
Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

3999

ISSN: 0974-5823 Vol. 6 No. 3 December, 2021

International Journal of Mechanical Engineering

An Evolutionary Technical & Conceptual Review

on High Performance Computing Systems

Abstract— Computing and Communications are two major

distinct components in the field of Computer Science and

Engineering. These two components with a vast technological

improvement inherently affect the economic and financial

development of the country. Many engineers and researchers

made multiple successful attempts to make the communication

faster. At the same time there are many major developments

and progress are being made in the high-performance

computing field. The evolutionary concept of High-Performance

computing is yet a very long journey, this improvisation based

on different parts of the computer and processing units. High

Performance evolution still needs most researchers’ complete

attention so as to contribute for its advancements to solve the

high complexity of today’s world engineering and research

application. In this article we mainly focus on the overview of

the progressive work on high performance computation. This

article mainly discusses the historical and evolutionary

improvements on this topic, ultimately will be helpful to solve

and attempt most advanced high-performance systems and

extreme complex science and engineering research problems in

the high-performance research fields.

Keywords—high performance, HPC Survey, computation

evolutions, HPC Importance

I. INTRODUCTION

The technological devolvement along with socio-
economic development is completely based on the computing
performance and hence the overall development of the
society, community and the ultimately the nation. With the
evolution of computer science and engineering technology,
the performance of the systems is improved for the single node
system in old age systems and then now a days its improved
for the multi-cluster systems platforms. In single node
processors the high-performance concepts applied onto
different component of the system e.g., the speed of the
processor, the I/O processing speed, instruction processors
pipeline executions etc. A single node system could process
up to a maximum of 10¬15 FLOPS (Floating Points
Operations per Seconds). This opened a wide door towards the
multi-core processors evolution in the field of the high-
performance computing technology. The multi-processor
system depends on a shared memory system and could operate
upto a maximum operation of 40X10¬15 FLOPS.

The rise of Super Computers makes a major and
significant difference in this high-performance computing
field. The performance speed is 100 quadrillion FLOPS [2].
After Super Computer evolution, then several successful
attempts made for the computer clustering concepts [3]. In a
computing cluster, multiple multi-core systems configured to
share the load of the processing and IO operations. So, the load

to do similar or homogeneous tasks are distributed among the
different nodes and the output is resulted. This is much useful
in many commercial and legacy applications where multiple
requests (e.g. web requests) earlier used to be computed on
single machines, now capable to be processed on multiple
nodes and the result(response) is provided to the requesting
systems.

Subsequently the Distributed Computing, Parallel
Computing and Cloud Computing come as major contributing
factors for high performance factors. In distributed
computing, same task is processed in different geographically
located systems (single node or cluster nodes). Usually cluster
nodes are configured in each geographical location and
connected over the network with appropriate network
topology. Parallel computing is the part of the computation
where different tasks are being processed in different
processors and the result is gathered from different processors.
The integrated combined results are provided as the output.
This computing technique is very much helpful for the
heterogenous tasks which executed in parallel to ensure the
fastness of the processing.

The organization of this article is as follows. In next
section, we’ll overview each field of HPC and subsequently
focus on related advancement of research work. Following
sections, we’ll go over the recent technological advancements
of the HPC. We’ll conclude this article with our conclusion.

II. THE IMPORTANCE & INTERNATIONAL FOCUS

In this section, as reference [12], the different nation’s
HPC initiatives and the investment is shown.

TABLE I. HPC INITIATIVES AND NATIONS INVESTMENTS

Country HPC Initiatives M$/Yr

US NSCI 320
China 13th 5-Year Dev Plan [DMES] 200
Japan Flagship 2020 Plan 200

Eur Union ExaNeSt; PRACE; ETP4HPC 1100
India National Super Computing Mission 140

South Korea National Super Computing Act 20
Russia HPC Focus Modernization Program N/A

This provides the significance of the high-performance
computing research in the field of computer science and how
the leading nations are much thoughtful and are ensuring the
high investments to enhance the computing accessibility and
faster communications in world’s geography.

