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Abstract: 

The structural integrity of underwater welds is 

critical to the dependability of welded offshore 

constructions. The weld bead shape predicts the 

weld's soundness. This article uses artificial neural 

networks to optimise welding process parameters 

and the aqueous environment. The neural network 

learning algorithm manages the welding current, 

voltage, contact tube-to-work distance, and speed. 

This study shows how to achieve suitable weld bead 

width (W), penetration (P), and reinforcing (R). This 

effort will lead to solid welding activity for offshore 

building companies. 

1.Introduction: 

The differences in the weld quality for underwater 

welding as compared to air welding have made it 

very necessary to model an artificial neural network 

(ANN) which is capable of solving difficult and 

complex problems. The weld bead geometry of an 

underwater wet welding can be predicted by the 

neural network control of the input parameters as 

shown in Figure 1. The water surrounding the weld 

metal results in a fast cooling of the weld, thereby 

reducing the ductility and tensile strength of the weld 

metal by 50% and 20%, respectively (Brown and 

Masubuchi 1975). The effect of the water 

environment and the water depth on the welding 

process parameters significantly affects the quality 

of welds achieved underwater. The diffusible 

hydrogen contents are increased at lower water 

temperature for lower oxygen content. The increase 

in the diffusible hydrogen content leads to increase 

in the susceptibility of steels to hydrogen-assisted 

cracking (Johnson 1997). The water depth plays a 

role in the stability of the welding arc. Increased 

water depth constricts the arc, thereby resulting in an 

increased current and voltage as the water depth 

increases. An increasing water depth decreases the 

operating process parameter space (Liu et al. 1993). 

This paper proposes suitable means of optimizing 

the welding process parameter using a neural 

network so as to minimize the effect of the cooling 

rate and water depth in underwater welding. The 

main goal is to achieve a weld bead geometry which 

will give the weld metal the recommended structural 

integrity as prescribed by the underwater welding 

specification code AWS D3.6M:2010 (AWS 2010). 

Methods  

Underwater welding 

Underwater welding is used for the repair welding of 

ships and offshore engineering structures like oil 

drilling rigs, pipelines, and platforms. The 

commonly used underwater welding processes 

nowadays are shielded metal arc welding (SMAW) 

and flux cored arc welding (FCAW). The water 

surrounding the weld metal reduces the mechanical 

properties of weld done underwater due to the effect 

of the fast cooling rate of the weld. Heat loss by 

conduction from the plate surface into the moving 

water environment and heat loss by radiation are the 

major heat losses in underwater welding. 

Underwater welding requires a higher current for the 

same arc voltage to achieve a higher heat input as 

compared to air welding. The fast cooling rate of 

underwater welding results in the formation of 

constituents such as martensite and bainite for 

conventional welding of steels. These constituents 

lead to a high-strength, brittle material and 

susceptibility to hydrogen-induced cracking. The 

weld bead shape for underwater wet welding are 

more spread out and less penetrating than air welds. 

Underwater welding arc is constricted at increased 

depth or pressure. However, welding in shallow 

depth is more critical than that in higher depth. The 
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unstable arc results in porosity which affects the 

soundness of the weld. Weld metal carbon content 

increases with increase in water depth. Also, 

manganese and silicon which are deoxidizers are 

increasingly lost at increased water depth. 

 

 

Figure 1 Welding input vs output parameters. 

 

Artificial neural network: 

A neural network is a data modeling tool that 

captures and represents complex input/output 

relationships. A neuron gets signals from its input 

links, computes a new activation level, and sends an 

output signal through the output link(s). The learning 

algorithm is the procedure to modify the synaptic 

weights of the network to achieve the desired 

objective of the design. Weights are the basic means 

of long-term memory in artificial neural networks. 

The multilayer perceptron neural network (NN) is 

the most applicable network architecture in use 

today. 

 

Figure 2 Multilayer perceptron. 

