International Journal of Mechanical Engineering

Certified Domination Number in Subdivision of Graphs

S.Durai Raj¹, S.G. Shiji Kumari² and A.M.Anto³

¹Associate Professor and Principal, Department of Mathematics, Pioneer Kumara Swami College, Nagercoil-629 003, Tamil Nadu, India.

²Research Scholar, Department of Mathematics, Pioneer Kumara Swami College, Nagercoil-629 003,

Tamil Nadu, India.

³Assistant professor, Department of Mathematics, St. Albert's College (Autonomous), Ernakulam, Kochi,

Kerala, India.

Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.

ABSTRACT

A set *S* of taken vertices in that G = (V,E) is called *dominating set* if for every vertex that not in the set *S* has minimum one neighbour in that *S*. A dominating set *S* in a given graph *G* is said be as a *certified dominating set* o *G* if any vertex in *S* has either beenzero or minimum two neighbours in the complement V - S. The *certified domination number*, $\gamma_{cer}(G)$ in that *G* is defined as the minimum number of certified dominating set in *G*. In this paper, we try to study some of the certified domination number of special Subdivision graphs of certain families of graphs.

Keywords: Dominating set, Certified key Dominating set, Certified Domination Number, Complement graph, Subdivision graphs.

1. Introduction

In this paper, graph G=(V,E) we mean a simple, finite, connected, undi-rected graph with neither loops nor multiple edges. The order |V(G)| is denoted by *n*. For graph theoretic terminology we refer to West[8]. The open neighborhood of any vertex *v* in *G* is N(v) = $\{x : xv \in E(G)\}$ and closed neighborhood of a vertex *v* in *G* is $N[v] = N(v) \cup \{v\}$. The degreeof a vertex in the graph *G* is denoted by deg(v) and the maximum degree (minimum degree) in the graph *G* is denoted by $\Delta(G)$ $(\delta(G))$. For a set $S \subseteq V(G)$ the open (closed) neighborhood N(S) (N[S]) in *G* is defined as $N(S) = \bigcup_{v \in S} N(v) (N[S] = \bigcup_{v \in S} N[v]).$

A walk in which all the vertices are distinct is called a *path*. A path on

n-vertices is denoted by P_n . A walk $(u_0, u_1, u_2, ..., u_n)$ is called *closed walk* if $u_0 = u_n$. A closed walk in which $u_0, u_1, u_2, ..., u_{n-1}$ are distinct is called a *cycle*. A cycle on *n* Copyrights @Kalahari Journals

vertices is denoted by C_n . We write K_n for a complete graph of order n. A graph G is called a *bipartite graph* if the vertex set V can be partitioned into two distinct subsets V_1 and V_2 such that every edge of G joins a vertex of V_1 to a vertex of V_2 . If G contains every edge joining the vertices of V_1 to the vertices of V_2 , the G is called a *complete bipartite* The complete bipartite graph with graph. bipartition V_1 , V_2 such that $|V_1| = p$ and $|V_2| =$ q is denoted by $K_{p,q}$. The graph $K_{1,p-1}$ is called a *star*. The complement of a graph G, denoted by \overline{G} , is a graph with the vertex set V (G) such that for every two vertices v and w, $vw \in E(G)$ if and $vw \notin E(\overline{G})$. For G, the graph G^+ is obtained by joining exactly one leaf to each vertex of G. The graph \overline{G} is obtained if the vertices in G one adjacent, then they are not adjacent in \overline{G} and vertices. A vertex of degree 0 is called an isolated vertex and a vertex of degree 1 is called an end vertex or a pendant vertex. A

Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

vertex that is adjacent to a pendant vertex is called a *support vertex*.

A subdivision of an edge e = uv of a graph G is the replacement of the edge e by a path (u, w, v). The graph G obtained from G by subdividing every edge e of G exactly one is called the subdivision graph of G and is denoted by S(G).

The *corona* of two disjoint graphs G_1 and G_2 is defined to be the graph $G = G_1 \circ G_2$ formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 where the i^{th} vertex of G_1 is adjacent to every vertex in the i^{th} copy of G_2 . In particular, the corona $G \circ K_1$ is the graph constructed from a copy of H, where for each vertex $v \in V$ (G), a new vertex v' and a pendant vv' are added.

The concept of certified domination in graphs was introduced by Dettlaff, Lemanska, Topp, Ziemann and Zylinski[3] and further studied in[2]. It has many application in real life situations. This motivated we to study the certified domination number of central graphs.

In [6], authors studied certified domination number in graphs which is defined as follows:

Definition 1.1. Let G = (V, E) be any graph of order *n*. A subset $S \subseteq V(G)$ is called a *certified dominating set* of *G* if *S* is a dominating set of *G* and every vertex in *S* has either zero or at least two neighbours in V - S. The *certified domination number* denoted by $\gamma_{cer}(G)$ is the minimum cardinality of certified dominating set in *G*.