Nilayam Kumar Kamila

Research Scholar, CSE Dept.
Shri Venkateshwara University,

Gajraula, India

Subhendu Kumar Pani
Principal

KCA, Biju Patnaik University of

Technology

Bhubaneswar, India

Pawan Kumar Bharti
Hon’ble Vice Chancellor

Shri Venkateshwara University,

Gajraula, India

Sarbananda Sahoo
Professor & Dean(School of

Commerce & Management)

Shri Venkateshwara University,

Gajraula, India

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

4000

III. OVERVIEW & HISTORY OF HIGH-PERFORMANCE

COMPUTING

A. Overview

The concept of high-performance computing refers to the
achievements of the improved performance over the existing
system by upgrading the design, flow or integrating additional
computational units. The central idea of high-performance
computing is to accomplish the objective to process high load
of data and information with a greater speed to provide the
processed result in less amount of time. This idea is always an
ever-changing concept to acquire the high-speed performance
over current systems or current platforms. In a nutshell, the
concept of high-performance computing is the concept of
continuous evolution and improvements of itself.

B. History & Background

There is always a competition that the high-speed could

always be archived through the modification of the underlying

hardware units and the network topology Vs the

improvements of the system software (operating systems and

related other usable software) and the application software.

However, in reality, all the components on high level

contributes towards the high-performance computation. In the

computer science world union and integration of multiple

hardware units along with the installation of supporting

system and application software establish the way for solving

the growing computational need. Research data shows that

there are mainly two models of task execution e.g., Single

Instruction Multiple Data (SIMD) and Multiple Instruction

Multiple Data (MIMD).

The High-Performance computing concept has started its
initial evolution in 1950. At the time, only mainframe is the
only commercial computing mechanism and serve the handful
leading organizations. Billing was considered to be the main
task for almost all business organizations and at most a batch

process might require the billing consolidation or day end
process.

TABLE II. DIFFERENCE SIMD VS MIMD

SIMD MIMD

Defined as Single Instruction
Multiple Data

Defined as Multiple Instruction Multiple
Data

Less Memory Required Large Memory Required
Less Expensive More Expensive than SIMD
Based on Single Decoder Based on Multi Decoder
Synchronous Programming Asynchronous Programming
Efficient than Single Data
Processing Model

Efficient than SIMD

Defined as Single Instruction
Multiple Data

Defined as Multiple Instruction Multiple
Data

The jobs are sequentially processed one after another as
there was no concept of parallel execution mechanism. There
was no interaction required and multiple jobs were
sequentially programmed which does not require manual
human interaction. JCL (Job Control Language) was the
language mainly used for the sequence batch job
programming.

In the era of Personal Computing, there was a requirement
of incremented performance which came in the year of 1970s.
In personal computing, the computer speed had to match the
moderately faster computing expectations. Inventions of
vector computing in the field of super computers CRAY-1 in
1976, was a major achievement in the history of HPC. This
computer systems use Reduced Instruction Set (RISC)
processors and vector-based registers fulfills the computing
need till the period of late 80s. IBM with RISC
microprocessors used the butterfly interconnection network
allows the programmers and engineers to integrate shared

memory caching systems with data storage units and
processing units. In beginning of 90s, Dual Access Storage
Handling (DASH) was designed by Stanford University.
Distributed Memory Cache consistency was archived with
multiple data directory structures. This widens ideation and
research for innovative architectures in shared caches and
landed onto major processors’ architecture developments.
More and more commercial microprocessors and
interconnections with data storages using several layers of
caches are one of the major achievements at that period. This
concept of interconnectivity between the different
computational units leads to the idea of interconnection
between the computers, resulting the concept of clustering.

IV. LITERATURE SURVEY – HPC EVOLUTIONS

We listed the historical progress of the High Performance

Computing below. The traditional approach for the evolution

is based on the specific server systems and scoped to the

clustered platforms. While few authors attempted and

Fig. 3. Computing Node Clustering in HPC

Fig. 1. SIMD Model

Fig. 2. MIMD Model

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

4001

successful in the performance improvements of single

machines and its underlying architecture, the other authors

mainly focused onto the multi-systems and cluster platform’s

performance.

