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Abstract: Segmentation of brain tissue is a prominent and 

most critical step of research areas in medical image 

processing. It is extensively used to measure and visualise the 

anatomical structures of the brain, to analyse brain changes, to 

delineate diseased regions, and to design surgical procedures 

and image-guided therapies. Researchers in the field of 

medical image processing have previously proposed many 

approaches with varying degrees of accuracy and complexity. 

In this review, we have studied the most relevant brain tissue 

segmentation method and their latest advancement in 

neuroscience research. The review also presents an effective 

comparison among the different brain tissue segmentation 

methods and their methodologies. Furthermore, a review of 

some of the validation measures used to compare different 

segmentation algorithms is presented. 

 

I.  INTRODUCTION 

Medical picture segmentation is the task of segmenting 

objects in medical picture analysis. Image segmentation 

performs a central function in medicine, prognosis and 

Accurate treatment strategy. It is the method of partitioning 

the brain image into a collection of disjointed locations with 

comparable characteristics, like intensity, homogeneity, 

textures etc. in order to extract tissues from a brain image. For 

carrying out effective Quantitative brain analysis, methods of 

separating tissues like white matter (WM), Grey Matter (GM), 

and cerebrospinal fluid (CSF) is commonly employed. It aids 

in the differentiation of normal tissues from the abnormal 

ones to identify the disease like type of brain tumor, 

Parkinson’s disease, multiple sclerosis, AD, Dementia, 

Schizophrenia and Alzheimer’s disease [1]-[4]. There are 

numerous methods for segregating brain tissue have been 

proposed by researchers in the past and have been 

successfully utilised for illness Prognosis and therapy 

planning. Nevertheless, there are many challenges associated 

with these segmentation methods because medical photograph 

suffer from many imperfections, such as intensity 

homogeneity (IIH), noise and dysfunctional tissues with 

heterogenous signal intensity. Moreover, the effectiveness of 

brain tissue classification methods is influenced by a number 

of characteristics, including the tissue border, its size, shape, 

consistency, and its ambiguous placement, all of which are 

inherent in the image acquisition modalities [5]-[9]. 

 

The study's main contribution is a survey of the most recent 

brain tissue segmentation algorithms and their present state-

of-the-art. The focus of this paper is on three essential 

features: latest developments in brain tissue algorithms 

segmentation , and the potential for existing methods to be 

improved more strong, as well as the unsolved issues. The 

paper also looks at the difficulties that segmentation algorithm 

confronts as a result of inherent modality concerns. The 

benefits and drawbacks of the algorithm tested are 

summarized in a table to present a well-structured visions . In 

addition, we’ve presented and talked about how to quantify 

conventional validation measures the and the efficiency with 

which a segmentation approach works. Its usefulness in a 

variety of situation like their clinical use and hardware 

implementation is also discussed. The following is a 

breakdown of the paper's structure. The second section covers 

the various methods for segmenting brain tissue. The 

performance indices for computing the algorithm are 

described in Section III. The Remarks is presented in Section 

IV and Section V concludes with a conclusion.. 

 

II. METHODS FOR SEGMENTING THE BRAIN 

TISSUE 

In this Paper we assess the most frequently used procedure of 

brain tissue segmentation as well as the current break 

throughs in these method. We have discussed several 

segmentation method using 2D and 3D MRI. These brain 

tissue segmentation method comprises of several standard 

image processing methodologies such as deformable models 

(DM), Fuzzy c-means (FCM), region growing, Gaussian 

mixture model (GMM), etc. and so on. Then, the merits and 

demerits of the strategies are outlined in table I. 

Generally, there are five categories of brain tissue 

segmentation method which are grouped as follows: 

 

1. Manual segmentation 

2. Region-based segmentation 

3. Clustering-based segmentation 

4. Thresholding-based segmentation 

5. Features extraction and classification-based 

 

A. Manual Segmentation 

Manual segmentation is a technique of manually separating 

pixels in the same intensity range by a human operator (e.g., 

an analyst or a surgeon). It involves a highly experienced 

medical professionals multidisciplinary board consisting of 

trained technologist, radiologist and pathologist. However, 

this approach has a number of drawbacks, including an blurry 

boundary, weak tissue contrast, 

and shaky hand-eye coordination. With the recent 

improvement over the past few years, the manual 

segmentation has become a tedious and time-consuming. The 
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result of the segmentation method may vary with the expert. 

Hence this classical and traditional method of highlighting 

and classifying pixels in the same intensity range is also time 

taking and prone to errors. Furthermore, Manual segmentation 

also becomes a challenging task with these newly developed 

high dimensional and multifunctional imaging 

techniques.Many automatic approaches are given by the 

researchers to solve this problem. 

 

One of the most often used methods for automatic brain tissue 

segmentation is Statistical Parametric mapping (SPM). It is a 

software packaged created by researchers at the university 

College London’s Wellcome Department of Imaging 

Neuroscience [10], [11]. Many automatic segmentation 

methods have an extensive search approach and take a long 

time to compute. To deal with the problem of exhaustive 

research, segmentation methods use optimization tool s such 

as the Genetic Algorithm (GA), Bacterial Foraging 

Optimization (BFO), Particle Swam Optimization (PSO) and 

others. Furthermore, Evolutionary algorithm (EAs) can deal 

with a variety of ill-defined issues in brain tissue 

segmentation, such as multimodality, discontinuity and noise 

[11]-[13]. 

 

B. Region-based method 

Region based segmentation methods rely on the image’s 

intensity homogeneity to determine the object border. The 

following are the some most common tactics used in this 

method: 

 

1) An approach based on contour and shapes 

2) Region growing 

3) Level setting mechanism based on region 

4) Graph based method 

T1-weighted MR images is used in contour and shape based 

technique and T2-weighted MR images are used in graph 

based methods. 

