Evaluation of Wear Characteristics of PMMA-Nano SiO₂ and Nano ZnO Composites using L9 (3⁴) Orthogonal Array of Experimental Design by Pin-On Disc Tribometer

Veeranna DK*¹, Kameswara Prasad AJ², Shashidhara S M ³

¹Research scholar, Department of Mechanical Engineering, Kalpataru Institute of Technology, Tiptur-572 201, Karnataka, India. ²Department of Mechanical Engineering, BVC Engineering College, Odalarevu, Allavaram Mandal, E.G. District, Andhra

Pradesh, India.

³Former Principal, Kalpataru Institute of Technology, Tiptur-572 201, Karnataka, India.

*corresponding author.

Abstract

Results of dry wear testing of PMMA composites reinforced with nano SiO₂ and nano ZnO and their micron sized counter parts using pin-on disc tribometer are presented. L9 (3^4) orthogonal array of experimental design was chosen to study the specific wear rate. Nano SiO₂ and nano ZnO were characterized by SEM-EDAX and XRD. PMMA nano composites exhibited lowest wear rate compared to PMMA composites reinforced with their micron counter parts and neat PMMA. 3D surface profilometric examination of worn out sample surfaces corroborated the wear rates.

Keywords: Wear rate of PMMA-nano SiO_2 and nano ZnO composites, L9 (3⁴) OA Design, pin-on disc tribometer, surface profilometry.

Introduction

Poly methyl methacrylate (PMMA), widely used as a prosthodontic denture base. The denture base materials should exhibit good mechanical properties and dimensional stability in moist environment (Salih, Oleiwi, and Alaa Mohammed 2016). One of the important properties of PMMA is excellent wear resistance.

Canché(G.Canché-EscamillaaS., Duarte-Arandaa, and M.Toledano n.d.) et al evaluated the effect of hybrid silica/poly(methylmethacrylate) (PMMA) nanoparticles on the properties of for dental restoration. They prepared hybrid nanoparticles with silica as core and PMMA as shell were obtained by a seeded emulsion polymerization process. They further reported, that composites with low amounts of PMMA shell had higher modulus than those in which silica was used as the filler.

Akinci (Akinci, Sen, and Sen 2014) reported the friction and wear performance of pure poly (methyl methacrylate) [PMMA] and zirconium oxide (ZrO₂) filled PMMA composites were realized under dry sliding conditions. Wear tests were carried out at room temperature under the loads of 5N, 10N and 20N at the sliding speed of 0.5m/s, 1.0m/s and 1.5m/s. The coefficients of friction of the composites were significantly influenced with ZrO₂ content. Results for testing materials showed that the friction coefficient and the wear rate are sensitive to the applied loads and sliding speeds. The wear rates of the PMMA composite are changing between $3.01 \times 10-7$ mm3/m and $5.50 \times 10-6$ mm3/m, depending on ZrO₂ content, applied load and sliding speeds. It was further noted by the authors, that, higher applied loads resulted in increased coefficient of friction and wear rate.

The friction and wear properties of nano-SiO2 and -TiO2 particle-reinforced PMMA composites was studied by Zhenhua (Zhenhua n.d.). The composite exhibits excellent tribological properties. The wear mechanisms change from micro cutting wear, multiplastic deformation wear and adhesive wear into abrasive wear and brittle fracture wear.

Farhan and co-authors (Farhan et al. 2017) reported the friction and wear of PMMA-nano TiO_2 -ZnO (particle loading at (0, 2, 3, 4 and 5 vol%) composites. It was concluded that the The wear and friction coefficient decreased with increase the time and percentage [TiO2 - ZnO].

Fabrication of PMMA- nano silica composites with neat and trietoxyvinylsilane-modified silica nanoparticles (with loading content in the 0.25%, 0.50%, 0.75%, 1% wt range), and determination of fracture toughness was reported by (Topouzi et al. 2017) et al. They reported increase the fracture toughness, the elastic modulus and the Glass Transition Temperature of PMMA resins.

Prasad (A.J.K Prasad 2013) reported systematic studies on the dry wear and wet wear of PMMA composites reinforced with nano Al2O₃, mixture of nano ZnO-SiO₂ and nano mixed metal oxides and their counter parts. The present study is taken up to evaluate the effects of the nano SiO₂ and nano ZnO on the specific wear rate of PMMA composites reinforced with these fillers and to compare that with PMMA composites with their micron counterparts and unfilled (neat) PMMA. It has been a known phenomenon that by increasing applied load, sliding distance and test duration, results in higher wear of materials for example, (Akinci, Sen, and Sen 2014) (Stachowiak and Batchelor 1993) (Bhushan 2013). To study the combined effects of these wear test parameters and composition of PMMA composites simultaneously, L9 (3⁴) orthogonal array of experimental design was chosen to study the specific wear rate.

