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 Abstract 

A one parameter discrete Garima distribution is derived 

corresponding to the one parameter continuous  Garima 

distribution using infinite series approach for discretization of 

continuous probability distribution. The fundamental 

properties of this distribution such as moments, estimate of 

parameter from method of moments and method of maximum 

likelihood has been derived.  Also some distributional 

characteristics as well as reliability properties such as hazard 

rate, second rate of failure and survival behavior has been 

discussed. At the, end the suitability of the proposed 

distribution has been discussed through various real life 

datasets. 

Keywords: Discrete lifetime models, Garima distribution, 

reliability, failure rate, Maximum likelihood estimation.  

 

1. Introduction- 

In statistics, probability distributions are categorized on the 

basis of the nature of the variables. There are so many cases 

of real life which are only measurable in discrete nature. 

Almost in all the cases observed values are discrete because 

they are measured to only a finite number of decimal places 

and cannot really constitute all points in a continuum. Even if 

the measurements are taken on a continuous scale the 

observations may be recorded in a way making discrete model 

more appropriate. It is therefore reasonable to consider the 

observations as coming from a discretized distribution 

generated from the underlying continuous model.  

There are several methods available in Statistics literature to 

derive a discrete distribution from a continuous distribution. 

One of the first proposed discretization methods is based on 

the definition of pmf that depends on an infinite series. The 

method of discretization by an infinite series was firstly 

considered by Good [1] who has proposed the discrete Good 

distribution to model the population frequencies of species 

and the estimation of parameters.  This method of 

discretization has been explored by several authors 

Kulasekara and Tonkyn [2], Sato et al. [3] Nekoukhou et 

al.[4]. They have also proposed a new version of this method 

of discretization when the support of continuous random 

variable defined only on R . Thus if the random variable Y  

defined on R  then the probability mass function (pmf) of 

random variable  X is defined as  
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In most of the cases, the discrete distributions obtained from 

this method are not in compact form due to their normalizing 

constant. Apart from the infinite series method of 

discretization, there is one more method available in literature 

for the discretization of continuous random variable. If the 

random variable X  has the survival function defined as 

   S x P X x   then the probability mass function of 

discrete distribution associated with this continuous 

distribution can be written as 

   ( ) 1 ; 0,1,2,...P X x S x S x x                     (2) 

 

There are several discrete distributions derived by Krishna 

and Pundir [5], Chakraborty and Chakraborty [6] are 

available using this method of discretization. 

 This paper deals with the discretization of one parameter 

Garima distribution using infinite series method of 

discretization. Section 2, consists the derivation of functional 

form of discrete Garima distribution along with its probability 

mass function (pmf) and cumulative distribution function 

(cdf) with its behavior. The generating functions and the 

moments of this distribution have been derived in next 

Section 3 along with the behavior of coefficient of variation, 

skewness and kurtosis. In Section 4, we have discussed its 

reliability properties such as survival function, hazard rate and 

second rate of failure. The estimate of its parameter using 

method of moments and method of maximum likelihood has 

been discussed in next Section 5 and the last, Section 6 

consist of usefulness of this distribution for different real life 

datasets.       

2. Discrete Garima distribution- 

The pdf and cdf of continuous random variable Y   having 

Garima distribution with parameter   is  introduced by 

Shanker[7] are given by    
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It has increasing hazard rate and decreasing mean residual life 

time.  Using the definition 2, probability  mass function (pmf) 

of a discrete random variable X  corresponding to the 

continuous distribution Y following Garima distribution (3) 

can be obtained as 
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We would know this distribution as discrete Garima 

distribution (DGD). 

 

3. Distributional Properties: 

 

3.1 Behavior of pmf 

The behavior and nature of pmf of DGD for the different 

values of , is depicted in Fig 1. It can be seen that that the 

value of pmf is decreasing as the value of variable increases 

for the fixed values of parameter   while pmf decreases for 

the increasing values of parameter   at fixed values of 

random variable X.  The behavior of cdf of DGD for varying 

value of parameter    has been shown graphically in Fig 2.  