 

1) An approach based on contour and shapes: An initial 

contour is supplied near to the intended border in the contour 

and shape-based technique. The approach then changes the 

contour to bring it closer to the goal border by minimising a 

predetermined criterion. The DM method is a prominent 

contour and shape-based strategy. Prior knowledge about the 

shape of the target object is used in a knowledge-based 

segmentation method. It all begins with a starting boundary 

shape that is arbitrary and in the form of a curve Active 

contours are DMs that deform and develop toward the target 

boundary. The first DM for recognizing item boundary from 

an image was proposed by Kass et al. [14]. The contour's 

deformation is governed by the minimization of an energy 

function. Internal and external energy terms make up the 

energy function. The smoothness of the shape is handled by 

internal energy. The external energy term in the image 

domain pushes the contour toward desirable qualities like 

gradient, texture, edge information, and so on. Traditional 

active contour algorithms rely on gradient data. In this 

method, The initial contour is drawn near to the object of 

interest's boundary in this procedure. As a result, there is a lot 

of external energy, which makes it possible to do things bring 

the contour closer to the target object's edge. However, The 

approach is unable to handle the curve's topological 

alterations. In this case, level set approaches monitor contours 

and surfaces using parameterized curves [14]-[18]. Mesejo et 

al. [14] proposed a hybrid level set (HLS) segmentation 

approach for medical illustrations. The approach integrates 

prior shape knowledge with both region and edge-based 

information. In addition, GA calculates the level set's 

parameters. Furthermore, the shape prior is derived using 

scatter search. 

 

There are two forms of active contours: parameterized active 

contours (PAC) and geometric/geodesic active contours 

(GAC). A parameterized curve in a Lagrangian formulation is 

described by PAC. The curve's explicit characterisation 

simplifies user interaction and the declaration of a priori 

shape limitations. GACs are primarily based on surface 

evolution theory and geometric flows in the light of the Euler 

formulation. The approach uses gradient information to define 

an edge and is able to handle these curves efficiently. First, It 

starts by creating an initial contour that is near to the intended 

boundary. Second, it minimizes a boundary-based energy 

function to construct the contour toward the strongest 

gradient. This model is implicitly described by a level set of 

2-D functions, in which the number of iterations determines 

the halting criterion [14]– [18]. 

 

Furthermore, there are two types of DMs that are based on the 

feature of the item of interest: edge-feature (EF) and region 

feature (RF). EFs are the most commonly used approach for 

segmenting brain pictures into tissues such as WM, GM, and 

CSF for sickness Prognosis. Edge-detection methods produce 

arbitrary contour lines around the target object in EFs. Using 

various similarity measurements, the object of interest is 

retrieved by combining these contour lines. Edge detectors, on 

the other hand, rely on image gradient information. As a 

result, the detectors can only recognize objects in the image 

domain that are defined by a strong gradient function. The 

above approaches' performance is greatly dependent on the 

starting contour's location, edge opening, weak edges, 

inhomogeneity, and noise. In order to address the 

aforementioned issues, researchers have included the 

expectation maximization (EM) method, gradient vector flow, 

or self-affine mapping system in traditional models. To 

identify the region of interest, RFs rely on statistical and 

homogeneity properties (ROI). RFs, unlike EFs, construct the 

ROI curve using specified region statistics. They are, 

however, unable to locate object boundaries. Researchers 

recommended using a priori shape information or statistical 

information in the energy function to combat RF issues. 

Many solutions, including region growth, region-based level 

set [15], [26]–[28], and graph-based methods [27], [28], rely 

on statistical estimation of regions or graph theory to 

overcome the limitations of prior methods. 

 

2) Growing Regions: The mechanism for growing regions 

is determined by the homogeneity and connection conditions. 

A seed point (pixel) is chosen from each region in the 

classical approach of region expansion. The pixels in the 
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immediate vicinity are gathered based on their homogeneity 

requirements (e.g., intensity similarity). The seed point 

accumulation procedure continues until the termination 

condition is met. As a result, a network of interconnected 

regions emerges. In the segmentation of brain tissue, region 

growing is a typical approach. The regions of the object of 

interest are supposed to have the same or slightly varied 

intensity values to achieve homogeneity. As a result, 

segmentation performance may be influenced by seed 

selection and homogeneity requirements. For homogenous 

MR images, region expanding is usually sufficient. It's also 

well-suited to medical picture segmentation, as images are 

largely made up of object and backdrop. Combining the 

region-growing method with other technologies such as edge 

detection could be one solution to the problems. In addition, 

homogeneity criteria for numerous brain lesions have yet to 

be determined [19], [29]— [31]. 

 

3) Region-Based Level Set Methods: To evolve the contour, 

region-based level set methods rely on the level set. The 

energy function of the region-based level set approaches is 

developed using common clustering methods such as k-

means, FCM, and GMM. Chan and Vese [15] proposed the 

CV model, which is a region-based level set technique. It is 

based on the concept of deforming the curve enclosing the 

target object by minimising an energy function. It is suitable 

for the piecewise constant situation [15] and is based on level 

set to develop the contour. In [15], the Mumford and Shah 

functions are derived using k-means in the piecewise (PC) 

level set approach to solve two homogeneous segments. The 

multiphase level set algorithm uses the same concept to solve 

multiple segments. This approach overcomes noise and 

blurred boundaries. Mandal et al. [13] proposed rewriting the 

CV model as an optimization problem. To decrease the fitting 

energy function, the authors employed PSO. Regardless of the 

starting contour choice, this improved technique can reach 

global minima [13], [25], [33], [34]. However, the efficacy of 

this technique degrades when medical images have a 

complicated intensity distribution. To overcome the estimate 

of phase value, [44] uses finite mixture models and GMM 

with the level set approach. The approach estimates the 

foreground homogeneous intensity distribution as well as the 

background complex intensity distribution at the same time. 