Vol. 6 No. 3(December, 2021)

Copyrights @Kalahari Journals

Experimental

Preparation of Nano Silica by Acid Catalyzed Method

Tetraethyl Orthosilicate (TEOS) was used as the precursor for preparing nano silica by (a) acid catalyzed (acetic acid as catalyst and distilled water as hydrolyzing agent) and (b) base catalyzed routes following those reported by Azlina et al (Azlina et al. 2016) and Dabbaghian (Dabbaghian and Babalou 2010). In figures 1 and 2 the respective process steps adapted are presented.

Fig. 1 Process steps for preparing Nano SiO₂ acid catalyzed [(Azlina et al. 2016)].

Fig. 2 Process steps for preparing Nano SiO₂ base catalyzed (Dabbaghian and Babalou 2010).

Preparation of Nano ZnO(Prasad et al. 2018)

Nano zinc oxide was prepared following the procedure adapted by (Wahab et al. 2010) (Prasad et al. 2018) process steps for nano ZnO preparation given in the figure 3.

Fig. 3 Process Steps for preparation of Nano ZnO (Wahab et al. 2010) (Prasad et al. 2018).

Copyrights @Kalahari Journals

Photographs of various stages observed in nano ZnO formation are presented in figure 4.

Characterization of Nano SiO2 and Nano ZnO

Nano SiO₂ and Nano ZnO were characterized to assess the particle size and morphology by SEM-EDAX and XRD.

Micron SiO₂ and Micron ZnO

Purchased micron SiO_2 and micron ZnO were used as received. Micron SiO_2 and micron ZnO were not characterized by SEM and XRD.

(a) Nano ZnOH (b) Nano ZnO Gel (c) Dried Nano ZnO Powder

Fig. 4 Photographs of various stages observed in nano ZnO formation.

Preparation of PMMA Nano and Micron Composites

Brass split dies with multiple cavities (figure 5) were used to prepare cylindrical samples (180 mm long with14 mm diameter). The reinforcement materials used were (a) nano SiO₂, (b) micron SiO₂, (c) nano ZnO and (d) micron ZnO. The matrix material used was dental grade PMMA (DPI make acrylic resin). Typical PMMA sample shown in figure 6.

PMMA composites were prepared by taking appropriate quantities of both polymer powder and the reinforcement, in an agate mortar and thoroughly mixing for 15 minutes. Polymerization was done by adding the specified quantity of the monomer. The mixture was allowed to go to the dough stage. The dough was thoroughly mixed and then evenly packed in the two halves of the split die, quickly closing the die and scraping excess material from the exteriors of the die. After a lapse of 10-15 minutes of time, the die was opened. PMM composite samples were ejected from the die (packed and stored in a dessicator). Neat PMMA (without any reinforcement) samples were prepared following the same procedure.

Wear Testing of PMMA composites

Wear testing of neat PMMA and PMMA composites (reinforced with both nano and micron SiO_2 and ZnO) were carried out as per ASTM G99 standard using Pin-on Disc tribometer (Ducom make, model TR201 LE). To study the combined effects of wear testing parameters namely, applied normal load, speed of disc rotation, wear track diameter and composition of PMMA composites, simultaneously, L9 (3⁴) orthogonal array of experimental design was chosen. MINITAB (version 19) software to arrive at optimum set conditions.

Each sample, before testing, was subjected to a run in period testing (P. J. Blau 2013) (P. Blau 2005) for10 minutes with a load of 8kg, speed of 900 rpm and wear track of 80mm. Sample for testing was selected as per the L9 (3^4) (table 2.1) and wear test carried out (test duration of 15 minutes) on a randomly selected experimental run (column 1 of table 1).

Vol. 6 No. 3(December, 2021)

Wear tests were conducted choosing a random experiment number (column 1 of table 1) not as per the serial number of coulmn1 of table 1.

Table 1 L₉(3⁴) Orthogonal Array of Experimental Design.

		L ₉ (3 ⁴) O ₁	rthogonal arra	у		Loss	wear			
			-				rate			
		Independ	ent Variables		Performance	P1	P2			
		Parameter								
		Value								
-										
Experiment	Variable-	Variable-	Variable-3	Variable 4						
Number	1	2	Wear	Composition						
	Load	Speed	Track	-						
		-	Diameter							
1	1	1	1	1	p1					
2	1	2	2	2	p2					
3	1	3	3	3	p3					
4	2	1	2	3	p4					
5	2	2	3	1	p5					
6	2	3	1	p6						
7	3	1	p7							
8	3	2	p8							
0	3	3 3 2 1 nº								

1= low, 2= medium 3=high Load=4,6,8 kg Wear track diameter= 40,60,80 mm speed=500, 750, 900 rpm, Composition=of reinforcement (either nano or micron SiO_2 or ZnO as the case may be).

