International Journal of Mechanical Engineering

Filter in Topological simple ring

U.Jerseena^{1*}, S.Syed Ali Fathima² and K.Alli³

1. Research scholar (18121072092019), Department of Mathematics, Sadakathullah Appa college, Tirunelveli [Affiliated to Manonmaniam Sundaranar University, Abishekapatti , Tirunelveli 627012, Tamil Nadu, India.

2. Assistant Professor, Department of Mathematics, Sadakathullah Appa college, Tirunelveli 627011, Tamil Nadu, India.

3. Assistant Professor, Department of Mathematics, The M.D.T Hindu college, Tirunelveli , Tamil Nadu, India.

1.Abstract:

A topological simple ring S has the algebraic structure of a ring and topological structure of a topological space. A filter is a power tool both in topology and set theory. Special type of filters called ultrafilters have many useful technical properties. Filters have generalizations called p-filters(filter bases) and filter subbases which appears naturally and repeatedly throughout topology.

Keywords: Filters, p- filters, topological simple ring.

2.Introduction:

This paper attributes the concept of filter on topological simple ring. Also here we elucidate examples and basic results related to a-sequentially converges via filter and p-filter.

The concept of topological ring was introduced by D. Van Dantzig and developed by S. Warner[5] .The concept of topological simple ring[3] was defined and their properties are studied. Connor and Grosse -Erdmann[1] have investigated the impact of changing the definition of the convergence of sequences the structure of sequential continuity of real functions. In this paper, S will always denote a topological simple ring written additively or multiplicatively which satisfies the first axiom of countability. The letter o, p, q denote the sequences $o = (o_m)$, $p = (p_m)$, $q = (q_m)$ of terms of S. s(Sc(S) denote the set of all S - valued sequence and the set of all S - valued convergent sequence of point in S respectively. By a technique of sequential convergence or a technique, we mean an additive or multiplicative function a defined on subring of $c_a(S)$ of s(S) into S. A sequence $o = (o_m)$ is said to be a-convergent to r if $o \in c_a(S)$ and a(o) = r. In particular, lim $o = \lim_{m \to \infty} o_m$ the simple ring c(S). A technique a is called regular if every convergent sequence (o_m) is a – convergent with $a(o) = \lim o$. First of all, we recall the definition of asequential closure of a subset of S. Let $R \subseteq S$ and $r \in S$. Then r is in a- sequential closure of T if there is a sequence $o = (o_m)$ of points in R such that a(o) = r. We denote a-sequential closure of a set R by \overline{R}^a .

We say that a subset R is a-sequentially closed if it contains all of the point in its a-sequential closure (i.e) a subset R of S is asequential closed if $\overline{R}^a \subseteq R$. The null set \emptyset and the whole space S are a-sequentially closed. It is clear that $\overline{\emptyset}^a = \emptyset$ and $\overline{S}^a = S$ for a regular method a. If a is regular method, then $\mathbb{R} \subseteq \overline{R} \subseteq \overline{R}^a$ and hence R is a-sequentially closed if and only if $\overline{R}^a = R$. The concept of a filter was introduced by Henri cartan[2] in 1937. In 2002, Preuss[4] has applied filters throughout his book on convenient topology. In 2002, Beattie and Butzmann described non-topological convergence notion in functional analysis. The study of filters is a very natural way to describe convergence in general topological space. More recently filters play a fundamental role in the development of fuzzy spaces which have application in computer science and engineering. Filters are nearly new in topological simple ring to characterize such significant concept as a- sequentially converges.

3.Topological Simple Ring

Definition: 3.1

A topological simple ring S is a simple ring which is also a topological space if the following conditions are satisfied:

(i)for each s, $t \in S$ and each open neighbourhood L of s-t in S, there exist open neighboourhood J of s and K of t in S such that J-K \subseteq L.

(ii)for each s, $t \in S$ and each open neighbourhood L of st in S, there exist open neighboourhood J of s and K of t in S such that $JK \subseteq L$.

Example :3.2

Let S = $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in Z_2 \right\}$ be a simple ring under addition and multiplication we define a topology on S by T = $\left\{ \emptyset, \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}, S \right\}$.

