 ≥ 9, a cycle graph 𝐶𝑛 not every 

power of 𝑥 exists in a fair domination polynomial.  

Proof: Consider a cycle graph 𝐶3𝑛 with 𝑛 ≥ 3 

vertices. By Theorem 2.5, a cycle graph 𝐶3𝑛 may 

not have a fair dominating set of particular 

cardinality. Hence the result  follows.  

       

      ∎  

Lemma 2.7. For any cycle graph 𝐶𝑛 with 𝑛 

vertices, 

i.𝑑𝑓(𝐶𝑛, 𝑛) = 1 

ii.𝑑𝑓(𝐶𝑛, 𝑛 − 1) = 𝑛 

iii.𝑑𝑓(𝐶𝑛, 𝑛 − 2) = (
𝑛
2
). 

iv.for 𝑘 ≥ 2, 𝑑𝑓(𝐶3𝑘, 𝑘) = 3. 

v.for ≥ 3, 𝑑𝑓(𝐶3𝑘, 𝑘 + 1) = 0. 

vi.for ≥ 3, 𝑑𝑓(𝐶3𝑘+1, 𝑘 + 1) = 3𝑘 + 1. 

vii.for 𝑘 ≥ 3, 𝑑𝑓(𝐶3𝑘+2, 𝑘 + 2) = 6𝑘 + 4 

viii.𝑑𝑓(𝐶𝑛, 𝑖) is always a positive integer. 

Proof. i. For any graph 𝐺 with 𝑛 vertices, we have 

𝑑𝑓(𝐺, 𝑛) = 1. 

 Hence 𝑑𝑓(𝐶𝑛, 𝑛) = 1. 

 ii. For any graph 𝐶𝑛 with 𝑛 vertices, 𝑉(𝐶𝑛) is 

the unique fair dominating set of cardinality 𝑛. 

 Therefore, we have 𝑑𝑓(𝐶𝑛, 𝑛 − 1) = 𝑛. 

 iii. By the definition, we can choose a fair 

dominating set of cardinality 𝑛 − 2 in 𝐶𝑛 as (
𝑛
2
) 

different ways. 

 Hence, 𝑑𝑓(𝐶𝑛, 𝑛 − 2) = (
𝑛
2
). 

 iv. Consider the cycle graph 𝐶3𝑘, where 𝑘 ≥ 2. 

Then it has 3𝑘 vertices. The fair dominating sets of 

𝐶3𝑘 of cardinality 𝑘 are {1,4,7,… ,3𝑘 −
2}, {2,5,8,… ,3𝑘 − 1} and {6,9,… ,3𝑘}.  

 Therefore we have 3 fair dominating sets of  

𝐶3𝑘 of cardinality 𝑘.  

 Hence 𝑑𝑓(𝐶3𝑘, 𝑘 + 1) = 3. 

 

 v. This follow from Theorem:2. 

 

 vi.Consider the wheel graph 𝐶3𝑘+1. Then it has 

3𝑘 + 1 vertices. The fair dominating set of 𝐶3𝑘+1 of 

cardinality 𝑘 + 1 are {1,2,5,… ,3𝑘 −
1}, {2,3,6,… ,3𝑘}, {3,4,7,… ,3𝑘 + 1},… , {3𝑘 +
1,1,4,7,… ,3𝑘 − 2}. 
 Therefore we have 3𝑘 + 1 fair dominating sets 

of 𝐶3𝑘+1 cardinality 𝑘 + 1.  Hence 

𝑑𝑓(𝐶3𝑘+1, 𝑘 + 1) = 3𝑘 + 1. 

 

 vii.Consider the cycle graph 𝐶3𝑘+2. Then it has 

3𝑘 + 2 vertices. The fair dominating sets of 𝐶3𝑘+2 

of cardinality 𝑘 + 2 are 

{1,2,5,6,9, … ,3𝑘}, {2,3,6,7,… ,3𝑘 +
1}, {3,4,7,8,… ,3𝑘 + 2},… , {3𝑘 + 2,1,4,5,8,… ,3𝑘 +
1}, {1,2,3,6,9,… ,3𝑘}, {2,3,4,7,10,… ,3𝑘 +
1}, {3,4,5,8,11,… ,3𝑘 + 2},… , {3𝑘 + 1,3𝑘 +
2,1,4,7,… ,3𝑘 − 2}.  
 Therefore we have 3𝑘 + 2 + 3𝑘 + 2 fair 

dominating sets of cardinality 𝑘 + 2.      Hence 

𝑑𝑓(𝐶3𝑘+2, 𝑘 + 2) = 3𝑘 + 2 + 3𝑘 + 2 = 6𝑘 + 4.

  

 

 viii. Clearly 𝑑𝑓(𝐶𝑛, 𝑖) is the cardinality of total 

collection of fair dominating sets of cardinality 𝑖.  
Hence 𝑑𝑓(𝐶𝑛, 𝑖) has to be a positive integer 

including zero. 
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