International Journal of Mechanical Engineering

PD Mean Cordial Labeling for Two Graphs

Kavitha S¹ Brindha Devi V I², and Nidha D³

¹Assistant Professor, Department of Mathematics, Gobi Arts & Science College, Gobichettipalayam-638 453

²Research Scholar, Reg no. 18213112092006 ³Assistant Professor

^{2,3}Department of Mathematics, Nesomony Memorial Christian College, Marthandam - 629165, India.

Affiliated to Manonmaniyam Sundaranar University, Abishekapatti, Thirunelveli – 627012, Tamil Nadu, India.

ABSTRACT

Let *h* be a map from V(G) to $\{1,2\}$. We associate two integers P = h(u)h(v) and $D = \lfloor \frac{h(u)}{h(v)} \rfloor$, where $h(u) \ge$ h(v). For each edge uv assign the label $\lfloor \frac{P+D}{2} \rfloor$. Then *h* is called a PD mean cordial labeling if $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$, $i, j \in \{1, 2\}$, where $v_f(x)$ and $e_f(x)$ denote the number of vertices and edges labelled with x(x =1,2) respectively. A graph *G* is PD mean cordial if it satisfies PD mean cordial labeling. In this paper, we prove two star, two wheel and two helm are PD mean cordial graph.

Mathematics subject classification: 05C78

Keywords : Mean cordial, Star graph, Wheel graph, Helm graph.

1. INTRODUCTION

One of the fast growing areas of graph theory is graph labeling. Let G = (V, E) be a graph with vertex set V and the edge set E. Labeling of graphs are used in radar, circuit design, communication network etc. In 1987, Cahit introduced the concept of cordial labeling[3]. He restricted the range set of h to {0,1}. The SD prime cordial labeling was first introduced by G. C. Lau et al. in 2016 [6]. Here we introduce PD mean cordial labeling as a new notation. In any cordial labeling, the values are restricted to 0 and 1. In PD mean cordial labeling of graph, the values assigned to the vertex are restricted to 1 and 2[2]. A graph which admits PD mean cordial labeling is called as PD mean cordial graph.

2. PRELIMINARIES

Definition 2.1

Disconnected graphs are connected by an edge in order to form a connected graph is known as wedge. It is denoted as ^.

Definition 2.2

The graph $W_{\alpha} = C_{\alpha} + K_1$ is called wheel, a vertex of degree 3 on the cycle is called a rim vertex. A vertex which is adjacent to all the rim vertices is called the central vertex. The edges with one end incident with a rim vertex and the other incident with the central vertex are called spokes.

Definition 2.3

Copyrights @Kalahari Journals

The helm graph H_{α} is constructed from the wheel by attaching a pendent edge at each vertex of the α - cycle of the wheel.

3. MAIN RESULTS

Theorem 3.1

The two star $K_{1,\alpha_1} \wedge K_{1,\alpha_2}$ is a PD mean cordial graph.

Proof. Let the graph $G = K_{1,\alpha_1} {}^{\wedge}K_{1,\alpha_2}$. The vertex and edge set is given by $V(G) = [\{m_{\theta}, 0 \le \theta \le \alpha_1\} \cup \{n_{\varphi}, 0 \le \varphi \le \alpha_2\}]$ and $E(G) = [\{m_0m_{\theta}, 1 \le \theta \le \alpha_1\} \cup \{m_{\theta}n_{\varphi}, \text{ for any one of } 0 \le \theta \le \alpha_1 \text{ and } 0 \le \varphi \le \alpha_2\} \cup \{n_0n_{\varphi}, 1 \le \varphi \le \alpha_2\}]$. Then *G* has $\alpha_1 + \alpha_2 + 2$ vertices and $\alpha_1 + \alpha_2 + 1$ edges. To prove $K_{1,\alpha_1} {}^{\wedge}K_{1,\alpha_2}$ is a PD mean cordial.

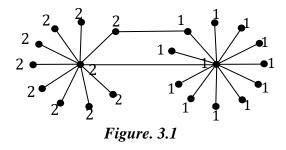
The following cases satisfies *h* is PD mean cordial labeling: Case 1: $\alpha_1 < \alpha_2$

The required vertex labeling of *G* is defined as follows:

$$h(m_{\theta}) = 2, 0 \le \theta \le \alpha_1, \ h(n_{\varphi}) = 1, 0 \le \varphi \le \left\lceil \frac{\alpha_1 + \alpha_2}{2} \right\rceil,$$

 $h(n_{\varphi}) = 2, \left\lceil \frac{\alpha_1 + \alpha_2 + 2}{2} \right\rceil \le \varphi \le \alpha_2.$

Illustration of the labeling for the two star $K_9^{\ }K_{11}$ is given in Figure. 3.1.



The related edge labeling of *G* is given below: $h(m_0 m_\theta) = 2, 1 \le \theta \le \alpha_1,$ $h(n_0 n_{\omega}) = 1,$ $1 \leq \varphi \leq$ $\left[\frac{\alpha_1+\alpha_2}{2}\right],$ $h(n_0 n_{\varphi}) = 2, \left[\frac{\alpha_1 + \alpha_2 + 2}{2}\right] \le \varphi \le \alpha_2.$ wedge labeling of GThe is $h(m_{\theta}n_{\varphi}) =$ 2 for any one of θ, φ . Case 2: $\alpha_1 = \alpha_2$ The required vertex labeling of *G* is defined as follows: $h(m_{\theta}) = 2, 0 \le \theta \le \alpha_1, h(n_{\varphi}) = 1, 0 \le \varphi \le \alpha_2.$ The related edge labeling of G is given below: $h(m_0 m_{\theta}) = 2, 1 \le \theta \le \alpha_1, h(n_0 n_{\varphi}) = 1, 1 \le \varphi \le \alpha_2.$

Vol. 6 No. 3(December, 2021)

The wedge labeling of G is $h(m_{\theta}n_{\varphi}) = 2$ for any one of θ, φ .