Now
$$S \times S = \left\{ \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \mid a, b, c, d \in Z_2 \right\}$$
 and
$$\begin{cases} \emptyset, \left\{ \left(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right) \right\}, \left\{ \left(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \mid a, b, c, d \in Z_2 \right\}, \\ \left\{ \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right) \mid a, b, c, d \in Z_2 \right\}, S \times S \end{cases}$$

. Clearly (i) and (ii) conditions in definition 3.1 are continuous. Therefore (S, +,. T) $\,$

4. Filter neighbourhood of identity

In this section, first we introduce a filter in topological simple ring and the following theorem gives necessary and sufficient conditions for a filter to be the filter neighborhoods of identity on S.

Vol. 6 No. 3(December, 2021)

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

Definition:4.1

A filter is a non-empty collection \mathcal{F} of subset of a topological simple ring S such that(i) $\emptyset \notin \mathcal{F}$ (ii)If $M \in \mathcal{F}$ and $N \supseteq M$, then $N \in \mathcal{F}$ (iii)If $M \in \mathcal{F}$ and $N \in \mathcal{F}$, then $M \cap N \in \mathcal{F}$.

Example 4.2

The set of all neighborhoods of a point $s \in S$ in a filter is called the neighborhoods filter \mathbb{N} of s.

Theorem 4.3

If \mathbb{N} is the filter neighborhoods of identity i of S, then

(i) for each $J \in \mathbb{N}$, there exists $K \in \mathbb{N}$ such that $-K \subset J$.

(ii) for each $J \in \mathbb{N}$ and $s \in J$, there exists $K \in \mathbb{N}$ such that $s+K \subset J$ and $K+s \subset J$.

(iii) for each $J \in \mathbb{N}$ and $s \in J$, there exists $K \in \mathbb{N}$ such that $sK \subseteq J$ and $Ks \subseteq J$.

(iv) for each $J \in \mathbb{N}$, there exists $K \in \mathbb{N}$ such that $K+K \subseteq J$ and $KK \subseteq J$.

(v) for each $J \in \mathbb{N}$, there exists $K \in \mathbb{N}$ such that $K \cdot K \subseteq J$.

5.a-sequentially converges via filter

In this section, we discuss their a-sequentially converges properties in filter.

Definition 5.1:

A subset \mathbb{N}^a of S is called a-sequentially neighbourhood at a point $s \in S$ if there exists a-sequentially open set J with $s \in J \subseteq \mathbb{N}^a$.

Definition 5.2:

The set of all a-sequentially neighborhoods of a point $s \in S$ in a filter is called the a-sequentially neighborhoods filter \mathbb{N}^a of s.

Definition 5.3:

A filter \mathcal{F} is said to a-sequentially converges to $s \in S$ denoted by $\mathcal{F} \rightarrow s$ iff every a-sequentially neighbourhood of s belong to \mathcal{F} .

Definition 5.4:

If $s \in \overline{F}^a$ for every $F \in \mathcal{F}$, then s is a-sequentially closure or a-hull of \mathcal{F} .

Theorem 5.5:

Let R be a subset of S. Then for $s \in S$, $s \in \overline{R}^a \Leftrightarrow$ there exist a filter on S and a- sequentially converges to s. Proof:

Copyrights @Kalahari Journals

Let $s \in \overline{R}^a$. Then any a- sequentially neighbourhood of s has a non-empty intersection with R and $\mathbb{N}^a \cap R$ form a filter base. Hence filter \mathcal{F} is a- sequentially converges to s. Conversely we assume that \mathcal{F} is a filter containing R and $\mathcal{F} \to s$. Then there exist a-sequentially neighbourhood \mathbb{N}^a of s such that $\mathbb{N}^a \in \mathcal{F}$. Hence $\mathbb{N}^a \cap R \neq \emptyset$. So $s \in \overline{R}^a$.

Theorem 5.6:

Let S be a Hausdorff Topological simple ring \Leftrightarrow each filter \mathcal{F} a-sequentially converges to atmost one point.