(a) Brass Split Die

(b) PMMA+5% Nano ZnO Samples

Fig. 5 Photographs of the process steps in preparing PMMA Composites.

(c) Neat PMMA SamplesFig. 6 Photographs of neat PMMA sample.

Surface Roughness Measurement

Surface roughness parameters of the worn-out tested samples were measured using Confocal Microscope (Olympus make LEXT OLS4000).

Results and Discussion

Characterization of Nano Oxides by Scanning Electron Microscopy

Characterization Nano SiO₂

From the figure 7, it is seen that the nano SiO_2 particles are spherical in shape. There is a size distribution of the spherical particles. The smallest particle diameter ~100 nm while majority of the spherical SiO_2 particles have diameter greater than 200nm. The spherical particles would have grown to micron size during the calcination (Ashraf et al. 2018) (Garces, Espinal, and Suib 2012) (Deng et al. 2016). EDAX of nano SiO_2 (figure 8) indicate the presence constituent elements Si and O respectively.

Fig. 7 SEM of nano SiO₂

Nano SiO_2 particles are spherical in shape have different diameters 50nm, 100nm and over 200nm in diameter.

Characterization of Nano ZnO.

From the SEM image shown in figure 9 of nano ZnO, it may be observed that, the particles are irregular in form in the initial sol to gel stage. Subsequent calcination could have resulted in the agglomeration. Thickness of the platelet is around 20 nm. Several researchers reported the platelet morphology for nano ZnO is particles shape. ZnO particles have spherical, agglomerated irregular and platelet morphologies. Size of these particles range from nano to several hundred nano meters (3-500nm). Platelet morphology was reported by (Xu et al. 2013). Pariona, Nicolaza et al(Pariona et al. 2020) reported various morphologies. They

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering 3959 Vol. 6 No. 3(December, 2021)

reported a platelet morphology. In the present studies, too, it is interesting to note that the platelet nano ZnO were obtained.

Fig. 9 SEM Image of Nano ZnO

EDAX of nano ZnO (figure 10) reveals the presence of constituent elements Zn and O respectively. (Carbon peak observed was from the conducting tape of carbon on which the nano ZnO was placed before gold sputtering prior to SEM examination)

Fig. 10 EDAX of Nano ZnO

Characterization of Nano SiO2 and Nano ZnO by X-Ray Diffraction

Characterization Nano SiO₂: XRD pattern of nano SiO₂ is shown in figure 11. This pattern reveals no sharp peaks with one broad peak (at 2 theta 23^{0}) Similar XRD pattern was reported in literature (Choolaei et al. 2012).

Fig. 11 XRD pattern of Nano SiO2

Characterization Nano ZnO

XRD pattern of nano ZnO (figure 12) indicating the sharp peaks with a single with highest intensity at 23° .It is interesting to note that the pattern consists of sharp peaks with 100 % intensity occurring at 31.84° , 34.52° 36.33° , 47.63° , 56.71° , 62.96° , 68.13° , and 69.18° . The platelet morphology of the nano ZnO corresponds to nano crystals of ZnO, the thickness of each platelet being 20 nm. Similar XRD pattern was reported in literature (Tarat et al. 2012) (Talam, Karumuri, and Gunnam 2012)

Fig. 12 XRD pattern of Nano ZnO

From the XRD pattern of nano ZnO we understand that prepared nano ZnO has nano crystalline structure having platelets morphology. In tables 2 and 3 we present a comparison of SEM and XRD nano SiO₂ and ZnO prepared.

Copyrights @Kalahari Journals

Table 2 Comparison of SEM Analysis of Nano Oxides Prepared

Material		Particle size			EDA	х
	Our result Morpholo gy and size	Literature Morphology and size	Reference	Present	Report from Literature	Reference
Nano SiO2	Spherical ~100nm dia	79.68 to 87.35nm.	(Azlina et al. 2016)	Si and O	Si O	(Rabizadeh and Allahkaram 2011) (Sekhar, Diwakar, and Madhavi 2019)
Nano ZnO	Platelets Thickness in 20 nm	platelet	(Xu et al. 2013)(Pariona et al. 2020)			

Table 3 Comparison of XRD Patterns of Nano Oxides Prepared

Material	No of Peaks	Peak with 100% intensity and 2θ	Reference
Nano SiO ₂	23 Max	-	-
Nano ZnO	8 Peaks	34-50%	31.5-45
	36-100%		

In table 4 and 5 wear rates obtained from weight loss method as reported by Al- masoody[1] and as quoted by Bharat Bhusan [2] are presented for PMMA+ SiO₂, and PMMA+ ZnO composites respectively These values are the outcomes measured as per the planned $L_9(3^4)$ Orthogonal array of experimental design.