Case 3: $\alpha_1 > \alpha_2$

The required vertex labeling of G is defined as follows:

 $h(m_{\theta}) = 1, 0 \le \theta \le \left\lceil \frac{\alpha_1 + \alpha_2}{2} \right\rceil, \ h(n_{\varphi}) = 2, \ 0 \le \varphi \le \alpha_2,$ $h(m_{\theta}) = 2, \left\lceil \frac{\alpha_1 + \alpha_2 + 2}{2} \right\rceil \le \theta \le \alpha_1.$

The related edge labeling of G is given below:

$$\begin{split} h(m_0 m_\theta) &= 1, 1 \le \theta \le \left\lceil \frac{\alpha_1 + \alpha_2}{2} \right\rceil, \qquad h(n_0 n_\varphi) = 2 \text{ for } 1 \le \\ \varphi \le \alpha_2, \\ h(m_0 m_\theta) &= 2, \left\lceil \frac{\alpha_1 + \alpha_2 + 2}{2} \right\rceil \le \theta \le \alpha_1. \end{split}$$

The wedge labeling of *G* is $h(m_{\theta}n_{\varphi}) = 2$ for any one of θ, φ . From all the three cases, $v_h(1) = \left\lfloor \frac{\alpha_1 + \alpha_2 + 3}{2} \right\rfloor$, $v_h(2) = \left\lfloor \frac{\alpha_1 + \alpha_2 + 2}{2} \right\rfloor$ and $e_h(1) = \left\lfloor \frac{\alpha_1 + \alpha_2 + 1}{2} \right\rfloor$, $e_h(2) = \left\lfloor \frac{\alpha_1 + \alpha_2 + 2}{2} \right\rfloor$. Therefore, the graph satisfies the condition $|v_h(i) - v_h(j)| \le 1$ and $|e_h(i) - e_h(j)| \le 1$, $(i, j) \in \{1, 2\}$.

Theorem 3.2. Two wheel $W_{\alpha_1} {}^{\wedge} W_{\alpha_2}$ is a PD mean cordial graph iff $|\alpha_i - \alpha_j| \neq 2n$, $n \in N, \alpha_1 = \alpha_2 = 4, 5, 6, ..., i, j \in \{1, 2\}$.

Proof. Let the graph = $W_{\alpha_1} {}^{\wedge} W_{\alpha_2}$. The vertex and edge set of *G* is given by $V(G) = [\{m_{\theta}, 0 \le \theta \le \alpha_1\} \cup \{n_{\varphi}, 0 \le \varphi \le \alpha_2\}]$ and $E(G) = [\{m_0 m_{\theta}, 1 \le \theta \le \alpha_1\} \cup \{n_0 n_{\varphi}, 1 \le \varphi \le \alpha_2\}$ $\cup \{m_{\theta} m_{\theta+1}, 1 \le \theta \le \alpha_1 - 1\} \cup \{m_1 m_{\alpha_1}\} \cup \{n_{\varphi} n_{\varphi+1}, 1 \le \varphi \le \alpha_2 - 1\} \cup \{n_1 n_{\alpha_2}\} \cup \{m_{\theta} n_{\varphi} \text{ for any one of } 0 \le \theta \le \alpha_1 \text{ and } 0 \le \varphi \le \alpha_2\}]$. Then *G* has $\alpha_1 + \alpha_2$ vertices and $2(\alpha_1 + \alpha_2 - 2) + 1$ edges. To prove that *G* is a PD mean cordial for $|\alpha_i - \alpha_j| \ne 2n$, $n \in N$, $\alpha_1 = \alpha_2 = 4, 5, 6, ..., i, j \in \{1, 2\}$.

The following cases satisfies the PD mean cordial labeling: **Case 1:** $\alpha_2 = \alpha_1 + 1$ Consider the graph = $W_{\alpha_1}^{\ \ }W_{\alpha_2}$, where $\alpha_2 = \alpha_1 + 1$.

The required vertex labeling of *G* is defined as follows: Define a map $h: V(G) \rightarrow \{1, 2\}$ by

 $h(m_{\theta}) = 1, 0 \le \theta \le \alpha_{1}, h(n_{0}) = 1, h(n_{\varphi}) = 2, 1 \le \varphi \le \alpha_{2}.$ The related edge labeling of *G* is given below : $h(m_{0}m_{\theta}) = 1, 1 \le \theta \le \alpha_{1}, h(n_{0}n_{\varphi}) = 2, 1 \le \varphi \le \alpha_{2},$ $h(m_{1}m_{\alpha_{1}}) = 1, h(m_{\theta}m_{\theta+1}) = 1, 1 \le \theta \le \alpha_{1} - 1,$ $h(n_{1}n_{\alpha_{2}}) = 2, h(n_{\varphi}n_{\varphi+1}) = 2, 1 \le \varphi \le \alpha_{2} - 1,$ The wedge labeling of *G* is $h(m_{\theta}n_{0}) = 1$ for any one of θ . **Case 2:** $\alpha_{2} = \alpha_{1}$ Consider the graph = $W_{\alpha_{1}} \wedge W_{\alpha_{2}}$, where $\alpha_{2} = \alpha_{1}.$ The required vertex labeling of *G* is defined as follows: $h(m_{\theta}) = 1, 0 \le \theta \le \alpha_{1}, h(n_{\varphi}) = 2, 0 \le \varphi \le \alpha_{2}.$ The related edge labeling of *G* is given below : $h(m_{0}m_{\theta}) = 1, 1 \le \theta \le \alpha_{1}, h(n_{0}n_{\varphi}) = 2, 1 \le \varphi \le \alpha_{2},$ $h(m_{1}m_{\alpha_{1}}) = 1, h(m_{\theta}m_{\theta+1}) = 1, 1 \le \theta \le \alpha_{1} - 1,$