Proof:

Let S be Hausdorff and $\mathcal{F} \to s$, $\mathcal{F} \to t$ where $s \neq t$. Then there exist \mathbb{N}_s^a and \mathcal{M}_t^a such that $\mathbb{N}_s^a \cap \mathcal{M}_t^a = \emptyset$, so $\mathcal{F} \to s \Rightarrow \mathbb{N}_s^a \in \mathcal{F}$ and $\mathcal{M}_t^a \in \mathcal{F}$. Therefore $\mathbb{N}_s^a \cap \mathcal{M}_t^a = \emptyset \in \mathcal{F}$ which is contradiction. Let $s \neq t$ and $\mathbb{N}_s^a \cap \mathcal{M}_t^a \neq \emptyset$. Let $\mathcal{B} = \{\mathbb{N}_s^a \cap \mathcal{M}_t^a / \mathbb{N}_s^a, \mathcal{M}_t^a \in S\}$. Now $(\mathbb{N}_s^a \cap \mathcal{M}_t^a) \cap (\mathscr{G}_s^a \cap \mathbb{Q}_t^a) = (\mathbb{N}_s^a \cap \mathscr{G}_s^a) \cap (\mathcal{M}_t^a \cap \mathbb{Q}_t^a) \in \mathcal{B}$. Since $\mathbb{N}_s^a \cap \mathscr{G}_s^a$ is an open set containing s and $\mathcal{M}_t^a \cap \mathbb{Q}_t^a$ is an open set containing s open set. Since $\mathbb{N}_s^a \cap \mathcal{M}_t^a \subseteq \mathbb{N}_s^a$, $\mathcal{F} \to s$ and $\mathbb{N}_s^a \cap \mathcal{M}_t^a \subseteq \mathcal{M}_t^a$, $\mathcal{F} \to t$ which is contradiction. Thus S is a hausdorff.

Theorem 5.7:

Let S be a topological simple ring. A set $J \subseteq S$ is a-sequentially open \Leftrightarrow if whenever

 $\mathcal{F} \rightarrow s$ with $s \in J$, we have $J \in \mathcal{F}$.

Proof: The proof follows from definition 5.3

Theorem 5.8:

Let S and R be topological simple ring with $s \in S$ and $u:S \to R$. Then u is a- sequentially continuous at $s \Leftrightarrow$ whenever \mathcal{F} is a filter such that $\mathcal{F} \to s$, $u(\mathcal{F}) \to u(s)$.

Proof:

Suppose u is a- sequentially continuous at s and $\mathcal{F} \to s$. Let \mathbb{N}_a be a- sequentially neighbourhood of u(s). By a- sequentially continuity, there is a-sequentially neighbourhood \mathcal{M}_a of s such that $u(\mathcal{M}_a) \subseteq \mathbb{N}_a$. Since $\mathcal{M}_a \in \mathcal{F}$, $u(\mathcal{M}_a) \in u(\mathcal{F})$. Hence $\mathbb{N}_a \in u(\mathcal{F})$ and $u(\mathcal{F}) \to u(s)$. Let $\mathcal{F} \to s \Rightarrow u(\mathcal{F}) \to u(s)$. Then $(\mathcal{M}_a) \to u(s)$, for each a- sequentially neighbourhood \mathbb{N}_a of u(s), $\mathbb{N}_a \in u(\mathcal{M}_a(s))$. Then there exist $\mathcal{M}_a \in u(\mathcal{M}_a)$ such that $\mathcal{M}_a \subseteq \mathbb{N}_a$. Hence u is a- sequentially continuous at s.

6. a-sequentially converges via p-filter

In this section, we define a-sequentially converges in p-filter and elucidate their properties.

Definition 6.1:

Let \mathcal{F} be a filter on topological simple ring S. A subset \mathcal{B} is called a filter base(prefilter) for \mathcal{F} on S $\Leftrightarrow \mathcal{B}$ is set of subsets of S satisfying the condition a) $\mathcal{B} \neq \emptyset$, $\emptyset \neq \mathcal{B}$ b) $B_1, B_2 \in \mathcal{B} \Rightarrow$ there exist $B_3 \in \mathcal{B}$ such that $B_3 \subseteq B_1 \cap B_2$. It is denoted by \mathcal{F}_P .

Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

Example 6.2:

Let S be a topological simple ring and R \subseteq S. Then the set of all open neighborhoods of R is a prefilter, whose associated filter is the neighborhood filter $\mathbb{N}_{\mathbb{R}}$ of R.

Definition 6.3:

A family $\{\mathcal{F}_{P_{\alpha}}\}_{\alpha \in \mathbb{N}}$ of p-filter on a set S is compatible if there exists a p- filter $\mathcal{F}_{P} \supseteq \bigcup_{\alpha \in \mathbb{N}} \mathcal{F}_{P_{\alpha}}$.

Definition 6.4:

Let \mathcal{F}_P be a p-filter in a topological simple ring and let s be a point of S. We say that a-sequentially converges to s and write $\mathcal{F}_P \to s$ if \mathcal{F}_P refines the a- sequentially neighbourhood filter \mathbb{N}_s^a of s .(i.e) Every neighbourhood \mathbb{N}_s^a of s contains an element L of \mathcal{F}_P .

Definition 6.5:

Let \mathcal{F}_P be a p- filter in a topological simple ring and let s be a point of S. We say that s is a-sequentially closure of \mathcal{F}_P if \mathcal{F}_P is compatible with a-sequentially neighbourhood filter \mathbb{N}_s^a (i.e) If every element of \mathcal{F}_P meets every a-sequentially neighbourhood of s.

Proposition 6.6:

Let a be sequential technique on S and \mathcal{F}_P be a p- filter on S with associated filter \mathcal{F} and let $\mathcal{F}_P \leq \mathcal{E}_P$ be a refines p-filter.

i) If \mathcal{F}_P a-sequentially converges to s, then s is a-sequential closure of \mathcal{F}_P .

(ii) \mathcal{F}_P a-sequentially converges to $s \Leftrightarrow \mathcal{F}$ a-sequentially converges to s.

(iii) s is a sequentially closure of $\mathcal{F}_P \Leftrightarrow$ s is a sequentially closure of \mathcal{F} .

(iv)If \mathcal{F}_P a-sequentially converges to s, then \mathcal{E}_P a-sequentially converges to s.

(v) If s is a-sequentially closure of \mathcal{E}_P , then s is a-sequentially closure of \mathcal{F}_P .

(iv) S is Hausdorff \Leftrightarrow every p-filter on S a-sequentially converges to atmost one point.

Proof: Obvious.

Proposition 6.7:

Le a be sequential technique on S and \mathcal{F}_P be a p-filter on S. Then following condition are equivalent:

(i) s is a-sequentially closure of \mathcal{F}_P

(ii) There exist a refinement \mathcal{E}_p of \mathcal{F}_p such that \mathcal{E}_p a-sequentially converges to s.

Proof:

(i) \Leftrightarrow (ii) If s is a-sequentially closure of \mathcal{F}_P , there exist a p-filter \mathcal{E}_P refining both \mathcal{F}_P and \mathbb{N}_s^a . Then \mathcal{E}_P is finer p-filter a-sequentially converges to s.

(ii) Since $\mathcal{E}_P \to s$, by proposition 6.6(i), s is a-sequentially closure of \mathcal{E}_P and since $\mathcal{E}_P \geq \mathcal{F}_P$ and proposition 6.6(v), s is a-sequentially closure of \mathcal{F}_P .

Proposition 6.8:

Let a be sequential technique on S and $R \subseteq S$. Then

(i)s $\in \overline{R}^a \Leftrightarrow$ s \$ is a-sequentially closure of the p-filter $\mathcal{F}_{P_R} = \{\mathbf{R}\}$

(ii) $s \in \overline{R}^a \Leftrightarrow$ there exists a filter \mathcal{F} such that $R \in \mathcal{F}$ and $\mathcal{F} \to s$.

