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Abstract. The importance of the temperature control system in 

industrial processes is growing more and more apparent. 

Recently, a significant amount of research has been undertaken 

on temperature control systems that use a variety of control 

algorithms. Because of their powerful self-learning and 

parameter altering capabilities, neural networks (NN) have been 

frequently used to solve highly nonlinear control difficulties in 

industrial processes. The temperature sensor is responsible for 

measuring the temperature of the process. The mathematical 

model of the system is identified based on the input and output 

data from the process itself. After that, the NN predictive 

controller is constructed to maintain the process temperature at 

the predetermined temperature. The constructed controller is 

evaluated using a variety of different inputs. The performance 

of the controller is evaluated using the metrics such as integral 

square error, integral absolute error, and integral time absolute 

error. The response time of the system is taken into 

consideration in addition to this. The following goals must be 

met for the project to be a success and put into action. Measure 

the temperature of the process using RTD, Design an NN 

predictive controller to maintain the temperature of the process 

based on the setpoint, and evaluate the controller using ISE, 

IAE, and ITAE. 

Keywords—PLC, Fire detection, Siren, Sprinkler, Smoke 

detector, Pump. 

 

INTRODUCTION 

 Whenever it comes to chemical plant operations, the 

Continuous Stirred Tank Reactor (CSTR) is a key player in the 

advancement of technological advancements. CSTR has a wide 

operating range and nonlinear properties, making it an excellent 

choice for many applications. Because of increased competition 

and the need for more production flexibility, CSTR routinely 

manufactures things that meet a variety of quality criteria [1]. 

It's challenging to keep up with the rapid advancement of CSTR 

technology. When the values of a process's variables are 

constantly changing over time, this is an example of a situation 

similar to the one described above. Because of this, a process 

control system must be designed to maintain the CSTR in a 

stable condition. Using modeling, Control, and system 

optimization, in general, may be made much more effective. 

For control system designers to be successful, they must be able 

to predict how their systems will act in both dynamic and 

steady-state settings. A mathematical tool such as modeling is 

used to design an effective process control system, and this is 

critical for properly managing and optimizing your chemical 

process. To be used in system design and process control 

applications, chemical processes must first be reliably predicted 

before they can be used. When it comes to reading and 

analyzing physical control parameters, a PID controller is a 

common choice these days across a wide range of industries. It 

is practically impossible to achieve the best PID gain since the 

vast majority of chemical processes are categorized as non-

linear systems. PID gain tuning is a frequent industry practice 

since it has a substantial impact on how the system performs 

and is therefore important to understand. However, because 

most of these approaches are based on linear systems, nonlinear 

systems are unable to profit from any of them. Over the last few 

years, the application of artificial intelligence to common 

problems has grown in popularity. To name a few strategies 

that have been employed successfully, NNs, fuzzy logic, and 

evolutionary programming are among those that come to mind. 

Because they are based on the brain's information processing, 

neuronal networks have gotten a lot of interest in the chemical 

processing industry. They are a type of NN. Since its 

effectiveness in nonlinear estimating and suitability for 

nonlinear systems, Artificial NNs (ANN) have been included in 

a variety of controller design approaches, including NN 

estimation and control. Artificial NNs (ANNs) are used in the 

field of chemical engineering for a variety of tasks, including 

modeling and process control. Nonlinear models created from 

input/output data from this industry serve as the foundation for 

the majority of control system modeling methodologies used in 

this industry.  

A fuzzy controller can be used as an alternative to a regular PID 

controller in some situations. Because of the realistic portrayal 

of control expertise, it is simple to grasp the concept. Fuzzy 

controllers, on the other hand, are used to control industrial 

process systems, and the rate of error change is similar to that 

observed in PD controllers. Fuzzy controllers typically have 

two inputs, which is standard for the industry. When the steady-

state error of the control system is removed, it becomes possible 

to integrate error in the input to the fuzzy controller. Using a 
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fuzzy controller as an input, it is possible to operate a system if 

the system's errors, error change rates, and integration of errors 

are all measured and used as inputs. This technique is difficult 

to apply in practice as a result of the difficulties associated with 

building a control rules foundation and the difficulties 

associated with monitoring the incorporation of mistakes. 