 

Complex structures can be seen in a lot of medical photos. As 

a result, the assumption of homogenous intensity for the 

foreground is no longer valid. Statistical variational models 

such as shape and extra attributes are used to increase the 

accuracy of level set approaches. The size, shape, and 

intensity distribution of tissues and organs would varied 

greatly amongst patients. As a result, gathering training data 

with a wide range of variables becomes problematic. As a 

result, the segmentation accuracy of level set approaches 

including statistical prior models is limited [21], [36]. 

 

4) Graph-Based Approaches: Graph-based methods have 

recently gained popularity in the field of brain tissue 

segmentation. Unlike other region-based techniques, they use 

foreground and background seeds to locate the image's 

components. When combined with local pairwise pixel 

similarities, this additional information improves 

segmentation accuracy when compared to previous 

approaches [3]. Graph-cut [27] and random walker (RW) [28] 

are some of the most often used graph-based approaches. Due 

to noise, complex intensity distribution, and uneven intensity 

of aberrant tissue, medical images typically have nonuniform 

foreground and background. The method's performance 

deteriorates in this case. To accomplish accurate 

segmentation, Li et al. [18] suggested a coupled statistical and 

graph (CSG) variational model. The multimodal intensity 

distribution of foreground and background is estimated using 

statistical functional analysis. A prior probability map is also 

used to distinguish pixels with tiny variations. The approach 

is used to segment tissues in computed tomography and 

magnetic resonance imaging, as well as to detect tumours. 

These seed points act as strong constraints for the optimal 

segmentation results, integrating global information with local 

pairwise pixel similarities. 

 

C. Threshold-Based Methods 

One of the most used segmentation methods is thresholding, 

in which the target objects are segregated by comparing their 

intensity values to one or more thresholds. Intensity 

thresholding is another term for it. Threshold values can be 

set globally or locally. Fixed thresholding and adaptive 

thresholding are two types of threshold-based approaches (see 

Fig. 2). In thresholding-based techniques, T2-weighted MR 

images are used. Pixels over the threshold level are assigned 

to a group, whereas pixels below the threshold are considered 

background in fixed thresholding. In MRI, however, the 

object of interest is marred by a slew of artefacts. As a result, 

fixed thresholding-based approaches use criteria including 

entropy, between-class variance, and others to detect the 

object of interest. 

 

A single threshold value can be utilised to identify an item 

from the background when an image histogram is bimodal. It 

assigns a one to readings above the threshold and a zero to 

readings below the threshold. A global threshold T segments 

the image provided as I(x, y) for an image I(x, y). 

  (  ,   ) = { 

1,   (  ,   ) 

(1) 0,     ℎ             

 

where pixels with a value of 1 denote an object and pixels 

with a value of 0 denote a blank space. Such an approach's 

segmentation 

accuracy is heavily dependent on statistical fluctuations. The 

choosing of thresholds becomes more difficult as the number 

of regions grows. It should be highlighted that brain tissue 

segmentation necessitates the segmentation of many tissues 

(i.e., WM, GM, and CSF). 
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Fig. 1 Threshold-based Methods in brain tissue 

Segmentation 

 

Adaptive thresholding is when fixed thresholding adaptively 

decides the threshold value for the object of interest. The 

threshold value is determined adaptively by a local 

neighbourhood surrounding a pixel in this method. The 

threshold values are frequently estimated using prior 

knowledge or local statistical features. To compute the 

threshold value from a T2-weighted MRI, Stadlbauer et al. 

[37] employed a Gaussian distribution of pixel intensity 

levels. The value defines a demarcated area that is used to 

identify diseased tissue . When imaging parameters use 

spatial information with a priori knowledge, however, they 

may not perform effectively. Many academics have proposed 

a thresholding strategy based on geographical information or 

the maximum entropy principle to reduce the impact of these 

issues. 

 

Entropy-based, Otsu's approach, and evolutionary-based 

methods are some of the most common and effective 

thresholding-based methods for MRI brain tissue 

segmentation. To derive the appropriate threshold values from 

the histogram, Kapur et al. [22] proposed maximising of 

entropy. By maximising the between-class variance of grey 

levels, Otsu [23] introduced a nonparametric methodology 

called Otsu's method to identify optimal threshold 

automatically. With an increase in the number of thresholds, 

computational time increases in both methods due to the 

broad search strategy. There are many computational methods 

that are available in the literature to reduce the computational 

time [11], [12], [39]-[40]. 

 

EAs have recently been combined with thresholding to 

identify the best threshold values while minimising 

computational time. Multimodality, discontinuity, time-

variance, unpredictability, and noise are examples of ill-

defined problem domains that EAs can easily adapt to. Maitra 

and Chatterjee [35] used BFO in the histogram-based 

thresholding method to segment a variety of conventional 

brain MRIs. Manikandan et al. [24] found the optimal 

threshold values by maximising the entropy using real-coded 

GA (RGA) with simulated binary crossover (SBX) in 

multilevel thresholding for segmentation of T2-weighted MRI 

[11] using real-coded GA (RGA) with simulated binary 

crossover (SBX) in multilevel thresholding for segmentation 

of T2-weighted MRI [11]. 