2. Known Results

Theorem 2.1. [2] For any graph G of order $n \ge 2$, every certified dominating set of G contains its support vertices.

Theorem 2.2. [2] For any graph G of order $n, 1 \le \gamma(G) \le \gamma_{cer}(G) \le n$.

Theorem 2.3. [2] For any graph *G* of order $n \ge 3$, $\gamma_{cer}(G) = 1$ if and only if *G* has a vertex of degree n - 1.

3. Certified Domination in Subdivision Graphs

Observation 3.1. The certified domination number of subdivision of somestandard graphs can be easily found and are given as follows:

(i)For any path graph $P_n (n \ge 2)$, γ_{cer} .

(ii)For any cycle graph $C_n (n \ge 3)$, γ_{cer} .

(iii)For any complete graph $K_n (n \ge 2), \gamma_{cer} (S(K_n)) = n - 2.$

(iv)For any wheel graph $W_n (n \ge 4)$, γ_{cer} .

(v)For any fan graph $F_n (n \ge 4), \gamma_{cer}$.

Theorem 3.2. For $n \ge 2$, $\gamma_{cer}\left(S(K_{1,n} \circ K_1)\right) = n+3$.

Proof. Let v be the central vertex of $K_{1,n}$ and v_1, v_2, \dots, v_n be the pendant vertices adjacent to v in $K_{1,n}$. Let $\{u, u_1, u_2, \dots, u_n\}$ be the set of pendant vertices adjacent to $\{v, v_1, v_2, ..., v_n\}$, respectively to from $K_{1,n} \circ K_1$. Now let $v', v'_1, v'_2, \dots, v'_n$ be the that subdivide vertices the edges respectively. $uv, u_1v_1, u_2v_1, \dots, u_nv_n$ Let $u'_1, u'_2, ..., u'_n$ be the set of vertices that subdivide the edges $vv_1, vv_2, vv_3, \dots, vv_n$ respectively. Then $S(K_{1,n} \circ K_1)$ has (4n+3)-vertices and (4n+3)2) -edges.

Let $S = \{v, v', v'_1, v'_2, ..., v'_n\} S$ dominates all the vertices of $S(K_{1,n} \circ K_1)$ and also *S* is a minimum dominating set of $S(K_{1,n} \circ K_1)$. Since $S - \{v\}$ is the set of all support vertices of $S(K_{1,n} \circ K_1)$ by Theorem 2.1, $\gamma_{cer} (S(K_{1,n} \circ K_1)) \ge |S| - 1 = n + 1$. Further $|N(v') \cap (V(S(K_{1,n} \circ K_1)) - S)| = 1$, that *S* is not a certified dominating set of $S(K_{1,n} \circ K_1)$.

Take $S_1 = S \cup \{u\}$. Clearly $N[S_1] = V$ $(S(K_{1,n} \circ K_1))$. Further we get

 $|N(x) \cap (V(S(K_{1,n} \circ K_1)) - S_1)| \ge 2$ for every $x \ne u, v' \in S_1$. Also, we have

 $|N(u) \cap (V(S(K_{1,n} \circ K_1)) - S_1)| = 0$ and $|N(v') \cap (V(S(K_{1,n} \circ K_1)) - S_1)| = 0$. Thus, every element in S_1 has either zero or greater than two neighbours in $V(S(K_{1,n} \circ K_1)) - S_1$. Therefore that S_1 is a certified dominating set of $S(K_{1,n} \circ K_1)$. Also, if we remove a vertex from S_1 , it will not be a certified dominating set of $S(K_{1,n} \circ K_1)$. Moreover there does not exists a certified dominating set of cardinality less than S_1 . Hence S_1 is a minimum certified dominating set of $S(K_{1,n} \circ K_1) = |S_1| = n + 2 + 1 = n + 3$.

Corollary 3.3. For $n \ge 2$, $\gamma(S(K_{1,n} \circ K_1)) = n + 2$.

Theorem 3.4. For $n \ge 2$, $\gamma_{cer}(S(P_n \circ K_1)) = 2n - 1$.

Proof. Let the vertex set and the edge set of P_n are $\{v_1, v_2, ..., v_n\}$ and $\{e_1, e_2, ..., e_{n-1}\}$,

Copyrights @Kalahari Journals

s Vol. 6 No. 3(December, 2021) International Journal of Mechanical Engineering respectively. Let $\{u_1, u_2, ..., u_n\}$ be the set of pendant vertices adjacent to $v_1, v_2, ..., v_n$, respectively to the graph $P_n \circ K_1$, where the new edges $v_i u_i$ denoted as e'_i for $1 \le i \le n$.