Adding one more control rule to a fuzzy controller will result in 

a large rise in the number of control rules in the fuzzy controller 

[2]. When adopting this control technique, the selection and 

training of NNs have a significant impact on the overall 

performance of the system. Using this method, the weight of the 

NN is tweaked regularly to ensure that it reaches the optimal 

value, even if the network is used for the same job numerous 

times. On its own, the Lyapunov stability theory cannot govern 

NNs in nonlinear systems, and hence cannot be used to do so. 

The radial RBF NN, which can recognize nonlinear systems, is 

being investigated by researchers as a possible solution to this 

problem. The persistently stimulating property of the RBF NN 

can be used to assure the convergence of NN weights to a 

certain extent [3], as previously stated. The article [4] discusses 

how to select an oil refining production rectification neural 

network controller. A rectification process study model is used 

to gauge the controller's efficiency. Refinement process control 

parameters are established so that controllers may be identified 

and evaluated. A numerical analysis shows that the rectification 

process can be controlled by a NN controller. For the sake of 

this study, we choose to employ a PID regulator, which is the 

industry standard. As seen in this example, the use of a NN 

controller can be beneficial for constructing several target 

paths. It is possible to customize the NN controller paradigm 

for computer-controlled correction. In the publication [5] a 

fuzzy neural network (FNN) controller for brushless drive 

speed tracking was designed. The extended Kalman filter 

(EKF) training algorithm is used to train the PI and PD FNN 

controllers. FNN employs techniques derived from artificial 

neural networks to determine the parameters of a fuzzy logic 

system. Each FNN controller contains four layers. Membership 

functions and weights are adjusted based on EKF training 

capabilities. The primary purpose of this project is to control 

parallel PI FNN and PD FNN using the EKF training algorithm. 

A comparison of parallel PI and PD FNN controllers shows that 

they outperform traditional PID controls. The hardware design 

is implemented using MATLAB and a dSPACE DS1104 DSP. 

The results show that the FNN controller has superior learning 

capabilities and robust responsiveness in real-time for a variety 

of operational circumstances. 

In the paper [6] the PID controller coefficients of a non-linear 

exoskeleton control system for the lower limbs may be 

modified using analog neural networks (NN) with a radial basis 

function (RBF) and self-tuning. An analog neuron in a network 

controller, which is capable of learning and adapting over time, 

can be used to manage nonlinearities with uncertain parameters 

and external disturbances precisely and accurately. We may use 

the PID controller's NN to adjust for errors produced by 

parameter variation and uncertainty as the exoskeleton's lower 

extremities move. The efficiency of the proposed control 

algorithm is demonstrated via simulation in the 

Matlab/Simulink environment. Personalized short-distance 

travel on a Segway. The Segway, which is presently on the 

market, can be steered by just shifting one's weight back and 

forth. Because of the services this machine delivers, it is vital to 

analyze its performance and devise effective techniques for 

controlling it. Traditional PID controllers are the most well-

known and commonly utilized controllers in industrial settings. 

Three functions govern the input signals before they reach the 

plant or process unit. In the study [7], the PID controller for the 

Segway's cart position and handlebar angle is being replaced 

with another control strategy based on NN control. MATLAB 

was used to mimic the findings of this investigation, which 

revealed that the NN controller used to operate and recognize 

the Segway performed better than the standard PID controller. 

Pressure and water level are related in a deaerator at a steam 

power plant. Controlling pressure and level in a deaerator with 

a conventional PID controller is quite difficult utilizing the 

most commonly used control approach. The research [8] 

proposes a neural network-based control strategy for emulating 

a single PID controller loop. Furthermore, the PID controller's 

simple design, as well as its high durability and robustness, 

makes it an excellent choice for a variety of applications. As a 

result, the NN can learn for itself and control nonlinear 

processes. By using the latest tech, the NN and the PID 

controller may work in tandem. As a result, overshoot and the 

time required for transient processes to settle in the control 

system will be considerably decreased. As a result, the NN will 

be effective for controlling the deaerator's pressure and water 

levels. 