 

 

 

D. Methods of Clustering 

Clustering methods are statistical techniques based on pixels 

used in brain tissue segmentation. Some similarity 

measurements, such as distance, connection, and intensity, are 

used to partition the pixels into groups or clusters in this 

method. There are two sorts of clustering methods: 1) hard 

clustering and 2) soft clustering (see Fig. 3). T1-weighted MR 

images are used in the clustering algorithms. 

 

The first method divides the pixels into clusters by using 

sharp border values. Hard clustering is exemplified by k-

means. Soft clustering is divided into two types: FCM and 

mixture models. Pixels are gradually divided in this approach, 

with a membership function (based on FCM) or an underlying 

probability (based on mixture models) used to determine 

whether a pixel belongs to a cluster. The membership function 

in FCM-based approaches assigns a membership grade value 

to each pixel, indicating how much it belongs to a cluster. The 

underlying likelihood of the data clustering into separate 

groups is assumed to have some distributional form in the 

mixture models. [4], [70]–[75]. 

 

 

Fig.2 Method of Clustering in brain Tissue Segmentation 

 

TABLE 1 

MERITS AND DEMERITS OF THE MOST 

COMMONLY USED BRAIN TISSUE SEGMENTATION 

METHODS 

Name of the 

Method 

Merits Demerits 

Deformable 

Model 

When the contour is 

initialised close to the 

intended  
Object boundary, the 

approach delievers 

good results.  
Minimizing an energy 

function controls the 

contour’s  
Expansion or 

contraction over time. 

The method’s efficacy 

is entirely dependent on 

initial contour location. 

Sensitive to images with 

a blurry boundaries that 

are noisy. 

 

Level set Cavities, concavities, 

convolution, splitting 

and merging  
can all be controlled. 

Simple parameter 

tuning is required. 

Noise, weak borders, 

low contrast between 

sections, misleading 

gradients. 
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PAC PACs are efficient 

models that need basic 

computations. 

PACs are efficient 

models that need 

basic computation 

GAC GACs have the ability 

to handle topological 

changes in 
 
the curve, making 

them useful for 

segmenting 

complex Curves. 

With the use of 

level set function, 

they can detect 

interior curves, 

cups and 

multijunction and 

other features. 

Sensitive to the 

placement of the 

beginning of contour. 

EF Deform and move the 

curve in the direction 

of the target  
items limits, local 

edge information is 

used . 

Weakly defined edges, 

noise, IIH, computing 

complexity are all 

major issues. To obtain 

hole -free art-facts, post 

processing is required. 

RF Capable of 

suppressing startup 

and noise issues in 

EFs. 

In the presence of 

IIH, noise, and 

heterogeneous 

objects, performance 

suffers. 

Region 

growing  

The benefits of taking 

into account both 

visual and spatial 
 
information. It is 

impervious to 

changes in the 

inner workings, 

resulting in 

closed zones. 

There are three major 

issues: 1) pixel 

processing order; 2) 

automatic selection; 

and 3) regions with 

holes and noise. 

Furthermore, region 

growth is ineffective 

when it comes to 

segmenting several 

items 

CV model It's a good way to get 

around the constraints 

of edge-based edge-

based approaches. 

Interior contours can 

be detected, hence it 

could be utilised for 

medical imaging with 

weak With IIH, a 

piecewise smooth 

model could be useful 

for Medical pictures. 

Images with a 

complicated 

background and 

erratic intensity limit 

you can do. Only 

images with 

homogenous regions 

operate with the 

piecewise constant 

case. Local minima 

are common during 

contour evolution due 

to the nonconvex and 

nonunique structure 

of the energy 

function. This type of 

convergence 

frequently results in 

unfavorable 

segmentation results 

Graph based For efficient 

segmentation, 

combine global 

information  
using local pairwise 

pixel similarities. 

Using simply 

statistical 

classification, it is 

difficult to distinguish 

pixels with the same 

minimal changes 

between foreground 

or background 

Fixed 

thresholding 

For photos with 

homogenous 

intensity, high 

contrast, and 

discriminant grey 

levels between object 

and background, this 

method works well. 

Because of its ease of 

implementation and 

computing efficiency, 

it is employed in 

brain tissue 

segmentation. 

The correlation of 

pixels is not taken 

into consideration in 

this method, which is 

a fundamental flaw. 

They also result in 

pixel misclassification 

due to noise, IIH, and 

tissue Overlapping. 

The histogram of the 

image is corrupted by 

these aberrations, 

making segmentation 

with global 

thresholding 

challenging.  

Adaptive 

Thresholding 

When a single 

threshold value is 

unable to segment or a  
threshold value cannot 

be obtained from an 

image's 
 
histogram, this 

approach is chosen. 

This is a quick and 

easy way to segment 

several items using an 

intensity histogram. 

The grey scale 

distribution, noise, 

multichannel images, 

and images containing 

multimodal regions 

all affect the 

effectiveness of these 

approaches. 

Hard 

clustering 

Image with 

homogeneous regions 

is ideal. It's best for 

real-time image 

segmentation because 

it takes less time to 

compute. 

Noise, IIH, and 

photos with diverse 

regions make it 

vulnerable. 

Soft 

clustering 

It does not use a sharp 

boundary to separate 

the pixels into groups, 

unlike hard clustering. 

To cluster the pixels, it 

defines a membership 

function. 

Noise and IIH 

sensitivity. When 

grouping pixels in the 

image domain, no 

spatial information is 

taken into account. 

Further, because to bad 

initialization, it yields a 

local optimal solution. 

Mixture 

model 

Analyze an image 

statistically. By 

Within a class, there is 

no spatial relationship 
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modelling the intensity 

variation of each tissue 

type as a Gaussian 

distribution, they can 

handle bias field 

correction and spatial 

regularisation in the 

immediate region. 

between nearby pixels. 

this leads to a local this 

leads to a local 

optimum. 