TABLE III. HISTORICAL PROGRESS SURVEY AND ANALYSIS OF HIGH

PERFORMANCE COMPUTING

Author, Year Study Abstract

Jones et. Al, 2011 Single Machines Performance limitation of 1015

FLOPS
Gerber et. Al, 2012 Multiple independent units construct the HPC

System. A control node/unit then capable to
establish the distributed working load for the HPC.

E-sciencecity. Org,
2015

Processing & Data Storage with memory caching
& sharing system. Parallel

Buyya et. al, 1999 Discuss about cluster management, deployment,
interconnection and its monitoring

Kalcher et. al, 2007 Control node failure and how it fails the entire
cluster systems. Discuss about the blade servers,
simple installation and low power consumptions

Kohlmeyer et. al, 2010 Introduction of Load-Reduced Dual In-line
Memory Module (LRDIMM) and reduce the load
on server bus and low power consumption

Jacob et. al, 2015 Multi Stage Pipeline run to n-times fasten the
process.

Barragy, 2007 HPC cluster includes Computing Node, head node,
Gigabit Ethernet, Global Storage Systems

TOP500.org, 2015 Computing Performance up to 308.9 PFLOPS in
2014 as compared to 1.1 TFLOPS 1993

Barney, 2015 Time Parallelism and Space Parallelism with
concurrent competing by multiple processors

The figure shown is a classic organization of different
components which contributes towards the cluster
computing. In this cluster-based model, multiple
computing nodes are closely working together with the
shared storage systems and with a common disk storage
system. There is a user control node which manages all
users; their user request and submit the user requests as a
job to be processed by multiple computer node. The
master node basically a master control node which
controls all the computing nodes and other different
computing units incase of any issues, errors or fault
occurs during the system process. This concept is a very
widely used model in the era of ~2000 and till date the
base multi node concept is still in use in today’s advanced
clustering concept.

V. HIGH PERFORMANCE COMPUTING – MAIN STREAM

COMPONENTS

We gathered few of the main study of the high-
performance computing. In 2020 Stephen J Ezell and et. al
provide a detailed study on the importance of high-
performance computing and how every nation is more focused
on the high-performance computing research. The importance
of the programming languages, the parallel computing
concept advancement was deeply discussed by H.J Sips et. al.
The library design, performance tuning and compatibility with
different processor and computing components and it’s
adequate designing for tomorrow’s high-performance
computing is well analyzed and massive development
activities are in progress by DK Panda et. al. We also refer the
various base conceptual views and it’s historical relevance in
today’s world high performance computing is discussed in the
book written by A.D. Kshemkalyani et. al. In 2012, M. Pharr
discussed about a language feature which provides a 35X high
performance on Intel R® SPMD Program Compiler (ispc).

TABLE IV. RECENT PROGRESS SURVEY ON HPC

Author, Year Study Abstract

Stephen J. Ezell and

Robert D. Atkinson,
2020

Importance of High-Performance Computing

H.J. Sips, 2009 Programming Languages and the Parallel
Programming

DK Panda et. al, 2021 High-Performance MPI Library and Designing of
MPI Library for AMD GPUs

A.D. Kshemkalyani,
M. Singhal, 2015

Discussed on the Conceptual view of Distributed
Computing Principles, Algorithms, and
Systems

Li Luxingzi, 2015 High Performance Computing Applied to Cloud
Computing

Andrews, Gregory R,
2000

Discuss on foundation of Multithreaded, Parallel,
and Distributed Programming

M. Pharr and W. R.
Mark, 2012

Intel R® SPMD Program Compiler (ispc)
Language Feature with 35x speedups on a 4-core
system for high-speed performance

We are now proceeding to briefly discuss on different
computing model and units which contributed a lot of
performance scales towards today’s world high-performance
computing model.

A. Instruction-level parallelism

Instruction level parallelism is a very thoughtful concept
provided by Seymour Cray in late 1970, and later this concept
was headed by Cray Research. Initially this Instruction level
Parallelism was developed for the Super Computers using the
pipelining for multiply and add/subtract module. Later this
was extended by Roger Chen, James Bradley and By Mid of
1980s, almost multiple companies implemented this
instruction level parallelism from different parts of the world.