METHODOLOGY 

To control the temperature of the CSTR the NN controller is 

designed. The CSTR and NN controller architecture, as well as 

working, are detailed in this chapter. 

A. CSTR  

Continuous stirred tanks (CSTR) are the most straightforward 

type of continuous reactor when it comes to design. Half-pipe 

coil reactor with jacket, such as the CSTR seen in figure 1. 

Material can enter or escape the CSTR at any point in time, and 

the conditions inside the reactor do not change with time. As 

open systems, CSTRs allow materials to enter and exit at any 

moment without causing damage to the system [9]. In the 

reactor, the addition of reactants and removal of products 

occurs continuously. 

 

FIGURE 1. CSTR [10] 
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Because of the well-mixed nature of the components, consistent 

thermal and density metrics may be found throughout CSTRs. 

Additionally, the reactor's exhaust stream contains identical 

circumstances. The image depicts a CSTR that does not have a 

stirring system installed. When a reaction is taking an excessive 

amount of time, systems involving numerous CSTRs are used. 

A large number of CSTRs can be used to agitate a mixture of 

immiscible or viscous liquids that must be stirred regularly. 

Reactants can be continuously introduced into the reactor using 

ports located at the top of the reactor. The stirring mechanism 

of the unit ensures that the contents of the tank are fully mixed. 

Products are being disposed of regularly. Tanks and stirring 

systems are employed in CSTRs, which have a constant volume 

because of their design. There are feed and exit pipelines that 

are used to bring in reactants and remove them from the system. 

It is possible to glimpse the interior of a CSTR in the 

photograph below, which shows a part of one of the sides that 

has been removed. Agitators, which are another term for 

stirring blades, are used to combine the reactants in a reaction. 

The agitators depicted in the photographs below could all be 

located within a CSTR, according to the authors. A CSTR can 

also be used as a loop reactor if a hot, pressurized fluid is 

introduced into the system to encourage stirring. The absence of 

an agitator simplifies maintenance while simultaneously 

increasing heat and mass transfer rates. A cell culture reactor is 

depicted in the illustration below. It is only a small number of 

cells in the fibrous-bed basket at the beginning of the 

procedure. The reactor is supplied with a steady supply of 

nutrient-rich media, and the materials created are harvested 

from the reactor. As the cells expand, the byproducts of the 

reaction are continually removed from the reactor. Through the 

use of a pitched-blade impeller, the reactants in the reactor 

below are continuously mixed. 

 

B. NEURAL NETWORK CONTROLLER  

The considerable literature on the predictive controller, which 

has piqued the interest of both academics and industry, provides 

an overview of the controller [11]. The predictive controller is 

distinguished by the computation of future control actions based 

on model output values that have been forecasted in advance. 

Presented in this section are predictive control concepts based 

on NPC, which make use of the standard optimization functions 

and control rules, and which are applied to conventional 

predictive controllers and the working of the NN controller is 

depicted in figure 2. The optimization functions listed below are 

examples: The optimization function, which is frequently 

denoted by the index 𝐽, represents the function that the control 

action is attempting to minimize through the control action. As 

an illustration, let us consider the most straightforward example 

of an optimization function: the difference between the output 

of a plant and its desired value. 

