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ABSTRACT 

This study has analyzed the wave propagation of 

functionally-graded nanotubes surrounded by the 

Pasternak foundation using the Euler-Bernoulli 

beam model. A nanotube is affected by nanofluid 

flow and physical fields including thermal and 

magnetic fields. The support condition in different 

phases of the study was simple-simple. The 

kinematic equations were used based on Von 

Karman's theory. The flow equations were derived 

using Hamilton's rule. The Navier-Stokes (N-S) 

equations were used to express the fluid pressure. 

The magnetic field was extracted in 2-D mode 

from Lorentz relations. The effect of various 

parameters was analyzed on wave propagation of 

functionally graded nanotubes. The most 

underlying innovations in this study included 

analysis of wave propagation of functionally 

graded nanotubes under nanofluid flow in the 

Pasternak foundation and thermal and magnetic 

fields' effect on functionally graded nanotubes. 

Key words: Functionally Graded Nanotube, Wave 

Propagation, Pasternak Foundation, Physical 

Fields, Thermal and Magnetic Fields. 

 

INTRODUCTION 

Nanostructures are available in all areas, whether in 

living or non-living things. Biologic nanostructures 

such as enzymes reveal that nature has created the 

best form of nanoscale technologies. Traditional 

sciences including physics, chemistry, mathematics, 

genetics, materials science, and biomedical 

engineering as independent activity domains in 

macro and micro scales tend to the unit principles, 

structures, and instruments on the nanoscale. Thus, 

nanotechnology sciences are deeply interdisciplinary 

and can provide tremendous achievements for 

human beings.  

Nanofluids can be used for many purposes. 

Nanofluids have two uses including heat conveying 

and mass conveying. The majority of industrial uses 

of nanofluids are associated with cooling and 

heating as the subset of heat conveying. The 

nanofluids have medical and pharmacological uses 

in the field of mass conveying. Rashidi et al. [1] 

introduced a new model to analyze flowing 

nanofluid vibrations and studied the impact of the 

Knudsen number in this field. In this way, they used 

the Navier-Stokes (N-S) equations with modifying 

coefficients to analyze the nanofluids. Also, 

Ghavanloo [2] analyzed the vibrations and dynamic 

stability of fluid flow nanotubes using the 

Timoshenko-Ehrenfest beam theory and the 

Galerkin model. Zhang et al. investigated the wave 

propagation in nanotubes considering the surface 

effect [3]. Ghorbanpour and Rudbari studied the 

effect of initial and surficial stresses and Knudsen 

flow velocity in electric heat of nonlocal wave 

propagation of single-walled boron nitride 

nanotubes [4]. Ghorbanpour and Rudbari analyzed 

the effect of longitudinal magnetic field on wave 

propagation of single-walled carbon nanotubes 

using Knudsen number and surface considerations 

[5]. Simsek et al. analyzed the functionally graded 

nanobeams' bending and buckling based on 

Timoshenko's nonlocal Theory [6]. Nezamnejad et 

al. [7] studied the nonlocal nonlinear vibrations of 

functionally graded nanobeams. Barretta et al. 

investigated the equations of nonlocal functionally 

graded nanobeams based on the Euler-Bernoulli 

beam model [8]. The nonlocal thermal-mechanical 

vibrations of functionally graded nanobeams were 

analyzed by Ebrahimi and Salari [9]. Uymaz [10] 

studied the forced vibrations of functionally graded 

nanobeams using Eringen's model. Filiz and 
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Aydogdu analyzed the wave propagation of 

functionally graded nanotubes [11]. 

In the present study, wave propagation of 

functionally graded nanotubes surrounded by the 

Pasternak foundation was analyzed using the Euler-

Bernoulli beam model. A nanotube is affected by 

nanofluid flow and physical fields including thermal 

and magnetic fields. The support condition in 

different phases of the study was simple-simple. The 

kinematic equations were used based on Von 

Karman's theory. The flow equations were derived 

using Hamilton's rule. The Navier-Stokes (N-S) 

equations were used to express the fluid pressure. 