Now we subdivide the corona graph $P_n \circ K_1$. Let $v'_1, v'_2, ..., v'_{n-1}$ be the sub- divided vertices of the edges $e_1, e_2, ..., e_{n-1}$, respectively. Also, let $u'_1, u'_2, ..., u'_n$ be the subdivided vertices of the edges $e'_1, e'_2, ..., e'_n$, respectively in $P_n \circ K_1$.

Clearly the subdivided graph $S(P_n \circ K_1)$ contains (4n - 1)-vertices. In $S(P_n \circ K_1)$, $S = \{u'_1, u'_2, ..., u'_n\}$ be the set of all support vertices of $S(P_n \circ K_1)$. Therefore by Theorem 2.1, every certified dominating set must contain S.

Since each v_i is not dominated by any vertex in S, that S itself is not a certified dominating set of $S(P_n \circ K_1)$. Since $deg(u'_i) = 2$ and $N(u'_i)$ $= \{v_i, u_i\}$ for $1 \le i \le n$, it is clear that for every v $\in V(P_n), S_1 = S \cup \{v\}$ is not a certified dominating set of $S(P_n \circ K_1)$. Otherwise, if $v_i \in$ S_1 , then u'_i has exactly one neighbour u_i in V $(S(P_n \circ K_1)) - S_1$. Also for $1 \le i \le n - 1$, that $N(v_{i}') = \{v_{i}, v_{i+1}\}$ and $v_{i}, v_{i+1} \notin S_{1}$, each $v_{i}' \in$ S_1 . Thus, $S_2 = S \cup \{v'_1, v'_2, \dots, v'_{n-1}\}$ is a dominating set of $S(P_n \circ K_1)$. Further, every vertex in S_2 has exactly two neighbour in $V(S(P_n$ \circ K_1)) - S_2 . Therefore that S_2 is a certified dominating set of $S(P_n \circ K_1)$. Moreover, if we remove any vertex from S_2 we obtained that S_2 is not a certified dominating set of $S(P_n \circ K_1)$. Hence, S_2 is a minimum certified dominating set of $S(P_n \circ K_1)$ and so $\gamma_{cer}(S(P_n \circ K_1)) =$ $|S_2| = |S| + n - 1 = n + n - 1 = 2n - 1.$

Theorem 3.5. For $n \ge 3$, $\gamma_{cer}(S(C_n \circ K_1)) = 2n$.

Proof. The proof is similar to Theorem 3.4.

Theorem 3.6. Let G be a connected (n, m)-graph. Then

$$\gamma_{cer}(S(G \circ K_1)) \le n + m$$

Proof. Let G be a connected graph with n vertices as $v_1, v_2, ..., v_n$ and m edges. Construct the corona graph $G \circ K_1$ of G. Since each vertex of G has a pendant edge in $G \circ K_1$, the

set of all vertices of G as the support vertices of $G \circ K_1$. Let $u_1, u_2, ..., u_n$ be the set of pendant vertices of $G \circ K_1$.

Construct the subdivision graph $S(G \circ K_1)$ of $G \circ K_1$. Let $u'_1, u'_2, ..., u'_n$ be the vertices that subdivide the edges u_1v_1 , u_2v_2 , ..., u_nv_n of $G \circ K_1$, re- spectively. Let w_1 , w_2 , ..., w_m be the subdivided vertices of $S(G \circ K_1)$ that subdivide the *m* edges of *G*. Then the $v_1, v_2, \dots, v_n, u_1, u_2$, ..., u_n are dominated by the vertices $u'_1, u'_2, ..., u'_n$ in $S(G \circ K_1)$ and $w_1, w_2, ..., w_m$ be the vertices that dominates the remaining vertices of S(G w_m be a dominating set of $S(G \circ K_1)$. Since $w_1, w_n, ..., w_m$ subdivide the edges that are incident to with the support vertices of $G \circ K_1$ and $u'_1, u'_2, ..., u'_n$ are the vertices that are adjacent with a support vertex and a pendant vertex of $G \circ K_1$, every vertex in S has at least two neighbours in $V(S(G \circ K_1)) - S$. Therefore that S is a certified dominating set of $S(G \circ K_1)$ and hence $\gamma_{cer}(S(G \circ K_1)) \leq |S| = n + m.\blacksquare$ **Remark 3.7.** The upper bound of $\gamma_{cer}(S(G \circ$ (K_1)) for the connected (n, m)- graph given by Theorem 3.6 is strict. For an example consider the graph G shown in Figure 3.1.

Figure 3.1

This is a connected (5, 5)-graph. Then for this G, $S(G \circ K_1)$ is shown in Figure 3.3.