𝐽 = 𝑦𝑟𝑒𝑓(𝑘) − 𝑦(𝑘) = 𝑒(𝑘) 

The output of the plant is denoted by y(k), and the reaction we 

desire is denoted by 𝑦𝑟𝑒𝑓(𝑘). The error in estimating is 

represented by the symbol 𝑒(𝑘). The integer k represents the 

amount of time spent sampling. In optimization, the square 

error is one of the most commonly used functions, and it can be 

stated as follows: 

𝐽 = [𝑦𝑟𝑒𝑓(𝑘) − 𝑦(𝑘)]2 = [𝑒(𝑘)]2 

An optimization index may be represented by a more complex 

function. Predictive controllers using models that are capable of 

forecasting N steps ahead can achieve satisfactory results with 

straightforward use of the square error technique. In this 

circumstance, an optimization function can be created by using 

a vector of N-predicted mistakes as input. Its goal is to optimize 

the complete trajectory of future control operations across an N-

step time horizon, which is some steps. 

𝐽 = ∑

𝑁

𝑗=1

[𝑦𝑟𝑒𝑓(𝑘 + 𝑗) − 𝑦̂(𝑘 + 𝑗)]2 = ∑

𝑁

𝑗=1

[𝑒(𝑘 + 𝑗)]2 

 

More complex optimization functions can take into account the 

amount of work required for control. The optimization index J 

can be represented in the following ways for GPC (Generalized 

Predictive Control) applications: 

𝐽 = ∑

𝑁𝑦

𝑗=𝑁1

[𝑦𝑟𝑒𝑓(𝑘 + 𝑗) − 𝑦̂(𝑘 + 𝑗)]2

+ ∑

𝑁𝑢

𝑗=1

∝ (𝑗). [∆𝑢(𝑘 + 𝑗)]2 

 

When dealing with a control problem of this nature, it is critical 

to identify locations where the first-order differential is equal to 

zero. For non-linear systems, predictive control is the ideal 

approach to controlling the process flow. A neural model for 

the nonlinear plant, which is capable of both forward and 

backward predictions, is used to generate multi-step forecasts 

and backward predictions. When using predictive control, each 

sample point represents an opportunity to reduce the cost 

function. Using predictive control, 𝐽. 

𝐽(𝑡, 𝑈(𝑘)) = ∑

𝑁2

𝑡=𝑁1

[𝑟(𝑘 + 𝑖) − 𝑦̂(𝑘 + 𝑖)]2

+ ∑

𝑁𝑢

𝑖=1

𝜌[∆𝑢(𝑘 + 𝑖 − 1)]2 

 

Concerning the 𝑁𝑢 future controls, 

𝑈(𝑘) = [𝑢(𝑘) … … … . . 𝑢(𝑘 + 𝑁𝑢 − 1)]𝑇 

and subject to constraints: 

𝑁𝑢 ≤ 𝑖 ≤ (𝑁2 − 𝑛𝑘) 
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FIGURE 2. NN CONTROLLER  

 

With the help of the predictive control approach and the widely 

used NARX model, it is possible to construct an optimal control 

sequence for a nonlinear plant (NNMPC) [12]. The prediction 

horizons 𝑁1 and 𝑁2 are the lowest and maximum prediction 

horizons, respectively; 𝑁𝑢 is the control horizon, and the 

control penalty factor is the control increment; and Nu is the 

control horizon, respectively. The needed reference plant output 

is denoted by 𝑟(𝑘 + 𝑖), whereas the expected output of the NN 

model is denoted by 𝑦(𝑘 + 𝑖), which denotes the predicted 

model output. Strategy for shortening the time horizon: It solves 

the previously specified optimization problem for a finite future 

at present and implements the first optimal control input as 

current control input by employing the predictive control 

approach. It is necessary to utilize the following formula to 

minimize the cost function J for a given set of control 

parameters (𝑁1, 𝑁2, 𝑁𝑢), which is written as 

[𝑢(𝑘) … … … . . 𝑢(𝑘 + 𝑁𝑢 − 1)]. These control factors are 

responsible for determining the predictive control performance. 

The prediction horizon, i.e., the number of times the plant 

response can be recursively anticipated in the future, is 

specified by 𝑁1 and 𝑁2, which are commonly set to one and 

two, respectively, depending on the application. 

The iterative minimization of the optimization problem of the 

criterion, 𝐽, is achieved in NNMPC. Iterative search strategies, 

which are similar to NN training procedures, are employed to 

locate the smallest possible number of results. 