Table 4 Specific Wear Rate of Neat PMMA

S N O	SPECI MEN COMP OSITI ON	W EA R TR AC K DI A	LO AD S (N)	SP EE D	VO LU ME	SLID ING DIST ANC E	W EA RA TE (p1)	SPE CIFI C WE AR RA TE (m3/ nm) (p2)
1	NEAT PMMA	0.0 4	4	50 0	0.08	400	15. 75 88	98.5 x10 ⁻ 5
2	NEAT PMMA	0.0 8	6	75 0	0.04	1200	3.9 79 7	55.2 x10 ⁻ 5
3	NEAT PMMA	0.0 6	8	90 0	0.02	1080	1	11.6 x10 ⁻ 5

Table 5 Specific Wear Rate of PMMA+ SiO₂ Composites

S N O	SPECIMEN COMPOSITI ON	WEA R TRAC K DIA	LOAD S (N)	SPEED	VOLUME	SLIDING DISTANCE	WEAR RATE (p1)	SPECIFIC WEAR RATE (m3/nm) (p2)
1	NEAT PMMA	0.04	4	500	0.08	400	15.758 8	98.5x10 ⁻⁵
2	NEAT PMMA	0.08	6	750	0.04	1200	3.9797	55.2 x10 ⁻⁵
3	NEAT PMMA	0.06	8	900	0.02	1080	1	11.6 x10 ⁻⁵

Nano SiO2												
				WEI	GH	Г (К	(gs)		W	ΞA	SP	ECIF
Expe rime nt No	S C S	PECIM EN COMPO SITION	E C	BEF DRE	AI E	FT R	Le S	O S	F RA F (p	х АТ Е 1)	W R (m	IC EAR ATE 3/nm) p2)
1		5%	4	.08	4.0	06	0.0	02	0.4 75	82 59	3.0	0172E -07
2		10%	3	3.95	3.9	94	0.0	01	0.4 46	.97 52	1.3	818E -07
3		15%	4	.07	4.0	06	0.0	01	1.2 89	.06 97	2.0	953E -07
4		15%	4	.06	4.(04	0.0	02	0.9 29	70 97	2.6	953E -07
5		5%	4	.06	4.0	04	0.0	02	1.9 59	40 94	2.6	953E -07
6		10%	3	8.94	3.9	92	0.0	02	1.	5	3.4722E -07	
7		10%		3.92 3		.9	0.02		2.010 256		3.1	41E- 07
8		15%	4	4.04 4.		01	0.03		2.1 50	99)1	4.5	823E -07
9		5%	4	4.04 4.0		02	0.02		0.9 12	75 24	1.1	286E -07
				Mi	cron	n SiC	02					
Exper ment No	i	SPECIN EN COMPO SITION	N C N	BEF RI	WE FO E	AI	IT (FT R	g) L	OS S	WI F RA I (p	EA R AT E 1)	SPE CIFI C WE AR RAT E (m3/ nm) (p2)
1		5%		3.95		3.9	94	0. 2	00 53	0.0 9)62 7	3.93 562 E-08
2	2 10%			4.39		4.37		0.00 456		0.204 334		5.67 594 E-08
3		15%		4.2	8	4.	23	0. 1	01 68	1.3 26	353 52	2.34 941 E-07

Copyrights @Kalahari Journals

Vol. 6 No. 3(December, 2021)

4	15%	4.23	4.21	0.00 473	0.220 122	6.11 45E- 08
5	5%	3.94	3.9	0.01 015	1.020 435	1.41 727 E-07
6	10%	4.37	4.34	0.00 686	0.465 048	1.07 65E- 07
7	10%	4.34	4.3	0.00 922	0.840 21	1.31 283 E-07
8	15%	4.21	4.18	0.00 713	0.501 199	1.04 416 E-07
9	5%	3.9	3.88	0.00 513	0.259 054	2.99 831 E-08

Observation of specific wear rate values of p2 of neat PMMA and PMMA SiO_2 composites, it is noticeable that there is a 2-3-fold reduction in the specific wear rate.