 $h(n_1 n_{\alpha_2}) = 2, h(n_{\varphi} n_{\varphi+1}) = 2, 1 \le \varphi \le \alpha_2 - 1.$ The wedge labeling of *G* is $h(m_{\theta} n_{\varphi}) = 2$ for any one of $0 \le 1$

 $\theta \le \alpha_1$ and $0 \le \varphi \le \alpha_2$.

Case 3: $\alpha_2 = \alpha_1 - 1$ Consider the graph = $W_{\alpha_1} \wedge W_{\alpha_2}$, where $\alpha_2 = \alpha_1 - 1$.

The required vertex labeling of *G* is defined as follows: $h(m_{\theta}) = 1, 0 \le \theta \le \alpha_1, h(n_{\varphi}) = 2, 0 \le \varphi \le \alpha_2.$ The related edge labeling of *G* is given below:

$$h(m_0 m_\theta) = 1, 1 \le \theta \le \alpha_1, \quad h(m_\theta m_{\theta+1}) = 1, 1 \le \theta \le \alpha_1 - 1,$$

Copyrights @Kalahari Journals

 $h(m_1m_{\alpha_1}) = 1, h(n_0n_{\varphi}) = 2, 1 \le \varphi \le \alpha_2,$ $h(n_1n_{\alpha_2}) = 2, h(n_{\varphi}n_{\varphi+1}) = 2, 1 \le \varphi \le \alpha_2 - 1.$ The wedge labeling of *G* is $h(m_{\theta}n_{\varphi}) = 2$ for any one of $0 \le \theta \le \alpha_1$ and $0 \le \varphi \le \alpha_2.$

Case 4: $\alpha_2 - \alpha_1 = 2n + 1, n \in N$. Consider the graph $= W_{\alpha_1}^{\wedge} W_{\alpha_2}$, where $\alpha_2 - \alpha_1 = 2n + 1, n \in N$.

The required vertex labeling of *G* is defined as follows: $h(m_{\theta}) = 2, 0 \le \theta \le \alpha_1, h(n_{\varphi}) = 2, 1 \le \varphi \le \frac{\alpha_2 - \alpha_1 - 1}{2},$ $h(n_0) = 1, h(n_{\varphi}) = 1, \frac{\alpha_2 - \alpha_1 + 1}{2} \le \varphi \le \alpha_2.$ The related edge labeling of G is given below: $h(m_0 m_\theta) = 2, 1 \le \theta \le \alpha_1, \quad h(m_\theta m_{\theta+1}) = 2, 1 \le \theta \le \alpha_1 - 1$ 1,
$$\begin{split} &h(m_1m_{\alpha_1}) = 2, h(n_{\varphi}n_{\varphi+1}) = 2, 1 \le \varphi \le \frac{\alpha_2 - \alpha_1 - 1}{2}, \\ &h(n_0n_{\varphi}) = 2, 1 \le \varphi \le \frac{\alpha_2 - \alpha_1 - 1}{2}, \quad h(n_0n_{\varphi}) = 1, \frac{\alpha_2 - \alpha_1 + 1}{2} \le \end{split}$$
 $\varphi \leq \alpha_2,$ $h(n_1 n_{\alpha_2}) = 2, h(n_{\varphi} n_{\varphi+1}) = 1, \frac{\alpha_2 - \alpha_1 + 1}{2} \le \varphi \le \alpha_2 - 1.$ The wedge labeling of *G* is $h(m_{\theta} n_{\varphi}) = 2$ for any one of $0 \le 1$ $\theta \leq \alpha_1$ and $0 \leq \varphi \leq \alpha_2$. **Case 5:** $\alpha_1 - \alpha_2 = 2n + 1$, $n \in N$. Consider the graph = $W_{\alpha_1}^{\Lambda}W_{\alpha_2}$, where $\alpha_1 - \alpha_2 = 2n + 1$ $1, n \in N$. The required vertex labeling of *G* is defined as follows: $h(m_0) = 1, h(m_{\theta}) = 2, 1 \le \theta \le \frac{\alpha_1 - \alpha_2 - 1}{2},$ $h(m_{\theta}) = 1, \frac{\alpha_1 - \alpha_2 + 1}{2} \le \theta \le \alpha_1, h(n_{\varphi}) = 2, 0 \le \varphi \le \alpha_2.$ The related edge labeling of G is given below : $h(m_0m_\theta) = 2, 1 \le \theta \le \frac{\alpha_1 - \alpha_2 - 1}{2}, \quad h(m_0m_\theta) = 1, \frac{\alpha_1 - \alpha_2 + 1}{2} \le$ $\theta \leq \alpha_1$, $h(m_1m_{\alpha_1}) = 2, h(m_{\theta}m_{\theta+1}) = 2, 1 \le \theta \le \frac{\alpha_1 - \alpha_2 - 1}{2},$ $h(n_1 n_{\alpha_2}) = 2, h(m_{\theta} m_{\theta+1}) = 1, \frac{\alpha_1 - \alpha_2 + 1}{2} \le \theta \le \alpha_1 - 1, \\ h(n_0 n_{\varphi}) = 2, 1 \le \varphi \le \alpha_2, h(n_{\varphi} n_{\varphi+1}) = 2, 1 \le \varphi \le \alpha_2 - 1$ 1. The wedge labeling of G is $h(m_{\theta}n_{\omega}) = 2$ for any one of $0 \leq 1$ $\theta \leq \alpha_1$ and $0 \leq \varphi \leq \alpha_2$.