 

𝜃𝑖+1 = 𝜃𝑖 + 𝜇𝑖 . 𝑑𝑖 

The formula specifies the number of iterations (a number I), the 

direction of the search (𝑑𝑖)), and the step size (I) for each step. 

Based on the search direction and step size that algorithms 

employ, algorithms can be categorized in a variety of ways. It is 

the Levenberg–Marquardt (LM) approach that is being used in 

this study, which is a Newton-based method. The following is 

the search direction of the LM algorithm: 

𝐻[𝑈𝑖(𝑡)] =
𝜕2𝐽(𝑡, 𝑈(𝑡)

𝜕𝑈(𝑡)2
|𝑈(𝑡)=𝑈𝑡(𝑡) 

=
𝜕

𝜕𝑈(𝑡)
[
𝜕𝑌̂(𝑡)

𝜕𝑈(𝑡)
𝐸(𝑡)] + 2𝜌

𝜕𝑈𝑇(𝑡)

𝜕𝑈(𝑡)
 
𝜕𝑈(𝑡)

𝜕𝑈(𝑡)
|𝑈(𝑡)=𝑈𝑡(𝑡) 

Making Predictions about Time Series Using NNs Our NN 

model is intended to predict the output of a plant throughout a 

given period. To estimate the plant output series 𝑦𝑁 a series of 

control signals u, as well as historical data, must be provided. 

With the present control signal 𝑢𝑡 and the current plant output, 

the network is trained to predict the plant output 𝑦𝑡+1. It will be 

implemented through the use of a NN. Making Predictions 

about Time Series Using NNs Our NN model is intended to 

predict the output of a plant throughout a given period. 

Assuming that u and previous data are available, it is desirable 

to estimate the plant output series 𝑦𝑁 based on the available 

data and assumptions. It is trained to predict the plant output 

𝑦𝑡+1 from the current control signal 𝑢𝑡 and the current plant 

output 𝑦𝑡  using the current control signal ut and current plant 

output 𝑦𝑡  It will be implemented through the use of a NN. 

𝑦̂𝑡+1 = 𝑓(𝑢𝑡 , 𝑦𝑡) 

For this forecast to be accurate, the information included in 𝑦𝑡  

must be sufficient, as previously indicated. It is assumed that 

𝑦𝑡  is a multivariate function. As errors accumulate, using this 

technique can result in a rapidly increasing divergence as the 

number of errors increases. This necessitates the need for the 

model to be exceedingly exact. In the process of getting closer 

to accurate representations of real-world plants, the importance 

of errors decreases in importance. This method is beneficial in 

lowering the accumulation of errors since it decreases the 

number of steps that must be completed within a certain period. 

A NN that has been trained to predict one step forward will be 

used to model the plant. When this model is acquired, the 

process is referred to as System Identification. 

The feed-forward network with a sigmoidal activation function 

was selected after a series of trials with several multilayer 

perceptron topologies. The buried layer contained seven 

neurons that were responsible for the lowest level of error. As a 

result, it was determined to be the optimal architecture for an 

ANN. Each of the four neurons in the input layer, seven 

neurons in the hidden layer, and one neuron in the output layer 

of the ANN used in this example is connected to the other 

neurons. Backpropagation is used to train the CSTR model, 

which is then used to test it. Before training, the algorithm's 

weights are established using random integers generated by the 

computer. As a precaution, the weights for each training set are 

changed to ensure that no mistakes are made. The instruction is 

terminated as soon as the overall quantity of error is deemed 

acceptable by the instructors. The validation of a model is the 

final step in the construction of a model. During the validation 

process, the model's performance is evaluated by comparing it 

to both trained and test data. It was decided to employ the 

Levenberg-Marquardt technique to train the network on both 

the input and the target simultaneously. 
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B. SYSTEM PROCEDURE  

The dynamic properties of the CSTR should be well-

represented in the data used to train the network so that the 

network can be effectively trained. It was decided to utilize the 

typical CSTR model to sample the input and output data at 0.02 

sampling instants, and the sampled data was then used to train 

the network until it was completely trained. The following 

diagram depicts the breakdown of the input sequence training 

and output sequence training processes. The feed-forward 

network with a sigmoidal activation function was selected after 

a series of trials with several multilayer perceptron topologies. 