As shown in the figure, there are different instruction
commands e.g. Instruction Fetch (IF), Instruction Decode
(ID), Instruction Execution (EX), Memory Operation (MEM)
and Write Back (WB). Before the introduction of instruction
level parallelism, the instructions were executed sequentially
i.e. the second instruction I2’s Instruction Fetch Cycle (IF)
operation was starting at Cycle 6 ticks i.e. at C6 and continues
to end at C10 clock tick. However, with Instruction
Parallelism, it starts at clock tick C2 and ends at C6 cycle tick.

 This saves 4 clock ticks than the sequential mechanism of
instruction pipeline execution.

Fig. 4. Instruction Level Parallelism

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

4002

B. The storage hierarchy & IO Processing

The Storage hierarchy plays a major role in the field of
high-performance computing. The major discovery of the
structural alignments of storage hierarchy is to optimize the
storage capacity vs the access latency.

The more storage capacity unit, the more access latency
time. Therefore, the early researchers and designers has

implemented a system which is based on the faster access unit
closer to the CPU.

That in turn means, the high-capacity devices are accessed
at the end if the data and/or instructions not found in the faster
access units e.g., cache or main memory. Cache is also stacked
into different levels e.g., level-1 cache, level-2 cache, so to
avoid the cache miss situation during the data/instruction
search by the CPU in the cache. If the data could not detect in
the cache, the main memory is fetched with the mechanism
direct mapping, associative mapping and direct associative
mapping techniques.

The figure shows for the Access latency and storage
capacity. Registrar which is the closest variable for the
Processor has the least capacity with faster access response
time(low latency time). Similarly Caches (often used as level
1 cache and level 2 cache) has the faster access time and less
capacity than main memory.

Main memory component is the unit where all the
instruction code and data to be made available before any
program execution. Main memory has the low latency and
with moderate storage capacity but could not hold the data as
like the hard disc or magnetic tapes. Hard disk or Magnetic
tapes has the high latency time and has the high storage
capacity.

C. High Performance Compilers & Program Parallelism

There is a significant contribution of the compilers and
program parallelism [13] towards the high-performance
computation. Program parallelism was not achieved till the
year 1990s and used the following steps for the evaluation and
examination.

 Evaluation of compiler transformation ability

 Examine the output of compiler execution

 Performance measurement against another compiler

 Comparison of fully optimized compiler performance

 Comparison of compiler parallel execution
performance

The parallelism in compilers execution ability is extremely
powerful for achieving the parallel execution of program

instruction and hence a true contribution towards the high-
performance computation.

In real-time high-performance execution there are a lot of
exercise is performed in planning a designing of the
application. The concurrent program unit execution, data
results integration is one of the major challenges for the
program installation in scope. The underlying programming
model must be suitable to adopt the different models’
parallelism view. In general, there are various models are
considered e.g., farmers workers model, data parallelism and
functional parallelism mode.

Farmers Worker Model: In framer worker model, the main
program creates multiple similar tasks. Those small tasks will
be executed by different working threads and then the small
task execution results will be produced. When the smaller task
execution completed, it’ll request the parent process to get
assigned more task to be processed. The farmer worker model
is best suitable to produce consistent and constant statistics,
just to ensure each of the worker component evenly loaded
and executed in a constant manner.

Data comparisons: In a computational data model for
calculation, the division of data frames is a great force for
finding similarities. The developer, using this model, begins
by classifying all the appropriate data structures and then
assigns each structure to a processor (or process). The
following calculation follows this division of the allocation,
meaning that the allocation of the data structure is done in the
processor (or process) in which the item is allocated (e.g., this
allocation includes the right-hand count for this allocation
statement.

Functional Parallelism: In certain cases, or parallelism
model, there is a scope to make a task to be split into two or
more number of dissimilar subtasks and each subtask executed
by multiple number of processors to achieve the parallelism.
This model most confirms to an acyclic process, and the
respective continuous flow of the task is divided into the
respective number of subtasks and is assigned to the sub
module responsible unit to get executed. All the dissimilar
tasks executed results then again collected through a common
module as shown in the figure. The integrated results then
provided as the output of the program structure. This model

Fig. 5. Processor Unit and Storage Hierarchy

Fig. 6. Access Latency and Capacity for Storage
Hierarchy

Fig. 7. Task/Program Level Parallelism Model –
Farmer/Worker Model, Data Parallelism, and Function

Parallelism

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

4003

most often referred as task parallelism. However, an eviction
clash formalism is essential for some of the specific demand
driven search operation so as to proceed for the next operation
execution.