(iii) $s \in \overline{R}^a \Leftrightarrow$ the p-filter $\mathcal{F}_{P_R} = \{R\}$ is compatible with a-sequentially neighbourhood filter \mathbb{N}_s^a of s.

Proof:

(i)By definition of a-sequentially closure, every element of $\mathcal{F}_{P_{p}}$ meets every

a- sequentially neighbourhood \mathbb{N}_s^a of $s \Leftrightarrow s \in \overline{R}^a$. Proof of (ii) and (iii) is similar to (i)

Lemma 6.9:

Let a be sequentially technique on S. If ultra p-filter F_{P_u} has as a-sequentially closure, then $F_{P_u} \rightarrow s$.

Proof:

If F_{P_u} has a-sequentially closure, then there exist E_{P_u} which refines both F_{P_u} and \mathbb{N}_s^a . Since F_{P_u} is ultra, it is equivalent to all of its refinement, so F_{P_u} itself refine \mathbb{N}_s^a . Hence $F_{P_u} \to s$.

Theorem 6.10:

Let a be sequential technique on S. The followings are equivalent:

(i) For every family $\{F_{P_{\alpha}}\}_{\alpha \in \aleph}$ of a- sequentially closed subsets satisfying the finite intersection property $\bigcap_{\alpha \in \aleph} F_{P_{\alpha}} \neq \emptyset$

(ii) Every p-filter on S has a- sequentially closure.

(iii) Every ultra p- filter on S is a- converges.

Proof:

(i) \Rightarrow (ii) Let $F_{P_{\alpha}} = \{L_{\alpha}\}$ be a p-filter on S the set $\{L_{\alpha}\}$ satisfy the finite intersection property, $s \in \bigcap_{\alpha \in \aleph} \overline{L_{\alpha}}$ and each L_{α} meets each neighbourhood \mathbb{N}_{s}^{a} of s.

(ii) ⇒(iii) by lemma 6.9

(iii) \Rightarrow (i)Let $\{F_{P_{\alpha}}\}$ be a family of a- sequentially closed subset of S satisfying the finite condition. Then $\{F_{P_{\alpha}}\}$ is a filtersubbase, so that there exist some ultra p-filter refining $F_{P_{\alpha}}$. By our assumption, there exist $s \in S$ such that $F_{P_{u}} \rightarrow s$ and s is a-sequentially closure of $F_{P_{u}}$. So each $F_{P_{\alpha}}$ meets every neighbourhood of s. Thus $s \in \overline{F_{P_{\alpha}}} = F_{P_{\alpha}}$. Hence $F_{P_{\alpha}}$ is nonempty.

Proposition 6.11:

Let k: $S \rightarrow R$ be a function. The following are equivalents:

Vol. 6 No. 3(December, 2021)

(i) k is a-sequentially continuous.

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

(ii) For every p- filter L on S a- sequentially converges at s, k(L) a- sequentially converges k(s).

(iii)For every p- filter L on S with a-sequentially closure, k(L) has a-sequentially closure.

Proof: By property of a- sequentially continuous, the above conditions are equivalent.

Conclusion:

In this paper, we evolved filter and p-filter in topological simple ring. The notion is further inculcate with properties and theorems. Also we introduced a perception of asequential converges via filter and p-filter and investigated interesting result and theorem explicated throughout the paper.

References:

- J.Connor, K.G. Grosse-Erdmann, Sequential definition of continuity for real function, Rocky Mountain J.Math, 33, No.1, 93-121, 2003.
- [2] Henri Cartan, Theorie des filtres, C. R. Acad. Sci., Paris, 595-598, 1937.
- [3] U.Jerseena, S.Syed Ali Fathima, and K.Alli,Some salient feature of topological simple ring, Malaya journal of Matematik vol.8, 4, (1912-1915), ISSN(2319 -3786) ,2020.
- [4] G.Preuss, Foundations of topology, An approach to Convenient topology, Kluwer Academic Publishers, Dordrecht, 2002.
- [5] S.Warner, Topological Rings, North Holland Mathematics Studies, Elsevier, Amsterdam, London, New York, Tokyo, Vol.178,1993.