The buried layer contained seven neurons that were responsible 

for the lowest level of error. As a result, it was determined to be 

the optimal architecture for an ANN. Each of the four neurons 

in the input layer, seven neurons in the hidden layer, and one 

neuron in the output layer of the ANN used in this example is 

connected to the other neurons. Backpropagation is used to train 

the CSTR model, which is then used to test it. Before training, 

the algorithm's weights are established using random integers 

generated by the computer. As a precaution, the weights for 

each training set are changed to ensure that no mistakes are 

made. The instruction is terminated as soon as the overall 

quantity of error is deemed acceptable by the instructors. The 

validation of a model is the final step in the construction of a 

model. During the validation process, the model's performance 

is evaluated by comparing it to both trained and test data. It was 

decided to employ the Levenberg-Marquardt technique to train 

the network on both the input and the target simultaneously. 

How the suggested system will function in practice is depicted 

in figure 3, respectively. 

 

 

FIGURE 3. FLOWCHART OF THE PROPOSED SYSTEM 

 

RESULT AND DISCUSSION 

The proposed system consists of three main phases namely 

mathematical model of the system, designing the NN controller, 

and evaluating the designed system. For identifying the process 

mathematical model, the first principal method is used. The NN 

controller is designed by giving appropriate parameters like a 

horizon, time, etc., next the model is validated using the error 

function such as IAE, ISE, ITAE, ITSE. The RTD is used to 

measure the temperature of the process. This sensor is used as a 

feedback element.  

The Simulink diagram is drawn as shown in figure 4. the 

setpoint is given using a random generator. The NN controller 

block is used in the place o controller. For feedback here, unity 

type is used. next, the mathematical model of the CSTR is 

drawn using various numeric and mathematical blocks. To 

validate the model the errors are used. Here the ISE, IAE, 

ITAE, ITSE is employed. For visualizing and comparison of 

output the XY graph is dragged and placed 

 

FIGURE 4. SIMULINK DIAGRAM FOR NN CONTROLLER 

First, the setpoint is given as 22.1 using the random number 

generator. The output obtained is given in figure 5. The setpoint 

is shown in the figure by red color and the actual output is 

given in the figure by blue color. From the figure, it is clear that 

the controller is designed very well. The undershoot does not 

happen in the controller. Then the rise time, peak time, settling 

time, and steady-state error are very less. The error is displayed 

in figure 6. The error obtained through the process is shown in 

the below figure. The ISE obtained in this work is 0.01667. The 

IAE obtained is 0.2378, ITAE obtained is 0.6147, ITSE 

obtained is 0.0132. All the errors obtained are very few. 
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FIGURE 5. MATLAB SIMULATION WHEN THE SETPOINT 

IS GIVEN AS 21.5 

 

FIGURE 6. ERROR OBTAINED WHEN THE SETPOINT IS 

GIVEN AS 21.5 

 

CONCLUSION 

The NN controller is designed very well. The process taken for 

this research is CSTR. The mathematical model is designed 

using numeric and mathematical blocks. The setpoint is given 

based on the requirement. Then the model is run and validated 

using the error metrics like ISE, IAE, ITAE, and ITSE. Then 

the time response also validates using rise time, settling time, 

steady-state, peak time, etc. The proposed methodology has 

very limited cons and constraints. The system set point is fixed 

and monitored through MATLAB. To control and monitor the 

process through wireless is not possible.  In the future, IoT is 

planned to implement. The usage of implementing IoT in the 

process helps the operator to fix and change the set point 

through wireless. The process is also monitored through IoT. 

For implementing the IoT in MATLAB, the ThingSpeak is 

used. 
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