Table 6 Specific Wear Rate of PMMA+ ZnO Composites

Nano ZnO									
		WI	EIGHT (g)		SPE			
Experi ment No	SPECIME N COMPOS ITION	BEF ORE	AFT ER	LOS S	WEA R RAT E (p1)	CIFI C WE AR RAT E (m3/ nm) (p2)			
1	5%	3.94	3.88	0.06	1.515 464	9.47 16E- 07			
2	10%	4.05	4	0.05	2.45	6.80 56E- 07			
3	15%	4.26	4.23	0.03	3.475 177	6.03 33E- 07			
4	15%	4.23	4.21	0.02	0.931 116	2.58 64E- 07			
5	5%	3.88	3.84	0.04	4.083 333	5.67 13E- 07			
6	10%	4	3.99	0.01	0.736 842	1.70 57E- 07			
7	10%	3.99	3.9	0.09	9.046	1.41			

									154		35E- 06
8	15%		4.2	1	4.1	2	0.09		6.42 33	2	1.33 8E- 06
9	5%		3.84		3.	8 0.0)4	4 2.06 158		2.38 79E- 07
			Mi	cro	n Zn	0					
Expe rime nt No	SPECIM EN COMPO SITION	E	WI BEF DRE	EIG A I	IFT ER	(g) L(DS S	V R (VEA R ATE (p1)	S V H (FIC FIC VEAR ATE (m3/n m) (p2)
1	5%	4	.25	4	.24	0. 2	00 35	0	.054 384	3	.399E -08
2	10%	4	4.49	4	.48	0. 2	00 23	0	.048 719	1	.3533 2E-08
3	15%	4	.52	4	.51	0. 2	00 21	0	.048 074	8	5.3462 E-09
4	15%	4	.51	4	.44	0. 5	01 52	2	.398 074	6	6.6613 2E-07
5	5%	4	1.24	4	.19	0. 1	01 79	1	.379 07	1	.9153 7E-07
6	10%	4	.48	4	.43	0. 1	01 16	1	.234 481	2	2.8575 9E-07
7	10%	4	4.43	4	.38	0. 11	01 29	1	.262 565	1	.9729 IE-07
8	15%	4	1.44	4	.42	0. 4	00 5	0	.199 747	4	.1614 E-08
9	5%	4	.19	4	.17	0. 4	00 77	0	.224 355	2	2.5967 E-08

Similar observation on specific wear rate values of p2 of neat PMMA and PMMA ZnO composites, it is noticeable namely a 2-3-fold reduction.

In table 7 and 8 the response variable for the PMMA+nanoSiO₂ and PMMA+micronSiO₂ composites are present respectively. Response graphs of PMMA+nanoSiO₂ and PMMA+micronSiO₂ composites are presented in figures 13 and 14 respectively

Table 7 Response Table for Means PMMA+Nano SiO₂

Level	Load	Speed	Wear Track	Composition
1	0.01333	0.02000	0.02333	0.02000
2	0.02000	0.02000	0.01667	0.01667
3	0.02333	0.01667	0.01667	0.02000
Delta*	0.01000	0.00333	0.00667	0.00333
Rank+	1	3.5	2	3.5

Copyrights @Kalahari Journals

Vol. 6 No. 3(December, 2021)

*Delta Measures the size of the effect by taking the difference between the highest and lowest characteristic average for a factor.

+Rank The ranks in a response table help you quickly identify which factors have the largest effect. The factor with the largest delta value is given rank 1, the factor with the second largest delta is given rank 2, and so on.

Fig. 13 Response Graph of PMMA+Nano SiO₂ L9(34) OA

For PMMA+ nano SiO₂, (From the figure 3.1) the lowest weight loss in the pin-on-disc wear test method with the factors and their levels studied in the present investigation (refer to table 3.1) is obtainable by running experiment with 4 kg load, speed o f750 or 900 rpm with track diameter 40 or 60 mm and composition 5% or 15 % nano SiO2

Table 8 Response Table for Means PMMA+Micro

Level	Load	Speed	Wear Track	Composition
1	0.006257	0.005493	0.005507	0.005937
2	0.007247	0.007280	0.004807	0.006880
3	0.007160	0.007890	0.010350	0.007847
Delta	0.000990	0.002397	0.005543	0.001910
Rank	4	2	1	3

Fig. 14 Response Graph of PMMA+Micron SiO₂ L9(34) OA Experimental Data (reference table 7)

Copyrights @Kalahari Journals

For PMMA+ micron SiO2, (From the figure 14) the lowest weight loss in the pin-on-disc wear test method with the factors and their levels studied in the present investigation (refer to table 1.) is obtainable by running experiment with 4 kg load, speed of 750 rpm with track diameter 60 mm and composition 5% micron SiO2