The above cases are PD mean cordial labeling as shown in the following table 3.1 and 3.2 :

tonio ning autre ett and etz t				
Nature of α_2	$v_h(1)$	$v_{h}(2)$		
$\alpha_2 = \alpha_1 + 1$	$\alpha_1 + 2$	$\alpha_1 + 1$		
$\alpha_2 = \alpha_1$	α ₁	α_1		
$\alpha_2 = \alpha_1 - 1$	$\alpha_1 + 1$	α_1		
$\alpha_2 - \alpha_1 = 2n + 1, n \in N$	$\alpha_1 + \alpha_2 + 3$	$\alpha_1 + \alpha_2 + 1$		
	2	2		
$\alpha_1 - \alpha_2 = 2n + 1, n \in N$	$\alpha_1 + \alpha_2 + 3$	$\alpha_1 + \alpha_2 + 1$		
	2	2		
T 11 2 1				

Table 3.1

Nature of α_2	$e_{h}(1)$	$e_{h}(2)$
$\alpha_2 = \alpha_1 + 1$	$2\alpha_1 + 1$	$2\alpha_1 + 2$
$\alpha_2 = \alpha_1$	$2\alpha_1$	$2\alpha_1 + 1$
$\alpha_2 = \alpha_1 - 1$	$2\alpha_1$	$2\alpha_1 - 1$
$\alpha_2 - \alpha_1 = 2n + 1, n \in N$	$\alpha_1 + \alpha_2$	$\alpha_1 + \alpha_2 + 1$
$\alpha_1 - \alpha_2 = 2n + 1, n \in N$	$\alpha_1 + \alpha_2$	$\alpha_1 + \alpha_2 + 1$

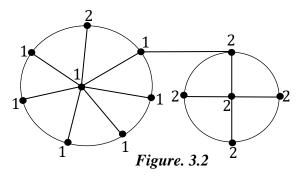
Table 3.2

Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

Hence, *G* is a PD mean cordial graph for $|\alpha_i - \alpha_j| \neq 2n$, $n \in N, \alpha_1 = \alpha_2 = 4, 5, 6, \dots, i, j \in \{1, 2\}$. Conversly, suppose $|\alpha_i - \alpha_j| = 2n$, $n \in N, \alpha_1 = \alpha_2 = 3, 4, 5, 6, \dots, i, j \in \{1, 2\}$ and *h* is a PD mean cordial. Here $|V(G)| = \alpha_1 + \alpha_2 + 2$ and $|E(G)| = 2(\alpha_1 + \alpha_2) + 1$. If $v_f(i) = \frac{\alpha_1 + \alpha_2 + 2}{2}$, $i \in \{1, 2\}$ then we must have $e_f(i) = \alpha_1 + \alpha_2 - 1$ and $e_f(2) \ge \alpha_1 + \alpha_2 + 2$. From this $|v_f(i) - v_f(j)| \le 1$ but $|e_f(i) - e_f(j)| \ge 3, (i, j) \in \{1, 2\}$, a contradiction. If $v_f(i) \ne \frac{\alpha_1 + \alpha_2 + 2}{2}$, $i \in \{1, 2\}$ then $|v_f(i) - v_f(j)| > 1$, $(i, j) \in \{1, 2\}$, a contradiction.

Illustration of the labeling for the two wheel $W_7^{A}W_4$ is given in Figure. 3.2.



Theorem 3.3. Two helm graph $H_{\alpha_1}^{A}H_{\alpha_2}$ is a PD mean cordial graph.