The magnetic field was extracted in 2-D mode from 

Lorentz relations. The effect of different parameters 

was analyzed on the wave propagation of 

functionally graded nanotubes. The most underlying 

innovations in this study included analysis of wave 

propagation of functionally graded nanotubes under 

nanofluid flow in the Pasternak foundation and 

thermal and magnetic fields' effect on functionally 

graded nanotubes. The findings of this study can be 

used to design intelligent micro-proteins containing 

pharmaceutical liquid flowing in the living cell 

foundation to carry medicine and spray it on the 

desired area. Also, the micro-proteins are 

responsible for scanning the human organs in terms 

of measuring fat, cholesterol, blood sugar, and 

diagnosis of cancer cells, tumors, etc. Designing and 

constructing operators and sensors can be another 

use of the findings of this study.  

Methodology 

1. Flow equations 

The flow equations are derived using the energy 

method, where total potential energy is defined as 

the summation of kinetic and strain energies, and the 

externally applied load works [12]. 

               (1) 

Where; , , U, and  respectively refer to 

total potential energy, kinetic energy, strain energy, 

and net externally applied workload. 

2. Strain energy of functionally graded nanotubes  

Strain energy for functionally graded nanotubes is 

given as [12]: 

      (2) 

     (3) 

Also [12-13]: 

=         (4) 

Thus [11]: 

  }     (5) 

                                  (6) 

Where; refers to the diameter of functionally graded 

nanotubes. 

 

3. Kinetic energy of functionally graded 

nanotubes  

Kinetic energy for functionally graded nanotubes is 

defined as [11]: 

 { + }  (7) 

                        (8) 

Where;  refers to the nanotube's lateral 

displacement,  refers to fluid mass density, and 

 refers to mass conveyed in functionally graded 

nanotubes. The changes in the properties of 

functionally graded nanotubes can be assumed in 

linear and exponential forms [11]. 

( )= p + s 

 ( )= p + s                                           

( )=  

( )=      (9)  

 

Where;  refers to the quality of upper and lower 

materials of functionally graded nanotubes.  

 

4. Externally workload of functionally graded 

nanotubes 

The load applied by the elastic foundation on 

functionally graded nanotubes assumed as the 

Pasternak model is defined as [13-14]: 

          (10) 

Where;  is Winkler's spring constant, and  is 

the shear modulus of the Pasternak model. 
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Magnetic fields are considered in the 2-D form in 

the whole study: 

         (11) 

Where; χ, U, and  respectively refer to magnetic 

permeability, displacement field, permanent 

magnetic field, and  refers to Lorentz force. 

 

 +    

      (12) 

Where; refers to magnetic field vector angle with the 

horizon. 

 

The force caused by nanofluid conveying is defined 

as [16-17]: 

   + 2  +  

+ +     (13) 

Where;  is fluid mass,  is the internal fluid 

velocity, and  is fluid viscosity.  

 

The fluid velocity of Knudsen number regarding the 

slip condition effects for nanofluid is defined as 

[18]: 

 

                                                      (14) 

Where;  refers to the average dimensionless rate 

of the free path taken by fluid molecules with a 

certain length of fluid geometry. The value can be 

higher than a centesimal for the fluid conveying 

nanotubes.  and  refer to internal and external 

nanotube radios,  refers to the fluid-induced 

pressure, and  refers to the adaptive tangential 

torque coefficient equal to 0.7 [19]. 

 [           (15)  

Due to the value of experimental parameters 

including    ,  =0.04 , and  can give 

[19]: 

               (16) 

Where;  is the total slip condition that is at (-1). 

 

In no-slip mode, Kn is equal to . Thus, the 

correction coefficient of average velocity can be 

expressed as [20]: 

 = [ ] (17) 

 

Hence, the equations can be obtained from the fluid-

solid interaction. The  must be replaced by 

 in the equations. Effective 

viscosity of a fluid can be also obtained by [20]: 

        (18)  

 

Thus, let have [20]: 

        (19) 

Where; refers to thermal force defined as [20]: 

         (20) 

Where;  and  are thermal 

expansion coefficient and temperature variances 

respectively. 