D. Shared Memory Parallelism

In initial days of early 1970, the designers mostly focus to
inject a greater number of processors to achieve the hpc.

 In the shared memory parallelism, the data and
instructions are fetched through the Data & Instruction Bus
which is interconnected to the main memory and the data
storage. Multiple processors are connected to the main
memory to fetch the instructions and data for the parallel
processing.

E. Distributed Parallelism

Andrews, Gregory R in his study found that the OS
Architectures explored the message-passing technique in
1960s. The predecessor of internet (APRANET) invented and
installed the e-mail which was considered the first distributed
system in the history of computer science.

 Later in 1980s, with multiple conferences and
symposiums (e.g., Principles of Distributed Computing
(PODC), 1982 and International Symposium on Distributed

Computing (DISC), 1985), the distributed computing was
mainly focused and the advancements on the programmatical,
platform level was carried through.

Distributed computing is based on the message passing
techniques. Most of the computing task depends on the data
fetch from the remote sites. While it could be accomplished
by retrieving the data from the remote location and process at
an centralized location, many architectures inclined to process
the data at the site where the data is available and then get the
processed results. For example, as shown in figures, there are
4 different geographical locations, and hence the complete
computing nodes available in different geographical locations
and the data is available for patterning to the respective

geographical location.

If any data is required then the cross-region data
communication could be established and the relevant data
could be retrieved. This model serves to it’s best capacity to
ensure to serve maximum customers at their local site
including the rest of the needed clients/roaming clients at a
different geographical location through cross region
communication.

TABLE V. DIFFERENCE IN PARALLEL COMPUTING VS DISTRIBUTED

COMPUTING

SIMD MIMD

Multiple Operations Execution Independent Computing Systems in
different geographical location

Single Computing Unit Multiple Computing Unit
Multi Processors with
Shared/Distributed Memory

Multiple Computers with Distributed
Memories

Internal Service & Data Bus for
intra communication withing

Single Computing multi-
processor unit

Message passing based communication

Improved performance than
Single Processor System

High Scalability and fault tolerance.
Effective resource sharing.

Multiple Operations Execution Independent Computing Systems in
different geographical location

Single Computing Unit Multiple Computing Unit

In Todays’ most advance cloud computing model, this
concept of distributed computed is heavily implemented and
the study shows that most of the in- region traffic served with
very faster access mode and with cross region access it’s able
access the cross region with the acceptable latency and the
bottleneck in centralized system model is greatly reduced.

F. Scientific libraries

Scientific and Engineering libraries has a great impact
onto the high-performance computing model. These libraries
are mostly used to make application programming compatible

Fig. 10: Parallel Computing with Single Memory
Unit with Multi-Processor Access

Fig. 8. A General Construct of Shared Memory Parallelism

Fig. 9: Distributed Computing in different
Geographical location

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

4004

with parallel computing environment, distributed computing
environment etc. Recent study and developments show there
is some more development on implementational level and
designing level research in in progress in the field of MPI
libraries.

In the figure 11 as shown, the program initialization starts
at the initialize module through the program library, it then
creates the works process. The library then responsible to send
the data to different parallel functional module to get executed
on different data as shown.

The master node again collects the data from the worker
module and processes the integrated results to produce the
final results. The entire process execution is mainly supported

by the underlying programmed library which helps to achieve
the high-performance computing.

VI. CONCLUSION

In this article we study the historical details and evolution
of high-performance computing. We saw the differences in
concepts, the design concepts usability and the
implementational theory behind the proposed structure to
achieve the high-performance computation. Many models
have been adopted in different level of computational layers
e.g., instruction level parallelism, program level parallelism,
computer clustering concept to overcome the single unit super
computers, compilers support, program libraries contribution
towards high-performance computation. The evolution of
high-performance computation is a continuous improvisation
process and today’s world’s significant development
achievements are the outcome of the historical progress
discussed and reviewed in this article.