Proof. Let the graph = $H_{\alpha_1} \wedge H_{\alpha_2}$. The vertex and edge set of *G* is given by $V(G) = [\{m_{\theta}, 0 \le \theta \le \alpha_1\} \cup \{m'_{\theta}, 0 \le \alpha_1\} \cup \{m'_{\theta},$ $\alpha_2\} \cup \{n_{\varphi}, 1 \le \varphi \le \alpha_1\} \cup \{n'_{\varphi}, 1 \le \varphi \le \alpha_2\}].$ $E(G) = [\{m_0 m_{\theta}, 1 \le \theta \le \alpha_1\} \cup \{m_{\theta} m_{\theta+1}, 1 \le \theta \le \alpha_1 - \theta \le \alpha_1 1\} \cup \{m_{\theta}n_{\varphi}, 1 \leq \theta, \varphi \leq \alpha_1\} \cup \{m_1m_{\alpha_1}\} \cup \{m'_0m'_{\theta}, 1 \leq \theta \leq$ $\alpha_{2} \cup \{m'_{\theta}m'_{\theta+1}, 1 \le \theta \le \alpha_{2} - 1\} \cup \{m'_{1}m'_{\alpha_{2}}\} \cup \{m'$ $\{m'_{\rho}n'_{\varphi}, 1 \leq \theta, \varphi \leq \alpha_2\} \cup$ $\{m_{\theta}m'_{\theta} \text{ or } m_{\theta}n'_{\varphi} \text{ or } n_{\varphi}m'_{\theta} \text{ or } n_{\varphi}n'_{\varphi} \text{ for any one of } \theta, \varphi\}$. Then G has $2(\alpha_1 + \alpha_2 + 1)$ vertices and $3(\alpha_1 + \alpha_2) + 1$ edges. To prove that G is a PD mean cordial for $\alpha_1 \leq \alpha_2$. Define a map $h: V(G) \rightarrow \{1, 2\}$ and $h: E(G) \rightarrow \{1, 2\}$. The following cases satisfies the PD mean cordial labeling: Case 1: $\alpha_1 \leq \alpha_2$ **Subcase 1:** $\alpha_2 = \alpha_1$ Consider the graph = $H_{\alpha_1} \wedge H_{\alpha_2}$, where $\alpha_2 = \alpha_1$. The required vertex labeling of *G* is defined as follows: $h(m_{\theta}) = 2, 0 \le \theta \le \alpha_1, h(m'_{\theta}) = 1, 0 \le \theta \le \alpha_2,$ $h(n_{\alpha_1}) = 1, h(n_{\varphi}) = 2, 1 \le \varphi \le \alpha_1 - 1,$ $h(n'_1) = 2, h(n'_{\varphi}) = 1, 2 \le \varphi \le \alpha_2.$ The related edge labeling of *G* is given below: $h(m_0 m_{\theta}) = 2, 1 \le \theta \le \alpha_1, h(m_{\theta} n_{\varphi}) = 2, 1 \le \theta, \varphi \le \alpha_1,$ $h(m_1m_{\alpha_1}) = 2, h(m_{\theta}m_{\theta+1}) = 2, 1 \le \theta \le \alpha_1 - 1,$ $h(m'_{\theta}m'_{\theta}) = 1, 1 \le \theta \le \alpha_2, \quad h(m'_{\theta}m'_{\theta+1}) = 1, 1 \le \theta \le \alpha_2$ $\alpha_2 - 1$, $h(m'_{1}m'_{\alpha_{2}}) = 1, \quad h(m'_{1}n'_{1}) = 2, \quad h(m'_{\theta}n'_{\omega}) = 1, 2 \le 1$ $\theta, \varphi \leq \alpha_2.$ The wedge labeling of *G* is given below: $h(n_{\alpha_1}n'_{\omega})=1$ $h(n_{\alpha_1}m'_{\theta}) = 1$ for any one of θ or for any one of $2 \leq \varphi \leq \alpha_2$.