5. Hamilton's rule 

The equations of lateral movements of functionally 

graded nanotubes are estimated using the principle 

of variances [20]. 

  (21) 

Eq.21 is Hamilton's rule. Based on this rule, 

variances of strain energy, kinetic energy, and net 

externally applied workload are expressed as: 

       (22) 

[   (23) 

  

                (24)   
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If using Hamilton's rule,  is obtained as: 

    (25) 

 

The boundary condition for simple-simple support is 

defined as [21]: 

     
(26) 

 

6. Eringen's nonlocal theory 

In the nonlocal continuous foundation mechanics 

model, stress on a point is assumed as a function of 

strain value in all areas of an object. Hence, the 

corrective theory contains information about the 

force between atoms, and the internal measure scale 

enters as the material's parameter in the structural 

equations. Eringen's nonlocal theory is the same 

microscale phenomenon. Eringen expressed the 

correlation between strain and stress for the 

homogeneous and isotropic elastic solids as [22]: 

:              (27) 

In the equation above, (:) shows the tensor 

coefficient, and  refers to the elastic stiffness 

tensor.  is a nonlocal stress tensor,  is a classic 

stress tensor, and  is a strain tensor.  is a constant 

specific to any material, and  is the material's 

internal length.  

                        (28) 

Regarding the Eq.27, the equations of nonlocal 

anchors of functionally graded nanotubes can be 

defined as: 

                 (29) 

If replacing Eq.29 with Eq.25, let have: 

                                                                       
(30) 

 

 

Figure 1. An element of functionally graded 

nanotube 

To analyze the wave propagation in functionally 

graded nanotubes, a harmonic model is suggested to 

solve wave: 

                             (31) 

Where; k , , and  are respectively waves, circular 

frequency, and range. If replacing the equation in 

Eq.29, let have: 

                         (32) 

Where;  

 

 

(33) 

 

 

 

          
(34) 

 

      

The cut-off frequency is the frequency, at which the 

imaginary part becomes the number of the real 

wave. If placing  in Eq.32, let have: 

                                   (35) 

Eq.32 is the solution to the desired project's 

problem, and the equation must be formulated in 

MATLAB to obtain appropriate diagrams. 

In this study, the results are obtained in three modes 

including p=0, p=1, and p=2. If we have p=0, it 

means that there is an isotropic homogeneous beam. 

With  variances,  and  are obtained from the 

equations below.  
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               (36) 

            (37) 

                                         (38)  

                                             (39) 

       

                                                 (40) 

                                        (41) 

In the equations above,  is volume fraction, ، is 

stiffness ratio,  is mass ratio, and  is a constant 

defines changes of materials' properties 

longitudinally. 

 

Results  

Using the equations of the methodology, and 

MATLAB encoding, frequency variance, and 

damping ratio diagrams are drawn due to various 

parameters.  
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Figure 2. Wave frequency variance diagram due to 

wave number per different values of ceramic to 

metal stiffness ratio without surface effect 
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Figure 3. Wave frequency variances due to wave 

number per various values of ceramic to metal 

stiffness ratio with surface effect 

 

 

Figures 2 and 3 illustrate wave frequency variances 

per wave number per various values of stiffness 

ratio with and without surface effect. An increase in 

wave number increases the frequency in both 

modes. However, an increase in frequency with 

surface effect is more than it without surface effect. 

Also, frequency has been increased with the increase 

in stiffness ratio in both figures.  
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Figure 4. Frequency variances due to microscale 

parameters per various wavenumbers in p=1, p=2, 

, and  =2 

 

 

Figure 4 illustrates frequency variances due to 

microscale parameters per various wavenumbers in 

p=1 and p=2. The stiffness ratio and mass ratio in 

this figure are obtained at 2. Variances in wave 

number show that an increase in wave number 
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increases the frequency, and an increase in 

microscale parameter decreases the frequency. Also, 

the frequency in p=1 is more than p=2. This means 

that per linear volume fraction, higher frequency 

values can be obtained compared to exponential 

mode. Moreover, using size effects is important in 

the designation of nanotubes, and the classic model 

has a higher frequency than the nonlocal model.  