Here
$$n = m = 5$$
 and $S = \{u'_1, u'_2, u'_3, u'$

 u'_4 , u'_5 , w_1 , v_2 , u_3 , w_5 } is a minimum certified dominating set of $S(G \circ K_1)$. Thus, $\gamma_{cer}(S(G \circ K_1)) = |S| = 9 < n+m$. Therefore $\gamma_{cer}(S(G \circ K_1)) < n+m$.

Copyrights @Kalahari Journals

Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

 $G \circ K_1$

$$S(G \circ K_1)$$

Figure 3.3

Theorem 3.8. Let G be a connected (n, m)-graph with maximum degree Δ . Then $\gamma_{cer}(S(G \circ K_1)) = n + m$ if and only if $\Delta \leq 2$.

Proof. Let *G* be a connected (n, m)-graph with maximum degree Δ . Assume $\gamma_{cer}(S(G \circ K_1)) = n + m$. Let *S* be a minimum certified dominating set of $S(G \circ K_1)$. To prove $\Delta \leq 2$. Suppose $\Delta \geq 3$. Then there exists a vertex v_i such that $deg_G(v_i)$. Then $S \cup \{v_i, u_i\} - deg_G(v_i)$ is a certified dominating set of $S(G \circ K_1)$ and hence $\gamma_{cer}(S(G \circ K_1)) \leq |S| = n + m + 2 - deg_G(v_i) \leq n + m - 1 < n + m$, which is a contradiction. Thus, $\Delta \leq 2$.

Conversely, assume $\Delta \leq 2$. If $\Delta = 1$, then $G = P_2$. So that $S(G \circ K_1) ' P_7$. Therefore by Observation 3.1(i), $\gamma_{cer}(S(G \circ K_1)) = 3$. Since any path is a tree, P_2 has two vertices and only one edge. Thus, n + m = 2 + 1 = 3 = $\gamma_{cer}(S(G \circ K_1))$. Suppose $\Delta = 2$. Let S be a minimum certified dominating set of $S(G \circ$ K_1). By Theorem 2.1, $\{u'_1, u'_2, ..., u'_n\} \subseteq S$. If $S = \{u_1, u_2, ..., u_n, w_1, w_2, ..., w_m\}, \text{ then } |S| = n$ +m and hence $\gamma_{cer}(S(G \circ K_1)) = n + m$. Now assume S contains vertex v_i of G. Since $\Delta =$ 2, each $v_i(1 \le i \le n)$ dominates at most three vertices in $S(G \circ K_1)$. Also v_i is a support vertex of $G \circ K_1$, that v_i is a vertex that adjacent to a pendant vertex in $S(G \circ K_1)$. Without loss of generality, we assume v_i is

adjacent with u'_j . Then it is easily vertified that $S_1 = S \cup \{v_i, u_j\} - deg_G(v_i)$ is a certified dominating set of $S(G \circ K_1)$. Also if we remove a vertex v from S, then $S_1 - \{v\}$ is not a certified dominating set of $S(G \circ K_1)$. Therefore S_1 is a minimum certified dominating set of $S(G \circ K_1)$ and hence $\gamma_{cer}(S(G \circ K_1)) = |S_1| = |S \cup \{v_i, v_j\}| - |deg_G(v_i)| = n + m + 2 - 2 = n + m$.

Acknowledgments

The authors are thankful to the referee whose valuable suggestions for the revised versing of this paper.

References

- [1] F.Buckley and F.Harary, Distance in Graphs, *Addison-Wesley, Redwood City*, (1990).
- [2] S. Durai Raj, S.G. Shiji Kumari and A.M. Anto, On the Certified Domina- tion Number of Graphs, *Journal of Information* and Computational Science 10, 331–339 (2020).
- [3] S. Durai Raj, S.G. Shiji Kumari and A.M. Anto, Certified Domination Number in some families of central Graphs, *GIS Science Journal* 11(7), (2020).
- [4] S. Durai Raj, S.G. Shiji Kumari and A.M. Anto, Certified Domination Number in product of Graphs, *Turkish Journal of Computer and Mathe-matical Education* 11(3), 1166–1170 (2020).
- [5] S. Durai Raj, S.G. Shiji Kumari and A.M. Anto, Certified Domination Number in Corona Product of Graphs, *Malaya Journal of Matematik* 9(1), 1080–1082 (2021).
- [6] M. Dettlaft, M. Lemansko, J. Topp, R.Ziemann and P. Zylinski, Certified Domination, AKCE International Journal of Graphs and Combinactorics (Article in press), (2018).
- [7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater Fundamentals of Domination in Graphs, *Marcel Dekker,Inc., New York,* (1998).
- [8] D.B. West, Introduction to Graph Theory, *Second Ed.*, *Prentice-Hall*, *Upper Saddle River*, *NJ*,(2001).

Copyrights @Kalahari Journals

s Vol. 6 No. 3(December, 2021) International Journal of Mechanical Engineering