DWT Capable of analysing 

an image at different 

resolutions. Maintain 

the sharpness of the 

edge. Provide useful 

information about a 

signal's localised 

frequency, which is 

useful for 

classification. 

 

Sensitive to time shifts, 

lack of directionality, 

and phase information. 

To increase 

performance its 

common to include a 

dimension reduction 

reduction strategy. 

Complexity of 

computation is high. 

Gabor filter Local visual properties 

such as orientation, 

spatial Frequency 

(scale), and 

localisation can be 

captured. 

The choice of scale 

and direction is made 

on trial-and-error 

basis. As a result, a 

high-dimensional 

feature vector is 

produced. It 

necessitates a big 

amount of memory. 

Complexity of 

computation is high. 

Statistical 

features 

Extraction 

Method 

Take a look at the 

pixels' interrelation. 

Capture local picture 

features that can be 

used to distinguish 

unusual formations 

from normal tissue 

such as brain tumour 

tissue. Computational 

complexity is reduced. 

Sensitive to visuals 

with a wide range of 

intensity levels. The 

location, size, shape 

and texture of tissues, 

as well as the unclear 

tissue boundaries and 

noise inherent in MR 

images, all affect 

performance. 

KNN It's a classifier that's 

based on instances. In 

the training photos, it 

is capable of 

preserving 

information. Simple to 

implement. 

The response time 

for large datasets is 

extremely long. 

Unwanted features 

are sensitive, as their 

contribution to 

similarity leads to 

misclassification. 

ANN The most widely used 

machine learning 

algorithm. The 

processing elements 

are organised in a way 

that resembles the 

human brain. Capable 

of performing 

effectively in non 

linear domains that are 

complex and 

Computational 

complexity and 

response time are 

both high. 

 

multivariate. In 

contrast to statistical 

models, ANN does not 

require data allocation 

SVM In high-dimensional 

feature space, this is 

the most common 

choice. High 

generalisation ability. 

It necessitates a 

significant amount 

of training time. It 

necessitates a lot 

of storage space. 

Patient-specific 

education 

 

SPM, a specific software for brain tissue segmentation based 

on mixture models, has been reported in the literature. It's 

capable of jobs like skull stripping, bias field correction and 

automatic segmentation. Brain tissue SPM segmentation can 

be done in three different ways: 

 

1) segmentation by default; 

 

2) SPM8-based segmentation; 

3) a new design that incorporates a hidden Markov random 

field (HMRF) 

The SPM programme has been widely used in the 

neuroimaging field to do automated functional and structural 

brain image analysis. However, there are few studies 

comparing the software's segmentation accuracy to other 

approaches for segmenting GM, WM, and CSF [10]. 

Furthermore, the involvement of a domain expert may be 

beneficial when developing any advanced programme for 

better brain tissue segmentation outcomes. 

 

1) FCM: Out of all the soft clustering algorithms, FCM is 

the most common, as it assumes that image pixels (or voxels) 

belong to many clusters. A similarity criterion is used to 

divide pixels into clusters. As a result, it might not be suited 

for segmenting pictures that have been tainted by noise and 

artefacts, such as IIH or the shading effect in MRI. As a 

result, various modified FCM methodologies [50]–[52] have 

been proposed in the literature to aid in the preparation of 

FCM for better tissue segmentation. 

 

Researchers also employed a multiplicative bias field (i.e., B-

spline surface) to represent the intensity nonuniformity (INU) 

effect and a dissimilarity index for spatial voxel connection to 

suppress the INU effect. The approach efficiently segments 

noise and INU-affected brain MRI. Chuang et al. [52] 

presented a weighted membership function for spatial FCM 

(sFCM).The suppression of INU, the elimination of noisy 

areas, and the compression of spurious blobs are the key 

benefits of this technology. It effectively segments T1- and 

T2-weighted MRI images of the brain. Using wrapping-based 

curvelet mapping as a preprocessing step to eliminate noise in 

MRI is one technique to modify sFCM. Using the kernel 

technique for clustering, fast spatial constraint, fuzzy kernel 

FCM (FKFCM) maps input data (i.e., pixel intensities) to a 

higher dimensional space. The MRI segmentation performed 
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by FKFCM is satisfactory. The method's strength is 

demonstrated through studies with synthetic images, digital 

phantoms, and clinical images influenced by noise. 

 

For robust brain tissue segmentation, many researchers have 

proposed generalised FCM by modifying its objective 

function. The effect of IIH caused by the bias field in the MRI 

is suppressed by bias-corrected FCM. The method alters the 

goal function and adds a regularisation, allowing for pixel 

labelling based on its surroundings. It works well for MR 

pictures with salt and pepper noise, but at the cost of a long 

computation time. FCM also incorporates a coherent local 

intensity clustering (CLIC) criterion for smoothness of bias 

field without any regularisation. This method assumes that 

local region intensity is coherent and incorporates a Gaussian 

kernel in the energy function to adjust for bias. The addition 

of regularisation improves the method's effectiveness even 

more. CLIC criteria were employed by some studies to 

convert a multiplicative bias field to an additive form, 

decreasing complexity at the expense of the partial volume 

effect (PVE). The nonlocal regularised FCM (NLRFCM) 

approach preserves fine brain structures by using nonlocal 

spatial regularisation [50], [52]. 

 

Adhikari et al. [4] recently introduced a conditional spatial 

FCM (csFCM) approach in MRI that is resilient even when 

there is IIH and noise. To change the membership function of 

standard FCM, the approach takes into account local intensity 

relationships between pixels. It also develops membership 

functions and other clusters using the conditioning variable 

associated with each pixel. Nonetheless, the existence of 

significant levels of noise and IIH may result in segmentation 

that is undesirable. Incorporating geographical information 

and IIH into the csFCM membership function could be a 

useful strategy for improving its performance. 