 

 

Figure 5. Frequency variances per wave number 

with and without elastic foundation in =2  و    

=2 

 

 

Figure 5 illustrates the frequency variances per wave 

number with or without elastic foundation in p=1 

and hardness and mass ratios. As the figure 

illustrates, the frequency is almost the same with and 

without elastic foundation in both cases. Then, the 

increase in frequency with elastic foundation is 

increased rapidly. Also, increased frequency without 

an elastic foundation is lower than it with an elastic 

foundation.  

 

 

Figure 6. Frequency variances due to nanofluid flow 

velocity per various stiffness ratios for p=0, p=1, 

and p=2 

 

 

Figure 6 illustrates frequency variances due to 

nanofluid velocity per various stiffness ratios for 

p=0, p=1, and p=2 modes. The mass ratio in this 

figure is equal to 1 and an increase in flow velocity 

can increase the frequency. Variances in stiffness 

ratio show that in stiffness ratios of 2, 3, and 5 in 

p=1 and p=2, an increase in stiffness ratio can 

increase the frequency. However, frequency is the 

same in p=0 per various stiffness ratios. The 

frequency is also decreased in p=1 and also p=2 

modes. 

 

Figure 7. Frequency variances due to Knudsen 

number per various mass ratios 

 

 

Figure 7 illustrates frequency variances due to 

Knudsen number per various mass ratios. The 

stiffness ratio in this figure is equal to 1. Frequency 

is firstly decreased and then increased with an 

increase in the Knudsen number. Also, due to 

variances of mass ratio, it could be found that 

increased mass ratio can decrease the frequency. 

The initial variances can be due to flow velocity on 

walls.  
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Figure 8. Frequency variances due to magnetic field 

intensity per various initial stress ratios in =3 and 

=3 

 

Figure 8 illustrates the frequency variances due to 

magnetic field intensity per various initial stress 

ratios. The stiffness ratio and mass ratio are obtained 

at 3. An increase in magnetic field intensity 

increases the frequency, and an increase in initial 

stress increases the frequency. 

 

 

Figure 9. Frequency variances due to spring 

modulus (Winkler) per various magnetic field 

intensities 

 

Figure 9 illustrates the frequency variances due to 

spring modulus per various magnetic field 

intensities. The stiffness and mass ratios are equal to 

1 in this figure. An increase in spring modulus 

increases the frequency, and an increase in magnetic 

field intensity decreases the frequency. 

 

 

Figure 10. Frequency variances due to shear 

modulus per various flow velocities in =3 and 

=3 

 

Figure 10 illustrates frequency variances due to 

shear modulus per various flow velocities. The 

stiffness and mass ratios are equal to 3 in this figure. 

An increase in shear modulus increases the 

frequency and an increase in flow velocity increases 

the frequency. The figures show that an increase in 

spring and shear modulus could increase wave 

frequency. The more the stiffness of the surrounding 

area of the functionally graded nanotube including 

spring and shear modulus becomes, the more the 

wave frequency increases.  
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Figure 11. Frequency variances due to temperature 

from 0 to 1000°C per 0, 45, and 90° angles of the 

magnetic field with the horizon in =2 and =2 

 

Figure 11 illustrates the frequency variances due to 

temperature per various magnetic field angles with 

the horizon. The stiffness and mass ratios in this 

field are equal to 2. With an increase in temperature, 
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the frequency remains almost unchanged; although 

it could be found that it is increased if looking more 

carefully. Also, an increase in horizontal magnetic 

field angle under fixed temperature could increase 

the frequency. In other words, the functionally 

graded nanotube modeling must be done under a 

horizontal magnetic field angle that is more stable 

than other modes.  

The damping ratio is a dimensionless value in 

physics to show the way to analyze a fluctuating 

system and is shown with . The damping ratio is 

the same imaginary part of frequency divided by the 

real part. 