Copyrights @Kalahari Journals

Subcase 2: $\alpha_2 = \alpha_1 + 1$ Consider the graph = $H_{\alpha_1} {}^{\wedge} H_{\alpha_2}$, where $\alpha_2 = \alpha_1 + 1$. The required vertex labeling of *G* is defined as follows: $h(m_{\theta}) = 2, 0 \le \theta \le \alpha_1, h(m'_{\theta}) = 1, 0 \le \theta \le \alpha_2,$ $h(n_{\alpha_1}) = 1, h(n_{\varphi}) = 2, 1 \le \varphi \le \alpha_1 - 1,$ $h(n'_{\omega}) = 2, 1 \le \varphi \le 2, h(n'_{\omega}) = 1, 3 \le \varphi \le \alpha_2.$ The related edge labeling of G is given below: $h(m_0 m_{\theta}) = 2, 1 \leq \theta \leq \alpha_1, h(m_{\theta} n_{\varphi}) = 2, 1 \leq \theta, \varphi \leq \alpha_1,$ $h(m_{\theta}m_{\theta+1}) = 2, 1 \le \theta \le \alpha_1 - 1, \ h(m'_0m'_{\theta}) = 1, \ 1 \le \theta \le \theta$ $h(m_1m_{\alpha_1}) = 2, \quad h(m'_1m'_{\alpha_2}) = 1, \quad h(m'_{\theta}m'_{\theta+1}) = 1, 1 \le 1$ $\theta \leq \alpha_2 - 1$, $h(m'_{\theta}n'_{\varphi}) = 2, \ 1 \le \theta, \varphi \le 2, \ h(m'_{\theta}n'_{\varphi}) = 1, 3 \le \theta, \varphi \le$ α_2 . The wedge labeling of *G* is given below: $h(n_{\alpha_1}n'_{\alpha_2})=1$ $h(n_{\alpha_1}m'_{\theta}) = 1$ for any one of θ or for any one of $3 \leq \varphi \leq \alpha_2$. **Subcase 3:** $\alpha_2 = \alpha_1 + 2$ Consider the graph = $H_{\alpha_1}^{A}H_{\alpha_2}$, where $\alpha_1 + 2 = \alpha_2$. The required vertex labeling of *G* is defined as follows: $h(m_{\theta}) = 2, 0 \le \theta \le \alpha_1, h(m'_{\theta}) = 1, 0 \le \theta \le \alpha_2,$ $h(n_{\alpha_1}) = 1, h(n_{\varphi}) = 2, 1 \le \varphi \le \alpha_1 - 1,$ $h(n'_{\omega}) = 2, 1 \le \varphi \le 3, h(n'_{\omega}) = 1, 4 \le \varphi \le \alpha_2.$ The related edge labeling of G is given below: $h(m_0 m_{\theta}) = 2, 1 \le \theta \le \alpha_1, \ h(m_{\theta} m_{\theta+1}) = 2, 1 \le \theta \le \alpha_1 - 1$ 1, $h(m_{\theta}n_{\varphi}) = 2, 1 \leq \theta, \varphi \leq \alpha_1, h(m'_0m'_{\theta}) = 1, 1 \leq \theta \leq \alpha_2,$ $h(m_1m_{\alpha_1}) = 2, \quad h(m'_1m'_{\alpha_2}) = 1, \quad h(m'_{\theta}m'_{\theta+1}) = 1, 1 \le 1$ $\theta \leq \alpha_2 - 1$, $h(m'_{\theta}n'_{\varphi}) = 2, \ 1 \le \theta, \varphi \le 3, \ h(m'_{\theta}n'_{\varphi}) = 1, 4 \le \theta, \varphi \le$ α_2 . The wedge labeling of *G* is given below: $h(n_{\alpha_1}n'_{\alpha_2})=1$ $h(n_{\alpha_1}m'_{\theta}) = 1$ for any one of θ or for any one of $4 \leq \varphi \leq \alpha_2$. **Subcase 4:** $\alpha_2 = \alpha_1 + 3$ Consider the graph = $H_{\alpha_1}^A H_{\alpha_2}$, where $\alpha_1 + 3 = \alpha_2$. The required vertex labeling of G is defined as follows: $h(m_{\theta}) = 2, 0 \le \theta \le \alpha_1, h(m'_{\theta}) = 1, \ 0 \le \theta \le \alpha_2,$ $h(n_{\alpha_1}) = 1, h(n_{\varphi}) = 2, 1 \le \varphi \le \alpha_1 - 1,$ $h(n'_{\omega}) = 2, 1 \le \varphi \le 4, h(n'_{\omega}) = 1, 5 \le \varphi \le \alpha_2.$ The related edge labeling of G is given below: $h(m_0 m_{\theta}) = 2, 1 \le \theta \le \alpha_1, \ h(m_{\theta} m_{\theta+1}) = 2, 1 \le \theta \le \alpha_1 - 1$ 1, $h(m_1m_{\alpha_1}) = 2, h(m'_1m'_{\alpha_2}) = 1, h(m_{\theta}n_{\theta}) = 2, 1 \le \theta, \varphi \le 0$ α_1 , $h(m'_{\theta}m'_{\theta}) = 1, 1 \le \theta \le \alpha_2, \qquad h(m'_{\theta}m'_{\theta+1}) = 1, 1 \le \theta \le \alpha_2$ $\alpha_2 - 1$, $h(m'_{\theta}n'_{\varphi}) = 2, \ 1 \le \theta, \varphi \le 4, \ h(m'_{\theta}n'_{\varphi}) = 1, 5 \le \theta, \varphi \le$ α_2 . The wedge labeling of G is given below: $h(n_{\alpha_1}n'_{\varphi}) = 2$ for any one of $1 \le \varphi \le 4$. **Subcase 5:** $\alpha_2 = \alpha_1 + 4$ Consider the graph = $H_{\alpha_1}^{A}H_{\alpha_2}$, where $\alpha_1 + 4 = \alpha_2$. The required vertex labeling of G is defined as follows: $h(m_{\theta}) = 2, 0 \le \theta \le \alpha_1, h(m'_{\theta}) = 1, 0 \le \theta \le \alpha_2,$ $h(n_{\alpha_1}) = 1, h(n_{\varphi}) = 2, 1 \le \varphi \le \alpha_1 - 1,$ $h(n'_{\omega}) = 2, 1 \le \varphi \le 5, h(n'_{\omega}) = 1, 6 \le \varphi \le \alpha_2.$

 $n(n_{\varphi}) = 2, 1 \le \varphi \le 5, n(n_{\varphi}) = 1, 0 \le \varphi \le \alpha_2$ The related edge labeling of *G* is given below:

Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

 $h(m_0 m_{\theta}) = 2, 1 \le \theta \le \alpha_1, h(m_{\theta} n_{\varphi}) = 2, 1 \le \theta, \varphi \le \alpha_1,$ $h(m_1m_{\alpha_1}) = 2, \ h(m'_1m'_{\alpha_2}) = 1, \ h(m'_0m'_{\theta}) = 1, 1 \le \theta \le$ α2, $h(m_{\theta}m_{\theta+1}) = 2, 1 \le \theta \le \alpha_1 - 1, \quad h(m'_{\theta}m'_{\theta+1}) = 1, 1 \le 0$ $\theta \leq \alpha_2 - 1,$ $h(m'_{\theta}n'_{\omega}) = 2, 1 \le \theta, \varphi \le 5, \quad h(m'_{\theta}n'_{\omega}) = 1, 6 \le \theta, \varphi \le 0$ α_2 . The wedge labeling of G is given below: $h(n_{\alpha_1}n'_{\varphi}) = 2$ for any one of $1 \le \varphi \le 5$. **Subcase 6:** $\alpha_2 = \alpha_1 + 2n + 1, n \in N - \{1\}$ Consider the graph = $H_{\alpha_1}^{A_1} H_{\alpha_2}$, where $\alpha_1 + 2n + 1 =$ $\alpha_2, n \in N - \{1\}.$ The required vertex labeling of G is defined as follows: $h(m'_0) = 1, h(m_\theta) = 2, 0 \le \theta \le \alpha_1,$ $h(n_{\alpha_1}) = 1, h(n_{\varphi}) = 2, 1 \le \varphi \le \alpha_1 - 1,$ $h(m'_{\theta}) = 2, 1 \le \theta \le \frac{\alpha_2 - \alpha_1 - 3}{2}, h(m'_{\theta}) = 1, \frac{\alpha_2 - \alpha_1 - 1}{2} \le \theta \le \theta$ α2, $h(n'_{\varphi}) = 2, 1 \le \varphi \le \frac{\alpha_2 - \alpha_1 + 5}{2}, \quad h(n'_{\varphi}) = 1, \frac{\alpha_2 - \alpha_1 + 7}{2} \le \varphi \le$ α_2 . The related edge labeling of G is given below: $h(m_0 m_{\theta}) = 2, 1 \le \theta \le \alpha_1, h(m_{\theta} m_{\theta+1}) = 2, 1 \le \theta \le \alpha_1 - 1$ $h(m'_{1}m'_{\alpha_{2}}) = 2, h(m_{1}m_{\alpha_{1}}) = 2, h(m_{\theta}n_{\varphi}) = 2, 1 \le \theta, \varphi \le 0$ α_1 , $h(m'_{0}m'_{\theta}) = 2, 1 \le \theta \le \frac{\alpha_2 - \alpha_1 - 3}{2},$ $h(m'_0 m'_{\theta}) =$ $1, \frac{\alpha_2 - \alpha_1 - 1}{2} \le \theta \le \alpha_2,$ $h(m'_{\theta}m'_{\theta+1}) = 2, \quad 1 \le \theta \le \frac{\alpha_2 - \alpha_1 - 3}{2}, \quad h(m'_{\theta}m'_{\theta+1}) = -1$ $\frac{\alpha_2 - \alpha_1 - 1}{2} \le \theta \le \alpha_2 - 1,$ $h(m'_{\theta}n'_{\varphi}) = 2, 1 \le \theta, \varphi \le \frac{\alpha_2 - \alpha_1 + 5}{2}, \qquad h(m'_{\theta}n'_{\varphi}) = 1,$ $\frac{\alpha_2 - \alpha_1 + 7}{2} \le \theta, \varphi \le \alpha_2.$ The wedge labeling of G is given below: $h(n_{\alpha_1}m'_{\theta}) = 1$ for any one of $\frac{\alpha_2 - \alpha_1 - 1}{2} \le \theta \le \alpha_2$ $h(n_{\alpha_1}m'_0) = 1 \text{ or }$ $h(n_{\alpha_1}n'_{\varphi}) = 1$ for any one of $\frac{\alpha_2 - \alpha_1 + 7}{2} \le \varphi \le \alpha_2$. **Subcase 7:** $\alpha_2 = \alpha_1 + 2n, n \in N - \{1, 2\}$ Consider the graph = $H_{\alpha_1}^A H_{\alpha_2}$, where $\alpha_1 + 2n = \alpha_2$, $n \in N - \alpha_2$ {1,2}. The required vertex labeling of G is defined as follows: $h(m'_0) = 1, h(m_\theta) = 2, 0 \le \theta \le \alpha_1, h(n_{\alpha_1}) = 1, h(n_\varphi) =$ $2, 1 \le \varphi \le \alpha_1 - 1,$ $h(m'_{\theta}) = 2, 1 \le \theta \le \frac{\alpha_2 - \alpha_1 - 4}{2}, h(m'_{\theta}) = 1, \frac{\alpha_2 - \alpha_1 - 2}{2} \le \theta \le 0$ α_2 , $h(n'_{\varphi}) = 2, 1 \le \varphi \le \frac{\alpha_2 - \alpha_1 + 6}{2}, \quad h(n'_{\varphi}) = 1, \frac{\alpha_2 - \alpha_1 + 8}{2} \le \varphi \le$ α_2 . The related edge labeling of G is given below: $h(m_0 m_{\theta}) = 2, 1 \le \theta \le \alpha_1, \ h(m_{\theta} m_{\theta+1}) = 2, 1 \le \theta \le \alpha_1 - 1$ $h(m_1m_{\alpha_1}) = 2, h(m'_1m'_{\alpha_2}) = 2, h(m_{\theta}n_{\varphi}) = 2, 1 \le \theta, \varphi \le 0$ α_1 , $h(m'_{0}m'_{\theta}) = 2, 1 \le \theta \le \frac{\alpha_2 - \alpha_1 - 4}{2},$ $h(m'_0 m'_{\theta}) =$ $1, \frac{\alpha_2 - \alpha_1 - 2}{2} \le \theta \le \alpha_2,$ $h(m'_{\theta}m'_{\theta+1}) = 2, 1 \le \theta \le \frac{\alpha_2 - \alpha_1 - 4}{2}, \qquad h(m'_{\theta}m'_{\theta+1}) = 0$ $1, \frac{\alpha_2 - \alpha_1 - 2}{2} \le \theta \le \alpha_2 - 1,$

$$\begin{split} h(m'_{\theta}n'_{\varphi}) &= 2, 1 \leq \theta, \varphi \leq \frac{\alpha_2 - \alpha_1 + 6}{2}, \qquad h(m'_{\theta}n'_{\varphi}) = 1, \\ \frac{\alpha_2 - \alpha_1 + 8}{2} \leq \theta, \ \varphi \leq \alpha_2. \end{split}$$
The wedge labeling of *G* is given below: $h(n_{\alpha_1}m'_{\theta}) &= 1 \text{ for any one of } \frac{\alpha_2 - \alpha_1 - 2}{2} \leq \theta \leq \alpha_2 \qquad \text{or} \\ h(n_{\alpha_1}m'_{\theta}) &= 1 \text{ or} \end{split}$

 $h(n_{\alpha_1}n'_{\varphi}) = 1$ for any one of $\frac{\alpha_2 - \alpha_1 + 8}{2} \le \varphi \le \alpha_2$.