In table 9 and 10 are present the response variable for the PMMA+nanoSiO₂ and PMMA+micronSiO₂ compsoites repectively. Response graphs of PMMA+nano ZnO₂ and PMMA+micronZnO compsoites are presented in figures 15 and 16 respectively

Table 9 Response Table for Means PMMA+Nano ZnO

Level	Load	Speed	Wear Track	Composition
1	0.04667	0.05667	0.05333	0.04667
2	0.02333	0.06000	0.03667	0.05000
3	0.07333	0.02667	0.05333	0.04667
Delta	0.05000	0.03333	0.01667	0.00333
Rank	1	2	3	4

Fig. 15 Response Graph of PMMA+Nano ZnO L9(34) OA Experimental Data (reference table 3.4)

For PMMA+ nano ZnO,(From the figure 3.3) the lowest weight loass in the pin-on-disc wear test method with the factors and their levels studied in the present investigation (refer to tabel 3.1) is obtainable by running experiment with 6 kg load, speed of 900 rpm with track diameter of 60 mm and composition 5% or 15 % nano ZnO.

Table 10 Response Table for Means PMMA+Micron

Level	Load	Speed	Wear Track	Composition
1	0.05039	1.23837	0.49620	0.55260
2	1.67054	0.54251	0.89038	0.84862
3	0.56226	0.50230	0.89660	0.88196
Delta	1.62015	0.73607	0.40040	0.32936
Rank	1	2	3	4

Vol. 6 No. 3(December, 2021)

Fig. 16 Response Graph of PMMA+Micron ZnO L9(34) OA Experimental Data (reference table 3.4)

For PMMA+ micron ZnO,(From the figure 3.3) the lowest weight loss in the pin-on-disc wear test method with the factors and their levels studied in the present investigation (refer to tabel 3.1) is obtainable by running experiment with 4 kg load, speed of 900 rpm with track diameter of 40 mm and composition 5% micron ZnO.

From the above discussions on the minimum weight loss of PMMA composites reinforced with SiO_2 and ZnO, the following observations can be drawn as given in table 11

Table 11 Factors and levels that yield minimum weight loss

Weight (N)	Speed (RPM)	Wear Track Diameter	Composition (wt %)	Weight loss		
		(mm)		(ing)		
PMMA+ Nano SiO ₂						
4	750 or	40 or 60	5 or 15	0.04-		
	900			0.06		
PMMA+ Micron SiO ₂						
4	750	60	5	0.004- 0.006		
PMMA+ Nano ZnO						
6	900	60	5 or 15	0.02- 0.04		
PMMA+ Micron ZnO						
4	900	60	5 or 15	0.01- 0.06		

Probable reason for the observed lowest wear rate for PMMA nano composites may be ascribed to the morphology of the reinforcements, which could have acted as nano balls in 3 body tribocontact between polymer matrix and the steel substrate of the tribometer in case of Nano SiO₂. In case of PMMA-nano ZnO, the platelets would have formed a hard wear resistant layer at the specimen-substrate interface

locally, thereby preventing the further exposure of the fresh composite surface from further wear.

Surface Roughness Evaluation of Worn-out PMMA Composites

In tables 12 Ra and Rq , Sa and Sq values of worn out surfaces of PMMA+SiO₂ PMMA+ZnO Composites is present [(Trial no 5 of the L9 matrix (table no 3.1) load 6 N, speed 750 rpm, wear track 80 mm and 5 wt% of either SiO2 or ZnO]

A roughness value can either be calculated on a profile (line) or on a surface (area). The profile roughness parameter (Ra, Rq,) are more common. The area roughness parameters (Sa, Sq.) give more significant values. There are many different roughness parameters in use, but Ra is by far the most common, though this is often for historical reasons and not for particular merit, as the early roughness meters could only measure Ra. Other common parameters include {Rz}, {Rq}, and { Rsk}. Some parameters are used only in certain industries or within certain countries. For example, the {Rk}{ Rk} family of parameters is used mainly for cylinder bore linings, and the Motif parameters are used primarily in the French automotive industry.[6] The MOTIF method provides a graphical evaluation of a surface profile without filtering waviness from roughness. A motif consists of the portion of a profile between two peaks and the final combinations of these peaks eliminate "insignificant" motifs and retains "significant" ones. Please note that Ra is a dimensional unit that can be micrometer or micro inch (Roughness n.d.).