 

 
Fig 1- Behavior of probability mass function of discrete 

Garima distribution 

 
Fig 2- Behavior of cumulative distribution function of 

discrete Garima distribution 

 

3.2 Generating functions and moments 

 

The moments generating function (mgf) ( )XM t  can be 

obtained as 
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With the help of mgf, one can easily obtain the Cumulants 

generating function as 
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Differentiating equation (7) w.r. to t , ' 'r   times and put 0t 

, we get 
thr  cumulant as 
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And  
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All the central moments  ; 2,3,4r r   have been obtained 

from the cumulant generating function further it can be used 

to calculate the other descriptive measures of the distribution 

to characterize its properties. 

  

3.3 Coefficient of dispersion, skewness and kurtosis 

 

The coefficient of variation (CV) of the distribution can be 

obtained as the ration of standard deviation by its mean 
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The Pearson’s coefficients has been calculated to obtain the 

expression of skewness as kurtosis 
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Using (14) and (15), one can calculate the values of skewness 

and kurtosis. From the Table-1, it can be seen that the discrete 

Garima distribution is over dispersive as its variance is greater 

than mean. The value of mean and variance are decreasing for 

increasing value of parameter , while coefficient of variation 

(CV), skewness and kurtosis are increasing as the value of 

parameter increases. From the values of skewness, it can be 

interpreted that DGD is positive skewed distribution. As the 

value of kurtosis is highly positive, it can be said that is 

leptokurtic distribution and suitable for peaked over 

dispersive datasets.       

 

Table 1- Values of descriptive statistics of DGD for various values of parameter   

Value of   Mean Variance CV Skewness Kurtosis 

0.2 6.885929 43.07503 0.953126 1.587056 3.890781 

0.4 3.14784 10.57209 1.032923 1.588768 4.011516 

0.6 1.910652 4.597185 1.122185 1.637683 4.165034 

0.8 1.299262 2.520193 1.221857 1.748809 4.359449 

1.0 0.938554 1.565143 1.332962 1.940285 4.604327 

1.2 0.703403 1.049785 1.45662 2.234553 4.911039 

1.4 0.540107 0.741258 1.594062 2.659949 5.293194 

1.6 0.421751 0.542651 1.746644 3.25279 5.767171 

1.8 0.333328 0.407827 1.915869 4.060091 6.352773 

2.0 0.265792 0.312556 2.103398 5.143092 7.074006 

 

4. Reliability characteristics: 

  

4.1 Survival function 

 

The survival function can be calculated as 
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From the figure- is can be seen that the survival of discrete 

Garima distribution  

4.2 Hazard rate or mortality rate 

 

The hazard rate is the measure of failure or mortality in 

indefinite small time interval and can be  

 

calculated as   

 
 

 

   

    

2

2

1 1
; 0, 0,1,2,...

1 1 2 1

e xP X x
h x x

S x x e e



 

 


 

  
   

   

    (17) 



Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021) 

International Journal of Mechanical Engineering 

3483 

From the Fig 3 is can be observed that DGD has increasing 

hazard rate or mortality rate for any value of parameter. As 

the value of parameter increases, the hazard rate increases 

rapidly.   

 
Fig 3- Behavior of hazard function of discrete Garima 

distribution 

 

4.3 Second rate of failure  

 

The hazard rate defined in (17) is bounded and hence cannot 

be convex also it is not additive for series system. The second 

rate of failure (SRF) defined as 

    ( ) log 1SRF x S x S x   was introduced by Roy 

and Gupta [8] (also used by Xie et al. [9]) to overcome these 

inherent problems of the failure rate.  