 

To initialise cluster centres in the FCM, many researchers 

have used EAs like PSO, a probabilistic heuristic algorithm. 

Benaichouche et al. [53], for example, employed PSO to start 

cluster centres in FCM and found a global optimum solution. 

It also makes use of spatial information and Mahalanobis 

distance to make the method noisy and misclustering 

resistant. Based on PSO, Mekhmoukh and Mokrani suggested 

an improved kernel possibilistic c-means (IKPCM). For the 

initialization of cluster centres and the membership function, 

the author employed PSO. Different brain tissues are 

effectively segmented using this procedure. 

 

2) Mixture Models: The intensity values of different 

substructures and tissues in brain MR images are relatively 

diverse. Statistical mixture models are used to characterise an 

image in this case. In this method, parametric models are used 

to estimate the probability distribution of intensity in a picture 

using the maximum-likelihood (ML) similarity criterion or 

the maximum a posteriori (MAP) criterion. GMM is a widely 

used statistical model in neuroscience. A Gaussian 

distribution is used to estimate the intensities of pixels (or 

voxels) in a region in this model. The GMM parameters are 

then estimated using the expectation maximisation (EM) 

technique, which maximises the likelihood of the observed 

image. 

 

Wells et al. [54] suggested an MRI algorithm based on EM-

based adaptive segmentation (AS-EM). AS-EM assumed a 

Gaussian distribution for the bias field and used ML to model 

it. The model parameters are estimated using the EM 

algorithm. Guillemaud and Brady [55] proposed a more 

generalised strategy, taking into account the limitations of 

[54], such as the number of tissue classes to model, parameter 

definitions, and tissue spatial information. The approach 

effectively segments MR images of the brain and breast. The 

bias field is estimated using an automatic model based on the 

EM (AM-EM) approach in [56]. The approach divides tissues 

into WM, GM, and CSF using a digital MRI brain atlas. 

However, in both of the methodologies mentioned, the 

estimation of GMM 

parameters using EM suffers from a lack of spatial 

information and segmentation ambiguity. Blekas et al. [58] 

used prior Gibbs distribution to add spatial information to 

GMM. They came to the conclusion that regularisation in the 

GMM might be introduced if the distance function became a 

discrete total variation. Their method produces a spatially 

limited GMM that is noise-resistant but lacks bias correction. 

Greenspan et al. [58] suggested a limited GMM that combines 

local spatial and global intensity modelling. Liu and Zhang 

[32] proposed a local GMM that took bias correction and 

spatial regularisation into account. A Gaussian kernel is used 

in the goal function for bias correction. Smooth segmentation 

is achieved by regularising an indicator function. However, 

their method did not preserve the entire brain structure. Dong 

and Peng [57] suggested a variational model that combined 

local GMM with nonlocal spatial regularisation. The authors 

employed a truncated kernel function in the GMM without 

any additional limitations to ensure bias field smoothness. 

 

EAs have been employed by a number of academics in 

model-based methods such as EM-based ML estimation. The 

goal is to get over their inherent flaws, such as overfitting and 

the tendency to become stuck in local optima. For likelihood 

estimation, Tohka et al. [60] presented a GA-EM approach. 

Local convergence is also a problem with HMRF-EM-based 

approaches, as previously indicated. As a result, the EAs use 

the EM algorithm to estimate parameters instead of the 

traditional method. To estimate the parameters of HMRF, the 

evolutionary HMRF approach employs EAs such as the clonal 

selection algorithm (CSA). Both simulated and actual brain 

MR images can be segmented using this method. A new 

HMRF-CSA algorithm incorporates both CSA and MCMC to 

increase the HMRF technique's performance. 

 

E. Classification-Based Methods and Feature Extraction 

In brain tissue segmentation, feature extraction and 

classification approaches are critical. T2-weighted MR 

images are used. In this method, the main goal of this strategy 

is to compile a list of the most effective options and 

identifying characteristics in an MR brain picture. The 

classification is then based on the discriminating features. 

Many cutting-edge feature extraction techniques are available 

in the literature including DWT (Differential Wavelet 
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Transform) [43], Gabor filter, and several statistical 

approaches such as grey level co-occurrence matrices, grey 

level run length matrices, and so on [38]. However, due to 

abnormalities such as noise, IIH, and others, feature 

extraction from MR images remains a difficult task. 

Furthermore, with most feature extraction approaches, high 

dimensionality is an inherent difficulty. The dimensionality 

problem is partially solved by principal component analysis 

(PCA), linear discriminant analysis (LDA), and other 

techniques. For correct classification, they get a small number 

of significant features. 

The examples of the State-of-the-art classification method are 

K-nearest neighbours (KNN), support vector machine (SVM), 

artificial neural network (ANN), self-organizing map. [45] 

provides a detailed description of their benefits and 

drawbacks. 

 

The nature of the retrieved characteristics is unaffected by the 

training process of a classifier in most of the methods 

mentioned above. Furthermore, for accurate segmentation, 

most feature extraction approaches require spatial and 

intensity information. Convolutional neural networks (CNNs) 

and deep learning have recently gained popularity in the field 

of brain tissue segmentation [46]– [48]. They omit the explicit 

demand of spatial and intensity information, unlike traditional 

feature extraction and classification-based approaches. 

Convolutional neural networks (CNNs) learn from a series of 

convolutional kernels. The convolutional kernels are 

deliberately trained for the classification that is needed. 