Table 12: Average Surface Roughness Value (Ra) andRMS Value of Surface Roughness (Rq) of components

Sample	Ra	Rq	Sa	Sq
Neat PMMA	7.565	11.769	9.672	13.218
PMMM+ Nano SiO ₂	7.065	9.453	9.228	10.917
PMMM+ Micron SiO ₂	8.626	10.979	10.793	10.825
PMMM+ Nano ZnO	7.146	9.158	9.128	9.317
PMMM+ Micron ZnOn	8.245	10.258	9.458	9.645

From the above table, it can be observed that neat PMMA has highest Ra, Rq values and lowest values are observed for PMMA+ nano ZnO composites. The values of Ra Rq for PMMA+SiO₂ are intermediate. Similar observations are noted for Sa and Sq values.

Copyrights @Kalahari Journals

Vol. 6 No. 3(December, 2021)

Fig. 16 (a) neat PMMA, (b) PMMA 5% Micron SiO₂ (c)PMMA-5% Nano SiO₂ composites

(a)

(c)

Fig. 17 (a) neat PMMA, (b) PMMA 5% Micron ZnO (c)PMMA-5% Nano ZnO composites

In figures 3.5 and 3.6 typical areal (3D surface profilometic) roughness graphs of neat PMMA, PMMA+ SiO₂ and PMMAA +ZnO composites are presented. The surface roughnes valus are complementing the surface roughness values (table 3.10)

Conclusions

Sample	Ra	Rq	Sa	Sq
Neat PMMA	7.565	11.769	9.672	13.218
PMMM+ Nano SiO ₂	7.065	9.453	9.228	10.917
PMMM+ Micron SiO ₂	8.626	10.979	10.793	10.825
PMMM+ Nano ZnO	7.146	9.158	9.128	9.317
PMMM+ Micron ZnOn	8.245	10.258	9.458	9.645

Nano SiO₂ had spherical morphology with~100nm diameter. ZnO had platelet morphology (average platelet thickness 20 nm). specific wear rate of PMMA SiO₂ composites, it is exhibited a 2-3-fold reduction in the specific wear rate over neat PMMA. Similar values for specific wear rate for PMMAnano ZnO composites, namely 2-3 fold reduction has been noticed. For sample tested with applied normal load 6 N, disc speed 750 rpm, wear track diameter of 80 mm composition 5 wt % either SiO₂ or ZnO, Ra and Rq values PMMA-nano composites were lowest, followed by PMMA micron composites. The highest Ra, Rq were observed with neat PMMA.

References

A.J.K Prasad. 2013. "Development and Comparative Study of Nano Ceramic Oxide Powder Reinforced Polymer Composites'." Visvesvaraya Technological University, Belgaum, Karnataka, India.

Akinci, A, S Sen, and U Sen. 2014. "Friction and Wear Behavior of Zirconium Oxide Reinforced PMMA Composites." Composites Part B: Engineering 56: 42-47. http://www.sciencedirect.com/science/article/pii/S135983681 300423X.

Ashraf, Muhammad Aqeel, Wanxi Peng, Yasser Zare, and Kyong Yop Rhee. 2018. "Effects of Size and Aggregation/Agglomeration of Nanoparticles on the Interfacial/Interphase Properties and Tensile Strength of Polymer Nanocomposites." Nanoscale Research Letters 13(1): 214. https://doi.org/10.1186/s11671-018-2624-0.

Azlina, H N, J N Hasnidawani, H Norita, and S N Surip. 2016. "Synthesis of SiO2 Nanostructures Using Sol-Gel Method." Acta Phys. Pol. A 129(4): 842-44.

Bhushan, Bharat. 2013. Introduction to Tribology, Second Edition Introduction to Tribology, Second Edition. John Wiley and Sons.

Blau, Peter. 2005. "On the Nature of Running-In." Tribology International - TRIBOL INT 38: 1007-12.

Copyrights @Kalahari Journals

Vol. 6 No. 3(December, 2021)

Blau, Peter J. 2013. "Running-in BT - Encyclopedia of Tribology." In eds. Q Jane Wang and Yip-Wah Chung. Boston, MA: Springer US, 2967–69. https://doi.org/10.1007/978-0-387-92897-5 213.

Choolaei, Mohammadmehdi et al. 2012. "The Effect of Nanosilica on the Physical Properties of Oil Well Cement." *Materials Science and Engineering:* A 538: 288–294.

Dabbaghian, M. A.A, and A. Babalou. 2010. "A Parametric Study of the Synthesis of Silica Nanoparticles via Sol-Gel Precipitation Method." *Int. J. Nanosci. Nanotechnol* 6, No. 2,: 104–13.