 

For DGD 
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5. Parameter estimation: 

5.1 Method of moments estimation 

 

In this method one makes the equation of sample moments 

and population moments and solve for the estimates of 

parameters. For DGD, equating the sample mean equals to 

population mean to get the moments estimator, % of 

parameter , 
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Solving the equation (18), one can get the moment estimator 

% of parameter .  

 

5.2 Method of maximum likelihood 

 

The method of maximum likelihood consists of maximizing 

the likelihood function to get the estimator of parameter. For 

the given sample 1 2, ,..., nx x x  of size n , the Likelihood 

function of the parameter of DGD is as follows 

 
 

 

1

2

1

P( , )

1
1

1

i

n

i

i

n
x

i

i

L x

e
x e

e e e





  



 











  

 





          (19) 

   

Taking log both side for log likelihood function  
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Differentiating equation (20) wrt to   and equating equals to 

zero can get the log likelihood equation  

 
1 1

2 12
0

1 1 1

n n
i

i

i ii

n e e xne
x

e e e x

  

  



   

   
    

     
         (21) 

Solving the non-linear equation (21), one can get the ML 

estimate of the parameter . 

 

6. Goodness of fit on real data 

As DGD is a over-dispersed model, so it can be used for the 

modeling of over-dispersed data. In general biological data 

are over-dispersed hence applicability of this model has been 

shown for two real biological data sets. The first dataset is the 

data regarding number of Homocytometer yeast cell counts 

per square, available in Gosset [10] and the second data is 

regarding frequencies of the observed number of days that 

experienced X thunderstorm events at Cape kennedy, Florida 

for the 11-year period of record in the summer, January 1957 

to December 1967 [11-12]. The applicability of DGD has 

been compared with Poisson distribution (PD) which is equi-

dispersed model and Poisson-Lindley distribution (PLD) [13] 

which is over-dispersed distribution. The chi-square 

distribution has been used to test the significance of goodness 

of fit. From Table 3 and Table 4, is been observed that DGD 

is better fit than PD and PLD hence it can be used for the 

modeling of over-dispersed data. 
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Table 3- Observed and expected number of homocytometer yeast cell counts per square observed by gusset 

    Expected frequency 

Number of red mites Observed Frequency PD PLD DGD 

0 213 202.1 234 230.06 

1 128 138 99.4 104.66 

2 37 47.1 40.5 41.6 

3 18 10.7 16 15.4 

4 3 1.8 6.2 5.46 

5 1 0.2 2.4 1.88 

6 0 0.1 1.5 0.63 

     ML estimate 0.6825 1.9502 1.2265 

Chi-square 10.09 11.06 9.56 

p-value   0.0178 0.0114 0.1443 

 

Table 4- Frequencies of the observed number of days that experienced X thunderstorm events at Cape kennedy, Florida for the 11-

year period of record in the summer, January 1957 to December 1967. 

 

    Expected frequency 

Number of red mites Observed Frequency PD PLD DGD 

0 549 449.2 511.8 534.02 

1 246 364.9 295.7 271.6 

2 117 148.2 128.1 121.84 

3 67 40.1 49.3 51.09 

4 25 8.1 17.8 20.53 

5 7 1.3 6.2 8.01 

6 1 0.2 3.1 3.06 

     ML estimate 0.812253 1.24195 1.09685 

Chi-square 142.57 21.47 10.47 

p-value   0.000 0.0007 0.106 

 

7. Conclusions  

 

In this article we have discussed a new one parameter discrete 

Garima distribution (DGD), which is an over-dispersed model 

and discrete analogues of continuous Garima distribution. Its 

generating function such as moment generating function, 

cumulants generating function have been derived and using 

this we have also obtained its moments based descriptive 

statistics such as mean, variance along with skewness and 

kurtosis. The parameter estimation has been performed using 

method of moments and maximum likelihood estimation 

techniques. The applicability of this model has been shown 

using two real dataset and found that it is better model than 

PD and PLD for over-dispersed dataset.    
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