                    (41) 
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Figure 12. Damping ratio variances due to stiffness 

ratio per various nanotube thicknesses in  

 

 

Figure 12 illustrates the damping ratio variances due 

to the stiffness ratio per various nanotube thickness 

values. The mass ratio in this figure is given 3 and 

an increase in stiffness ratio decreases the damping 

ratio. Also, an increase in nanotube thickness 

decreases the damping ratio.  
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Figure 13. Damping ratio variances due to mass 

ratio per various flow mass densities in  

 

 

Figure 13 illustrates the damping ratio variances due 

to mass ratio per flow mass density. The stiffness 

ratio in this figure is given 5 and an increase in mass 

ratio decreases the damping ratio. Also, an increase 

in flow mass density decreases the damping ratio.  

 

Table 1. Frequency variances due to microscale parameter variances 

 

 

 

 

 

0.10*  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0928 (THZ/2  

 

 

0.0926 (THZ/2  

 

 

0.0919 (THZ/2  

 

 

0.0909 (THZ/2  

 

 

0.0896 (THZ/2  

 



Copyrights @Kalahari Journals  Vol. 6 No. 3(December, 2021) 

International Journal of Mechanical Engineering 

4180 

Table 1 has presented the frequency variances due to the microscale parameter. The stiffness and mass ratio is 

equal to 2 in the table. The constant wave number shows that an increase in microscale parameter decreases the 

frequency. 

 

Table 2. Frequency variances due to flow velocity variances 
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Table 2 has presented the frequency variances due to 

flow velocity variances. The stiffness ratio is equal 

to 5 and the mass ratio is equal to 1 in the table. In 

various p modes, an increase in flow velocity has 

increased the frequency. The frequency in p=2 is 

higher than p=1, and p=0 shows the lowest 

frequency. 

Conclusion 

The results obtained from this study showed that the 

frequency was increased with and without surface 

effect, along with an increase in wavenumber. 

However, an increase in frequency with the surface 

effect is more than it without the surface effect, and 

the frequency is increased in this mode as a result of 

increased stiffness. An increase in microscale 

parameters increases the frequency. This shows that 

using the effects of size in the designation of 

nanotubes is an underlying factor. Also, the 

frequency in p=1 mode is more than p=2, and this 

means that the frequency per linear volume fraction 

mode is higher than in exponential mode. Also, the 

classic model showed a higher frequency than the 

nonlocal model. 

With an increase in wavenumber, frequency 

increases with an elastic foundation more than it 

without an elastic foundation. An increase in flow 

velocity increases the frequency. In p=1 and p=2 

modes, frequency increases with increased stiffness. 

In p=0 mode, frequency is the same per various 

stiffness values. The frequency is low in both p=1 

and p=2 modes. An increase in Knudsen number 

causes decreased frequency at the first and increases 

it then. The initial variances are because of flow 

velocity on the walls. In this mode, frequency is 

decreased as a result of the increased mass ratio. 

An increase in magnetic field intensity increases the 

frequency. The physical change in this incremental 

process is that the nanotube loses its balance with an 
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increase in magnetic field intensity, and faces a little 

turbulence. On the other hand, the nanotube tends to 

return to a balanced mode in the short term, and this 

makes a couple between the magnetic field and the 

nanotube's wave behavior, which increases the 

frequency. Also, an increase in initial stress 

increases the frequency. An increase in spring 

modulus increases the frequency, and the increased 

shear modulus increases the frequency too. The 

more the stiffness of the surrounding area of 

functionally graded nanotube including spring and 

shear modulus increases, the more the wave 

frequency would be increased. 

An increase in temperature increases the frequency 

slightly, and an increase in horizontal magnetic field 

angle in fixed temperature increases the frequency. 

It would be better to take the model functionally 

graded nanotube under a magnetic field horizontally 

because it is more stable than other modes. An 

increase in stiffness ratio decreases the damping 

ratio, and an increase in flow mass density decreases 

the damping ratio too.  

In this field, further studies must use visco-

Pasternak's foundation to analyze the system wave 

propagation. Also, further studies must use other 

beam theories such as Riley, Timoshenko beam 

theory (TBT), and higher-order beam theory for 

further studies. 
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