Furthermore, CNNs optimize the kernels based on the training 

data input. Additionally, geographical and intensity data can 

be used to distinguish between classes. A CNN-based 

technique based on baby MRI is proposed in [49]. For 

segmentation of three tissues: WM, GM, and CSF, the authors 

used T1-weighted, T2-weighted, and fractional anisotropy 

images. As part of the medical imaging computing and 

computer-assisted intervention (MICCAI) competition on 

multiatlas labelling, In [48], the authors present a method for 

adult tissue segmentation using T1-weighted MRI. The 

approaches in 

 

[48] and [49] make use of CNNs, although they don't have 

any intensity or spatial features. By approximating both 

spatial and intensity information, this learning approach 

allows for accurate segmentation of MRI into several tissue 

classes. 

 

Table I shows the pros and cons of the most regularly used 

brain tissue segmentation methods. 

 

III. MEASURES OF VALIDATION 

We have included some of the most up-to-date validation 

measures for brain tissue segmentation in this study. 

Validation of a segmentation method is a required step in 

determining its effectiveness and limitations. It is also 

suggested before using a procedure in a clinical setting. 

Validation of a method, on the other hand, necessitates the 

collection of data in order to assess its effectiveness. The data 

used in brain tissue segmentation is a medical brain picture, 

which might be synthetic or genuine. Here, we'll talk about 

the differences between synthetic and actual clinical 

photographs. We've also included a list of some of the most 

prominent publicly available databases that can be used to 

validate a segmentation approach. 

 

A. Synthetic Image 

Synthetic images are created on a computer rather than with a 

scanner. The advantage is that the user may set the parameters 

to create the image they want. For example, three types of 

MR images are obtained by defining different MR parameter 

values such as echo time (TE), repetition time (TR), 

resolution, sequence, noise, and IIH: T1-weighted (T1-w), 

T2-weighted (T2-w), and proton 

density weighted. In addition, a ground truth image is 

available to compare the segmentation result's efficiency. An 

MRI simulator can create synthetic images with varying 

levels of complexity, ranging from piecewise constant to 

realistic. To test their segmentation method, some researchers 

employed synthetic brain MR images generated by a 

simulator. 

 

Because of its simplicity, the most prevalent method of 

evaluation is synthetic images. Furthermore, the MR 

simulator's synthetic images may be a useful choice for 

comparing different approaches. The MR simulator, on the 

other hand, cannot produce excellent real-world images. 

Phantoms can be used to generate actual images, although 

dense ground truth for phantom images is difficult to come 

[42]. 

 

B.  Clinical Photograph 

Validating segmentation techniques with real-life medical 

illustration is an crucial element in determining their 

usefulness. When working with an actual medical record, we 

must consider the disease's diversity. As a result, data from a 

sufficient number of patients is collected. Another 

consideration is the lack of a ground truth picture. Though it 

is important to assess segmentation performance, it is not 

necessary to assess a method's reproducibility. The outcomes 

of fully automated segmentation method are frequently 

compared to segmentation via hand performed by a 

professional. Manual segmentation, however, is limited by a 

well-known mistake occurred due to variability between and 

within experts.. 

 

C. Databases 

 

There are number of currently accessible standard databases 

like BrainWeb, IBSR, Harward medical school website, Allen 

brain atlas etc. These have been used to assess brain tissue 

segmentation algorithms quantitatively. Figure 3 shows a 

simulated T1-w MR picture of a person obtained from 

BrainWeb. The picture is approximately 362 by 362 pixels 

[see Fig. 3(a)]. The database also includes WM's ground truth 

photographs of tissues [see Fig. 3(b)], GM [see Fig. 3(c)], and 

CSF [see Fig. 3(d)]. 
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Fig. 3 Example Simulated T1-w MR image of a subject from 

Brainweb. 

(a)Normal MRI.  (b) Segmented WM.  (c) Segmented GM  

(d)Segmented CSF 

 

MR images are also available in the Allen brain database. 

Experts also used the aforementioned databases to acquire 

medical brain scans from institutions or by direct scanning. 

The effectiveness of the proposed segmentation approach for 

clinical usage is usually tested using real clinical images. 

Typically, techniques are tested first using simulated data and 

then with actual data. 

 

D. Indicators of performance 

A segmentation approach is validated using performance 

indices. Before a method may be used for clinical evaluation, 

it must first be validated. We've included a variety of 

performance indices for evaluating brain tissue segmentation 

methods in this part. The effectiveness of the segmentation 

algorithms is evaluated using no one metric. Different 

measures used for quantitative assessment of approaches in 

brain tissue segmentation are the following: 

 

Dice index (DI): It is a a quantifiable measure of crossover 

that is used to assess segmentation procedures. For each type 

of tissue, dataset, and procedure, DI is determined. It 

determines how much the segmented picture and the ground 

truth picture overlap. It is defined as [4] 

= 

  

(2) +  

   

 

Partition coefficient (Vpc): Partition Coefficient is a useful 

metric for determining how fuzzy a partition is. It has a value 

between 0 and 1, with 1 being the best. The higher the value, 

the better the performance and the less fuzziness. It is written 

as 

= 

 

∑  =   ∑  =   (3) 

     

 

where represents the weighted membership parameter, C 

represents the number of clusters, and N represents the 

number of data structures [4]. 

 

Partition entropy (Vpe): Another metric for indicating a fuzzy 

partition is partition entropy. Vpe's minimal value denotes the 

best clustering. The best value for Vpe is zero. It is written as 

[1] 

 

 

= 

 

∑ ∑  

 

(4) 

 

 

   

 

  =     =     

        

 

 

Jaccard index (JI): JI is a criteria for determining how much 

the segmented picture and the ground picture overlap. A value 

of 0 signals no crossover with ground truth, whereas a value 

of 1 signals flawless segmentation. 