The above cases are PD mean cordial labeling as shown in the table 4.3 and 4.4:

Nature of α_2	$v_h(1)$	$v_h(2)$
$\alpha_2 = \alpha_1$	$\alpha_1 + \alpha_2 + 1$	$\alpha_1 + \alpha_2 + 1$
$\alpha_2 = \alpha_1 + 1$	$\alpha_1 + \alpha_2 + 1$	$\alpha_1 + \alpha_2 + 1$
$\alpha_2 = \alpha_1 + 2$	$\alpha_1 + \alpha_2 + 1$	$\alpha_1 + \alpha_2 + 1$
$\alpha_2 = \alpha_1 + 3$	$\alpha_1 + \alpha_2 + 1$	$\alpha_1 + \alpha_2 + 1$
$\alpha_2 = \alpha_1 + 4$	$\alpha_1 + \alpha_2 + 1$	$\alpha_1 + \alpha_2 + 1$
$\alpha_1 + 2n + 1 = \alpha_2, n \in N - \{1\}$	$\alpha_1 + \alpha_2 + 1$	$\alpha_1 + \alpha_2 + 1$
$\alpha_1 + 2n = \alpha_2, n \epsilon N - \{1, 2\}$	$\alpha_1 + \alpha_2 + 1$	$\alpha_1 + \alpha_2 + 1$

Table 4.3

Table 4.5				
Nature of α_2	$e_h(1)$	$e_{h}(2)$		
$\alpha_2 = \alpha_1$	$3\alpha_2$	$3\alpha_2 + 1$		
$\alpha_2 = \alpha_1 + 1$	$3\alpha_2 - 1$	$3\alpha_2 - 1$		
$\alpha_2 = \alpha_1 + 2$	$3\alpha_2 - 2$	$3\alpha_2 - 3$		
$\alpha_2 = \alpha_1 + 3$	$3\alpha_2 - 4$	$3\alpha_2 - 4$		
$\alpha_2 = \alpha_1 + 4$	$3\alpha_2 - 5$	$3\alpha_2 - 6$		
$\alpha_1 + 2n + 1 = \alpha_2, n \in N - \{1\}$	$3\alpha_2 + 3\alpha_1 + 1$	$3\alpha_2 + 3\alpha_1 + 1$		
	2	2		
$\alpha_1 + 2n = \alpha_2, n \in N - \{1, 2\}$	$3\alpha_2 + 3\alpha_1 + 2$	$3\alpha_2 + 3\alpha_1$		
	2	2		
Table 4.4				

Table 4.4

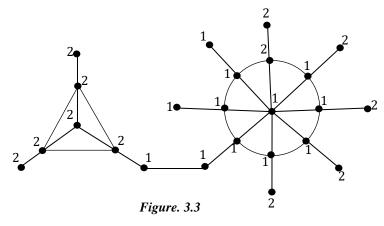
Hence, *G* is a PD mean cordial graph if $\alpha_1 \leq \alpha_2$.

Case 2: $\alpha_1 \ge \alpha_2$

In case 1, put $\alpha_1 = \alpha_2$, $\alpha_2 = \alpha_1$, m = m', m' = m, n = n', n' = n, where $\alpha_1 \ge \alpha_2$.

Hence, the two helm is a PD mean cordial graph for all α_1 , α_2 .

Illustration of the labeling for the two helm $H_3^{A}H_8$ is given in Figure. 3.3



Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

2841

- [1] Albert William, Indra Rajasingh and S. Roy, "Mean Cordial Labeling of Certain Graphs", Journal of Computer and Mathematical Sciences, 4(2013), no. 4, 274-28.
- [2] Brindha Devi, S. Kavitha, D. Nidha, "PD mean cordial labeling of graphs", AIP Conference Proceedings 2261, 030074(2020)
- [3] I. Cahit, "Cordial Graphs: A weaker version of Graceful and Harmonious Graphs", Ars combin., vol 23 (1987) 201-207.
- [4] J. A. Gallian, "A Dynamic Survey of Graph Labeling", The Electronic journal of Combinatorics, 17(2018), \$\#\$DS6.
- [5] F. Harray, Graph theory, Narosa publishing House, New Delhi.
- [6] G. C. Lau, H. H. Chu, N. Suhadak, F. Y. Foo, H. K. Ng, "On SD- Prime Cordial Graphs", International Journal of Pure and Applied Mathematics, 106 (4), (2016), 1017-1028.
- [7] R. Ponraj and S. Sathish Narayanan "Difference cordiality of some snake graphs" - J. Appl. Math. Informatics. vol. 32(2014) no. 3-4, pp. 377-387.
- [8] Shendra Shainy, V, Vinoth Kumar, L & Balaji, V 2019, "Mean Cordial Labeling For Three Star Graph", International Conference on Physics and Photonics Process in Nano Science, vol. 1362, 12036.