Deng, Xiaoliang, Zhonghui Huang, Wenqiang Wang, and Rajesh N Davé. 2016. "Investigation of Nanoparticle Agglomerates Properties Using Monte Carlo Simulations." *Advanced Powder Technology* 27(5): 1971–79. http://www.sciencedirect.com/science/article/pii/S092188311 6301649.

Farhan, Fadhil, Bahjat Kadhim, Batool Ablawa, and Warqaa Shakir. 2017. "Wear and Friction Characteristics of TiO2 – ZnO / PMMA Nanocomposites." *European Journal of Engineering and Technology Research* 2(4 SE-Articles). https://www.ejers.org/index.php/ejers/article/view/287.

G.Canché-EscamillaaS., Duarte-Arandaa, and M.Toledano. "Synthesis and Characterization of Hybrid Silica/PMMA Nanoparticles and Their Use as Filler in Dental Composites." *Materials Science and Engineering:* C 42: 161–67.

Garces, Hector F, Anais E Espinal, and Steven L Suib. 2012. "Tunable Shape Microwave Synthesis of Zinc Oxide Nanospheres and Their Desulfurization Performance Compared with Nanorods and Platelet-Like Morphologies for the Removal of Hydrogen Sulfide." *The Journal of Physical Chemistry C* 116(15): 8465–74. https://doi.org/10.1021/jp210755t.

Pariona, Nicolaza et al. 2020. "Shape-Dependent Antifungal Activity of ZnO Particles against Phytopathogenic Fungi." *Applied Nanoscience* 10: 435–443.

Prasad, A J K et al. 2018. "Studies on the Wear Characteristics of Ultra High Molecular Weight Polyethylene (UHMWPE) Polymer Nanocomposites Containing Nano Zinc Oxide." *Materials Today: Proceedings* 5(1, Part 3): 2619–26. http://www.sciencedirect.com/science/article/pii/S221478531 8300476.

Rabizadeh, Taher, and Saeed Reza Allahkaram. 2011. "Corrosion Resistance Enhancement of Ni–P Electroless Coatings by Incorporation of Nano-SiO2 Particles." *Materials* & *Design* 32(1): 133–38.

Roughness, Wikipedia surface. "Surface Roughness." https://en.wikipedia.org/wiki/Surface_roughness.

Salih, Sihama E, Jawad K Oleiwi, and T Alaa Mohammed. 2016. "Investigation of Hardness and Flexural Properties of Pmma Nano Composites and Pmma Hybrids Nano Composites Reinforced by Different Nano Particles Materials Used in Dental Applications." *Engineering and Technology Journal* 34(15 Part).

Sekhar, D. C., B. S. Diwakar, and N. Madhavi. 2019. "Synthesis, Characterization and Anti-Bacterial Screening of Complex Nanocomposite Structures of SiO2@ZnO@Fe3O4 and SnO2@ZnO@Fe3O4,."" *Nano-Structures & Nano-*

Copyrights @Kalahari Journals

Objects, 19: 100374.

Stachowiak, Gwidon W, and Andrew W Batchelor. 1993. *E N G I N E E R I N G T R I B O L O G Y*. Butterworth Heinmenn.

Talam, Satyanarayana, Srinivasa Rao Karumuri, and Nagarjuna Gunnam. 2012. "Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles" ed. Z Crnjak Orel. *ISRN Nanotechnology* 2012: 372505.

Tarat, A et al. 2012. "Synthesis of Nanocrystalline ZnO Nanobelts via Pyrolytic Decomposition of Zinc Acetate Nanobelts and Their Gas Sensing Behavior." *Surface Science* 606(7): 715–21.

https://www.sciencedirect.com/science/article/pii/S00396028 11004791.

Topouzi, Marianthi et al. 2017. "Reinforcement of a PMMA Resin for Interim Fixed Prostheses with Silica Nanoparticles." *Journal of the Mechanical Behavior of Biomedical Materials* 69: 213–22.

https://www.sciencedirect.com/science/article/pii/S17516161 17300206.

Wahab, R et al. 2010. "Formation of ZnO Micro-Flowers Prepared via Solution Process and Their Antibacterial Activity." *Nanoscale Research Letters*. 5(10): 1675–81.

Xu, Qiang et al. 2013. "ZnO Nano-Platelets by Laser Induced Plasma Assisted-Irradiation with a Pulse KrF Laser." *Materials Letters* 105: 206–8. http://www.sciencedirect.com/science/article/pii/S0167577X1 3004850.

Zhenhua. "The Friction and Wear Properties of Nano-SiO2 and -TiO2 Particle-Reinforced PMMA Composites." *Journal of Thermoplastic Composite Materials* 27(6): 793–800.