JI= | 

  ∩   

| (5)  

   ∪    

 

where S and G are two main parts yielded by the technique 

and ground truth [41]. 

 

Similarity index (ρ):  To match the segmented image with 

reference image, the similarity index is applied. It's described 

as 

= 

 

∑ 

| ∩  | 

 (6) 

   

 

 

   =   | |+|  |  

       

 

where Ai is the number of pixels from segmentation that 

correspond to cluster Ci, and Bi is the number of pixels in Ci 

according to ground truth. The range of is [0, 1], with = 1 

being the best value [1]. 

 

Segmentation Accuracy (SA): Segmented Accuracy is 

calculated as the measure of correctly identified pixels 

divided by the total number of pixels in the clustered picture. 

It's written as 

= 

∑  =           (   ∩   )  

(7) 

∑  =           (   )   

 

where M is a cluster's total amount of pixels, is the amount of 

pixels in the kth cluster, as determined through segmentation, 

and is the amount of pixels in the kth cluster in ground 

picture. The SA's ideal value is 1 [1]. 
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Tissue segmentation accuracy (TSA): It is described as 

= 

 

(8) +   

 

 

where NCTK is the number of pixels accurately designated to 

tissue k by a particular technique (within the ground truth 

mask). NCITK is the total number of pixels assigned to tissue 

k (both in and out of the ground truth mask). The number of 

pixels in the discrete anatomical representation (the ground 

truth mask) that correspond to tissue k is NGTK. The 

recommended TSA value for ideal segmentation is 1 [1]. 

 

Uniformity measure (UM) : It is a empirical validation used to 

assess the effectiveness of methods of fragmentation. It's 

described as 

=−×× 

∑
  =   

∑  ∈   (   −   )  

(9) 

  ×(     −     )   

 

where p is the threshold’s quantity, is the image's jth 

fragmented region, N is the image pixels, is the greyness of pixel Image, 

is the pixels' average value in the   ℎregion, fmax is the 

image's maximum grey level, and is the image's minimum 

grey level. 

 

UM has an ideal value of 1 [24]. 

False positive (FP) and false negative (FN): The level of 

misdiagonosis during fragmentation is represented by the 

false positive (FP) and false negative (FN) results. True 

positives (TPs) and true negatives (TNs) are also employed in 

addition to FPs and FNs. The right segmentation is 

represented by TPs and TNs. In binary fragmentation, 

sensitivity and specificity metrics are used to assess the 

impact of FPs and FNs on a method's effectiveness. 

Sensitivity = 

  

+ (10) 

   

 

     

Specificity = 

 

+ FP (11) 

    

The best value for the 

two factors above is 1 

[3].      

IV.    REMARKS  

 

Due to IIH, noise, and other artefacts, segmenting cells of the 

brain including WM, GM, and CSF is a difficult activity. As 

stated in Section II, several approaches for fragmentation of 

brain tissues have been explored in the research. Because each 

method uses a distinct sources, picture type, segregating 

analysis, and confirmation metrics, comparing them is a 

challenging and time-consuming operation. MICCAI and the 

international symposium on bioimaging, for example, run a 

biomedical imaging competition as part of their symposia. 

They allow impartial testing of a large variety of techniques 

on the same dataset. MICCAI's MRBrains 2013, for example, 

is a current public competition with 37 works that have been 

ranked [119]. Researchers from all over the world took part in 

this challenge to evaluate their methods for segmenting cell of 

the brain (WM, GM, and CSF) using layer up procedures such 

inversion recovery, T1-w, T2-w and Fluid attenuated 

inversion recovery (FLAIR). On 15 test datasets, the 

determinants of performance such as DI, revised Hausdorff 

distance, and absolute volume difference are used to score all 

of the approaches. The 3-D deep learning strategy (voxnet1) 

surpassed all other solutions in terms of total fragmentation 

outcome and WM fragmentation in the MRBrains 2013 

challenge. In terms of GM segmentation, the 3-D deep 

learning method (voxnet2) surpassed all other techniques. In 

CSF division, PyraMid-long short-term memory techniques 

were ranked first. In the case of WM and GM combined 

fragmentation, ISI-Neonatology produced better results. On 

cerebral cavity segregation, multilayer gated recurrent units 

showed remarkable results. 

 

V. CONCLUSION 

In recent years, brain tissue segmentation has become a 

research area. Brain tissue segmentation is important for 

scheduled medication and confirmation. Neverthless, it is 

unlikely that subdivision algorithms will be able to substitue 

professionals in prognosis. They can be used to help 

professionals by reducing their workload or by providing a 

second perspective. The research lays out a framework for 

modern brain tissue segmentation algorithms. The readers 

may obtain knowledge on cutting-edge technology. The paper 

makes numerous contributions. Various validation measures 

are used in a quantitative analysis. This could provide 

researchers and physicians a better sense of which strategy is 

optimal for a particular application. To compare and assess 

the effectiveness of existing methods for fragmenting brain 

tissue, researchers conducted a study, we offered a 

comprehensive range of performance indexes as well as 

several public databases. Besides that, these analogies take 

each paradigm into account separately in order to determine 

the optimal strategy. Due to obvious problems in computed 

topography, the study focuses on the most recent issues in 

methods of fragmenting brain tissue. They are effective 

against bias-field and IIH. All available segmentation 

algorithms are discussed in terms of their benefits and 

drawbacks. Some of the unsolved issues are also discussed. 

This could point researchers in the right direction for 

improving subdivisions of brain tissue for more exact 

evaluation in the future. 
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