 

Figure 3 Three-layer backpropagation neural 

network 

Each unit as shown in Figure 2 undergoes a biased 

weighted sum of its inputs and passes it through an 

activation function to produce its output. These units 

are arranged in a layered feed forward topology. The 

multilayer perceptron neural network learns using 

backpropagation algorithm as shown in Figure 3. In 

backpropagation algorithm, the input data is 

repeatedly presented to the neural network. In each 

presentation, the output of the neural network is 

compared to the desired output, thereby computing 

an error signal. The error is presented back to the 

neural network to adjust the weights in a manner that 

the error decreases with each iteration and the neural 

network model gets closer to the desired target. 

Figure 3 illustrates a neural network using the 

backpropagation algorithm whereby the weight is 

changed as the iteration increases, thereby reducing 

the error and getting closer to the desired target. 

Summary of the backpropagation training algorithm 

The summary of the backpropagation training 

algorithm is illustrated as follows 

Step 1: Initialization 

 

Set the weights and threshold levels of the network 

to uniformly random numbers distributed in small 

range. Fi is the total number of inputs of neuron i in 

the network. 

Table 1 Experimental data adapted from 

 

Step 2: Activation 

Activate the backpropagation neural network by 

applying inputs x1(p), x2(p), …, xn(p) and desired 

output yd,1(p), yd,2(p), …, yd,n(p). 

(a)Calculate the actual outputs of the neurons in the 

hidden layer: 

 

where n is the number of inputs of neuron j in the 

hidden layer and sigmoid is the sigmoid activation 

function. 
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(b)Calculate the actual outputs of the neurons in the 

output layer. 

 

where m is the number of inputs of neuron k in the 

output laye 

Step 3: Weight training Update the weights in the 

backpropagation network propagating backward the 

errors associated with output neurons. 

(a)Calculate the error gradient for the neurons in the 

output layer: 

 

Step 4: Increase iteration p by 1, go back to step 2, 

and repeat the process until the selected error 

criterion is satisfied. 

Results and discussion: 

         The ANN scheme to predict the weld bead 

geometry in underwater wet welding is shown in 

Figure 1. The aim is to map a set of input patterns to 

a corresponding set of output patterns by learning 

from past examples how the input parameters and 

output parameters relate. A feedforward 

backpropagation network trained with scaled 

conjugate gradient (SCG) backpropagation 

algorithm is used. The quality of the weld can be 

verified when the training pattern fulfills the 

requirement for the accepted ranges of WPSF 

(penetration shape factor) = W/P and WRFF 

(reinforcement form factor) = W/R. The accepted 

ranges for a weld with good quality are a maximized 

penetration to width ratio and minimized undercut 

and reinforcement. 

Table 2 Program algorithm 

 

Design parameters  

The experimental data values in Table 1 for process 

parameters, water depth and bead geometry are the 

values used for the training of ) the neural network. 

These values are from an experimental data adapted 

from the work of Shi et al. (2013). The error results 

for each testing are included in the modified table 

(Table 1). The errors in italics are the errors from the 

training which are big and not desirable. A smaller 

error tending to zero is desired or an actual zero 

which is however not so easy to achieve. 

Program algorithm 

 There are five input parameters and three output 

parameters in this model (Table 2). The training 

(Figure 4) was done for all the sets of data, so also is 

the testing. The target is to achieve an error value of 
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0. The size of the hidden layer was obtained by 

iterative adjustment while measuring the error 

during the neural network testing (Nagendra & 

Khare 2006). The network for this study  has two 

layers; there are 40 neurons in the hidden layer. In 

this study, the neural network should ideally be able 

to learn and understand the interaction between the 

welding process parameters. There are different 

training algorithms for different processes. The SCG 

backpropagation algorithm was used for the training 

of the network because it is suitable for the training 

of larger networks. Other training algorithms had the 

problem of overfitting caused by overtraining, 

resulting in memorization of input/output instead of 

analyzing them on the internal factors determined by 

the updated weights. The learning rate used is 0.001 

and it gave satisfactory results. In artificial neural 

networks, a high learning rate may lead to 

overshooting, while a slow learning rate takes more 

time for the network to converge. 

Validation performance: 

 

Figure 4 Neural network training tool 

 

Figure 5 Validation performance curve. 