As a future scope, these studies refresh the high-
performance historical design models and it helps to refresh

few design improvements in today’s new concept on machine
and deep learnings. As a immediate scope, we will discuss the
advancements of the cloud models for the high-performance
computation as part of our future scope of the work.

ACKNOWLEDGMENT

This paper is a dedicated support and extensive motivation
from the members of The Science and Engineering Research
Council (TSERC).

REFERENCES

[1] J. Lindström, A. Hermanson, F. Blomstedt and P. Kyösti Multi-Usable
Cloud Service Platform: A Case Study on Improved Development Pace
and Efficiency in SCi Applied Sciences vol 7(316) pp 1-14, 2018

[2] S. Sridharan et al.(Intel Corporation) On Scale-out Deep Learning
Training for Cloud and HPC, SysML Conference, pp 1-3 Jan 2018

[3] L.F. Añover The High Performance Computing strategy and the
European Cloud Initiative, HPC User Forum, Horizon 2020,
September, 2017

[4] A. Tataru, Metrics for Evaluating Machine Learning Cloud Services,
JonKoping University School of Engg. Thesis Report, October 2017

[5] Steffen Rendle et. al (Google Inc.) Robust Large-Scale Machine
Learning in the Cloud ACM SIGKDD pp. 1125-1134 August, 2016

[6] M. Parekh, B. Saleena, Designing a Cloud based Framework for
HealthCare System and applying Clustering techniques for Region
Wise Diagnosis. in Elsevier ScienceDirect Procedia Computer
Science Vol 50 pp. 537 – 542, 2015

[7] J. L. Hennessy and D. A. Patterson, Computer Architecture, A
Quantitative Approach, Morgan Kaufmann - Elsevier, San Mateo, CA,
5th edition, 2012.

[8] G. Hager and G. Wellein, Introduction to High Performance
Computing for Scientists and Engineers, CRC Press - Taylor & Francis
Group, 1st edition, 2011.

[9] R. Gerber. The Software Optimization Cookbook: High-performance
Recipesfor the Intel Architecture. Intel Press, United States, 2002.

[10] S. Goedecker and A. Hoisie. Performance Optimization of Numerically
Intensive Codes. Society for Industrial and Applied Mathematics,
Philadelphia PA, 2001.

[11] W. Triebel, J. Bissell, and R. Booth. Programming Itanium-based
Systems. Intel Press, United States, 2001.

[12] Stephen J. Ezell and Robert D. Atkinson; “The Vital Importance of
High-Performance Computing to U.S. Competitiveness; in
INFORMATION TECHNOLOGY & INNOVATION
FOUNDATION April 2016 Page 1-57

[13] H.J. Sips, "Programming Languages For High Performance
Computers" Delft University of Technology, Delft, the Netherlands
https://cds.cern.ch/record/400331/files/p229.pdf, 2009 pp 1-10

[14] DK Panda, H. Subramoni, C. Chu, and M. Bayatpour, The MVAPICH
project: Transforming Research into High-Performance MPI Library
for HPC Community , Journal of Computational Science (JOCS),
Special Issue on Translational Computer Science , Oct 2020.

[15] S. Sur, S. Potluri, K. Kandalla, H. Subramoni, K. Tomko, and DK
Panda, Co-Designing MPI Library and Applications for InfiniBand
Clusters , IEEE Computer , Nov 2011.

[16] K. Khorassani, J. Hashmi, C. Chu, C. Chen, H. Subramoni, D. Panda;
"Designing a ROCm-aware MPI Library for AMD GPUs: Early
Experiences" ISC HIGH PERFORMANCE 2021, Jun 2021.

[17] Andrews, Gregory R. (2000), Foundations of Multithreaded, Parallel,
and Distributed Programming, Addison–Wesley, ISBN 978-0-201-
35752-3.

[18] M. Pharr and W. R. Mark, "ispc: A SPMD compiler for high-
performance CPU programming," 2012 Innovative Parallel Computing
(InPar), 2012, pp. 1-13, doi: 10.1109/InPar.2012.6339601.

Fig.11: Library support for parallelism for high
performance computing