 

 

Figure 6 Regression plot 

Epoch is a single presentation of each input/output 

data on the training set. It indicates the iteration at 

which the validation performance reached a 

minimum The training continued for 1,123 more 

iteration before the training stopped. Figure 5 does 

not indicate any major problems with the training. 

The validation and test curve are very similar. If the 

curve had increased significantly before the 

validation curve increases, then it is possible that 

some overfitting might have occurred. The final 

mean squared error (MSE) is small, which is 

9.1499e−4 at zero epoch. The MSE is used to gauge 

the performance of the network. The MSE is an 

average of the squares of all the individual errors 

between the model and the real measurements. The 

MSE is useful for comparing different models with 

the same sets of data. 

Regression analysis 
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This plot is used to validate the network 

performance. The regression plots in Figure 6 

display the network outputs with respect to targets 

for training, validation, and test sets. For a perfect fit, 

the network outputs are equal to the targets. The fit 

for this problem is reasonably good for all data sets 

with R values in each case at least 0.96637. These 

results are achieved by retraining which changes the 

initial weights of the network. In this problem, 100% 

of the data sets were used for training, validation, 

and testing of the network generalization. 

Controller for underwater wet welding process: 

 

Figure 7 is a proposed schematic diagram for a 

possible control of underwater wet welding in which 

the NN optimization of the welding process 

parameter can be applicable. The NN model in this 

paper will be an essential part in the control 

architecture of the proposed controller with the aim 

of designing a robust controller for underwater wet 

welding process, and further research work is 

necessary in this regard. The preliminary 

explanation of this possible controller is highlighted 

in this section. The control system is aimed at 

controlling the welding process parameters for 

different measured water depth H; the water depth is 

not a control parameter but a measured parameter as 

welding is being carried out at different water depth. 

The water depth for the welding process is measured 

as the depth changes. This change in the measured 

water depth consequently changes the welding 

process parameters which in turn alters the bead 

geometry W, R, and P. The fuzzy controller 

compensates for this change and modifies the 

welding process parameters I, u, V, and D. The 

inverse NN has a constant parameter value which is 

the desired bead geometry parameter as inputs to the 

inverse NN and best parameter of the welding 

process as the output from the inverse NN. The error 

values for the training in experiment 1 from Table 1 

are the best set of parameters because the errors for 

W, R, and P are closer to zero compared to the values 

for the other experiments. The constant output 

parameters I0, U0, v0, D0, and H0 which is the water 

depth at zero position from the inverse NN are 

summed up with the difference from the change in 

the output parameters ΔI, ΔU, Δv, ΔD, respectively, 

of the fuzzy controller, and this compensates for the 

change in the welding process parameters and inputs 

the adjusted welding process parameter to the 

welding machine. For every measured change in the 

water depth H, a change in the bead geometry ΔW, 

ΔP, and ΔR which is the input to the fuzzy controller 

is modified and gives an output of ΔI, ΔU, Δv, and 

ΔD. The welding process parameter from the 

welding machine is equal to the NN forward model, 

and as such, any change in the NN forward model is 

a subsequent change in the welding process itself. 

This control mechanism is a possible robust control 

process of the welding process and eliminates the 

need for online measurement of the weld bead 

geometry. 

 

Figure 7 Controller design schematic diagram. 

 

Conclusions: 

The optimization of the parameters that affect weld 

bead geometry during underwater welding can be 

done by artificial neural network training algorithm. 

In this study, the regression analysis show that the 

target follows closely the output as R is at least 96% 

for training, testing, and validation. The trained 

neural network with satisfactory results can be used 

as a black box in the control system of the welding 

process. The effective optimization of the welding 

process parameter in underwater wet welding has the 

ability of welding with an optimized heat input and 

optimized arc length which will guarantee arc 

stability. The use of optimized process parameters 

enables the achievement of an optimized weld bead 

geometry which is a key factor in the soundness of 

welds. The control process for underwater welding 

as suggested in this paper requires further research 

so as to fully apply the NN optimization process. 
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